亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        10種典型重金屬在八大流域的生態(tài)風(fēng)險及水質(zhì)標(biāo)準(zhǔn)評價

        2019-07-31 07:13:36王貝貝馮承蓮蘇海磊
        中國環(huán)境科學(xué) 2019年7期
        關(guān)鍵詞:水質(zhì)標(biāo)準(zhǔn)水生水體

        何 佳,時 迪,王貝貝,馮承蓮,蘇海磊,王 穎,3,秦 寧,4*

        10種典型重金屬在八大流域的生態(tài)風(fēng)險及水質(zhì)標(biāo)準(zhǔn)評價

        何 佳1,2,時 迪1,王貝貝1,馮承蓮1,蘇海磊1,王 穎1,3,秦 寧1,4*

        (1.中國環(huán)境科學(xué)研究院環(huán)境基準(zhǔn)與風(fēng)險評估國家重點(diǎn)實(shí)驗(yàn)室,北京 100012;2.北京師范大學(xué)水科學(xué)研究院,北京 100875;3.北京航空航天大學(xué)空間與環(huán)境學(xué)院,北京 102206;4.北京科技大學(xué)能源與環(huán)境工程學(xué)院,北京 100083)

        收集了10種典型重金屬在我國八大流域水體中的暴露濃度和對水生生物的急性和慢性毒性數(shù)據(jù),分別應(yīng)用概率密度重疊面積法和聯(lián)合概率分布法對重金屬在各流域水體中的生態(tài)風(fēng)險進(jìn)行評估,并與現(xiàn)行水質(zhì)標(biāo)準(zhǔn)的評估結(jié)果進(jìn)行對比.結(jié)果顯示,Cu和Zn在各流域水體中生態(tài)風(fēng)險均較高,現(xiàn)行水質(zhì)標(biāo)準(zhǔn)對水生生物Cu、Zn的暴露不能實(shí)施有效的保護(hù);Hg和Ni現(xiàn)行標(biāo)準(zhǔn)對水生生物存在過保護(hù)的現(xiàn)象;Se、As和Sb在各流域水體中生態(tài)風(fēng)險均較低,現(xiàn)行標(biāo)準(zhǔn)對水生生物保護(hù)程度適中.建議對現(xiàn)行水質(zhì)標(biāo)準(zhǔn)適度修改,同時增強(qiáng)高風(fēng)險重金屬監(jiān)測水平,以合理有效的保護(hù)我國水生態(tài)系統(tǒng)安全.

        重金屬;生態(tài)風(fēng)險評估;水質(zhì)標(biāo)準(zhǔn);概率密度重疊面積法;聯(lián)合概率分布法

        近些年,我國重金屬污染事件頻發(fā),對我國流域水生態(tài)安全造成極大的威脅[1].我國目前現(xiàn)行《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)GB3838-2002》[2],同時兼顧保護(hù)人體健康和水生生物安全雙重作用,導(dǎo)致不同的保護(hù)對象存在“欠保護(hù)”和“過保護(hù)”的問題[3].因此,準(zhǔn)確評估各大水體的重金屬生態(tài)風(fēng)險,不僅可為污染物控制提供基礎(chǔ)數(shù)據(jù),還能夠?yàn)樗|(zhì)標(biāo)準(zhǔn)的制定和修改提供基科學(xué)依據(jù),為國家環(huán)境管理提供技術(shù)支撐,具有重要的研究意義.

        物種敏感度方法(Species sensitivity distribution)在毒理學(xué)的角度構(gòu)建了污染物與物種之間的劑量-效應(yīng)關(guān)系,是國內(nèi)外評估生態(tài)風(fēng)險和制定環(huán)境基準(zhǔn)的主流方法[4].我國已經(jīng)逐步開展應(yīng)用該方法的主要流域金屬風(fēng)險評估工作[5-8].然而現(xiàn)有研究仍然存在局限.首先,研究區(qū)域上,已有的研究報道多是針對某一具體區(qū)域的風(fēng)險研究,缺乏大尺度大流域的整體研究;此外,研究方法上,評價方式往往針對單一濃度的點(diǎn)估計風(fēng)險表征,往往忽視了環(huán)境濃度的差異[9].

        本研究收集我國八大主要流域水體內(nèi)10種典型重金屬暴露濃度及急、慢性毒性效應(yīng)濃度數(shù)據(jù),在流域的尺度上對重金屬的風(fēng)險進(jìn)行表征.并對現(xiàn)行水質(zhì)標(biāo)準(zhǔn)進(jìn)行評估.方法上,本研究利用概率風(fēng)險評價[9-10],從概率角度分析重金屬污染的急、慢生態(tài)風(fēng)險以及現(xiàn)行水質(zhì)標(biāo)準(zhǔn)的超標(biāo)率情況,估計暴露于污染物的生物負(fù)效應(yīng)的可能或程度,同時考慮生物耐受性和污染物濃度兩方面的變異,可以對污染物的生態(tài)風(fēng)險做出整體評估[11-12].研究結(jié)果旨在對水質(zhì)標(biāo)準(zhǔn)的合理性提供修訂建議,為我國重金屬污染監(jiān)測和水生態(tài)系統(tǒng)保護(hù)提供參考.

        1 材料與方法

        1.1 數(shù)據(jù)來源

        10種典型重金屬(Cu、Zn、Ni、As、Pb、Hg、Cd、Sb、Se、Cr)在我國八大流域(長江流域、黃河流域、松花江流域、淮河流域、海河流域、遼河流域、珠江流域、太湖流域)水體中的暴露濃度數(shù)據(jù)來源于近100篇國內(nèi)外公開發(fā)表的中文核心期刊及SCI文獻(xiàn),以中國知網(wǎng)和Web of science為文獻(xiàn)檢索來源.其中長江流域數(shù)據(jù)不包含太湖.數(shù)據(jù)的篩選原則:(1)選取近10a時間范圍內(nèi)暴露濃度數(shù)據(jù);(2)數(shù)據(jù)來源為各流域內(nèi)干流、支流及湖泊;(3)測定暴露濃度為重金屬總濃度,單位為μg/L;(4)重金屬測定方法為國家標(biāo)準(zhǔn)方法或美國環(huán)保署標(biāo)準(zhǔn)方法.10種重金屬在八大流域水體中的暴露濃度范圍統(tǒng)計數(shù)據(jù)見表1.

        表1 2006~2017年中國八大流域s水體中10種典型重金屬暴露濃度統(tǒng)計數(shù)據(jù)(μg/L)

        續(xù)表1

        注:Range:樣品濃度范圍;GM:濃度數(shù)據(jù)幾何均值;SD:濃度數(shù)據(jù)標(biāo)準(zhǔn)差;N:樣品量;NA:無可用數(shù)據(jù).

        10種重金屬對淡水水生生物的急性和慢性毒性數(shù)據(jù)來源于美國EPA Ecotox毒理數(shù)據(jù)庫(http: //www.epa.gov/ecotox/)以及國內(nèi)外公開發(fā)表的中文核心期刊和SCI文獻(xiàn).毒性數(shù)據(jù)的選擇按以下原則:(1)盡量選擇中國本土物種,引進(jìn)物種及世界廣布物種;(2)物種至少涵蓋3個營養(yǎng)級;水生植物/初級生產(chǎn)者、無脊椎動物/初級消費(fèi)者、脊椎動物/次級消費(fèi)者;(3)對于毒性測試時間的選擇,魚類和甲殼類動物的急性毒性盡量選擇96h的LC50或EC50,大型溞類等浮游動物的毒性盡量選擇48h的LC50或EC50.水生生物的慢性毒性盡量選擇21d以上測試時間的LOEC、NOEC或MATC數(shù)據(jù);(4)優(yōu)先選取流水式試驗(yàn)獲得的重金屬毒性數(shù)據(jù),其次選取半靜態(tài)或靜態(tài)實(shí)驗(yàn)數(shù)據(jù).同一物種的多個毒性數(shù)據(jù)取其幾何平均值.

        1.2 風(fēng)險評價方法

        本研究使用概率密度重疊面積法和聯(lián)合概率曲線法對各流域的重金屬生態(tài)風(fēng)險進(jìn)行評估.概率密度重疊面積法將暴露濃度和毒性數(shù)據(jù)分別作為獨(dú)立的觀測值,在此基礎(chǔ)上考慮其概率統(tǒng)計意義.概率密度重疊面積法將表征污染物的暴露濃度和毒性數(shù)據(jù)的概率密度曲線置于同一坐標(biāo)體系下,位于最大環(huán)境暴露濃度和對污染物最敏感生物的毒性數(shù)據(jù)之間的重疊部分的面積即可以反映污染物的生態(tài)風(fēng)險[9].重疊面積的大小反映不同污染風(fēng)險的大小關(guān)系,面積越大,表示污染物對水生生物風(fēng)險越高,反之則越小.采用MATLAB(R2014a)軟件對暴露濃度和毒性數(shù)據(jù)的重疊面積進(jìn)行計算.

        聯(lián)合概率分布法是將表征污染物的暴露濃度和效應(yīng)濃度的累積概率曲線置于同一坐標(biāo)體系下,并通過概率單位轉(zhuǎn)換對概率曲線進(jìn)行直線轉(zhuǎn)換[9].聯(lián)合概率分布法反映了各損害水平下暴露濃度超過安全閾值的概率.本研究計算了在95%物種不受損害的水平下(HC5),各重金屬在不同流域水體中的暴露濃度超過HC5值的概率,體現(xiàn)暴露狀況和風(fēng)險水平之間的關(guān)系;計算各重金屬在八大流域水體中對現(xiàn)行水質(zhì)標(biāo)準(zhǔn)《地表水水質(zhì)標(biāo)準(zhǔn)GB3838-2002》[2]的超標(biāo)率情況,評估當(dāng)前流域重金屬的污染現(xiàn)狀.采用OriginPro 8軟件對暴露濃度分布和毒性數(shù)據(jù)分布相對位置作圖分析.

        2 結(jié)果與討論

        2.1 各大流域重金屬含量及現(xiàn)狀

        如表1所示,相比于國外,我國10種典型重金屬在各流域水體中暴露濃度平均值普遍較高,Cu在松花江流域水體中暴露濃度均值高達(dá)527.77μg/L,在淮河流域暴露濃度均值為131.31μg/L,遼河流域平均濃度最低為6.35μg/L,而Cu在萊茵河和密西西比河流域水體中平均暴露濃度分別為3.4μg/L[34]和2μg/L[51],Cu在全球河流平均暴露濃度僅為3μg/L[51],松花江流域Cu平均濃度超出全球平均100余倍[51]; Zn在黃河水體中暴露濃度均值為360.07μg/L,最高檢出濃度為1132μg/L,在長江和松花江流域平均暴露濃度分別為74.55,46.43μg/L,最高檢出濃度均超過600μg/L,Zn在萊茵河流域暴露濃度均值為33μg/L[34],與我國遼河和太湖流域相近;Ni在長江水體中暴露濃度均值為168.14μg/L,其中最高采樣點(diǎn)檢出濃度為480μg/L,超出萊茵河平均濃度80余倍[34],在海河和珠江流域平均暴露濃度相對較低,分別為11.11,15.87μg/L.Pb在淮河流域水體中暴露濃度均值高達(dá)658.13μg/L,在松花江流域平均濃度也達(dá)到414.20μg/L,而密西西比河和全球河流平均值僅為0.2,3μg/L[51];其余金屬Hg在珠江、Cd在太湖、Cr在松花江以及As在海河流域中平均暴露濃度均較高,Se和Sb在各流域水體中暴露濃度相對較低.

        我國流域水體中重金屬平均含量普遍高于國外流域,我國實(shí)施《重金屬污染綜合防止“十二五”規(guī)劃》[1]以前,涉及重金屬行業(yè)生產(chǎn)工藝/污染治理水平較低,重金屬污染物排放量逐年增加,一些污染物排放量增幅較大.再加上部分企業(yè)偷排漏排等問題突出,重金屬污染事件頻發(fā).規(guī)劃實(shí)施以來,盡管已在全國范圍內(nèi)淘汰了4000多家涉重企業(yè),行業(yè)集中度和技術(shù)水平也有明顯提高,但部分地區(qū)的重金屬污染排放量依然呈現(xiàn)較快增長的趨勢,重點(diǎn)監(jiān)控的重金屬企業(yè)排放達(dá)標(biāo)率僅為77.2%[1].

        2.2 重金屬生態(tài)風(fēng)險評估

        2.2.1 概率密度重疊面積法 如圖1,Cu和Zn慢性毒性效應(yīng)與各流域水體中暴露濃度間重疊面積均越大,說明Cu和Zn在水體中對水生生物的影響程度越高.Sb僅有長江流域暴露濃度數(shù)據(jù),信息量較少,未給出概率密度重疊面積圖.

        由圖1可知,水生生物在海河、長江、松花江、珠江和黃河流域中受Cu污染的慢性生態(tài)風(fēng)險程度均超過50%,其中海河流域慢性毒性影響程度高達(dá)77.8%,遼河流域慢性影響程度最低,仍對近20%的水生生物存在影響.水生生物在松花江和淮河流域中受Cu污染的急性生態(tài)風(fēng)險概率均超過50%;Zn污染在黃河流域中對水生生物造成不利慢性影響的概率為65.2%,急性影響概率也高達(dá)37.6%,在遼河和淮河流域中受慢性影響較低,生態(tài)風(fēng)險概率分別為11.6%和16.3%;水生生物受長江流域中Ni污染的慢性影響風(fēng)險為65.8%,急性影響風(fēng)險也高達(dá)33.6%;珠江流域中Hg污染對水生生物造成不利慢性影響的概率也接近50%,急性影響風(fēng)險較低為11%;Pb污染除對珠江流域影響較低外,對黃河、長江、松花江和淮河流域水生生物的不利慢性影響均在40%左右,以松花江污染風(fēng)險概率最高,但Pb在各流域中對水生生物的急性風(fēng)險概率較低,最低僅為1.3%;Cd和Cr污染對黃河流域水生生物慢性影響概率分別為40.3%和25.6%;As、Se和Sb對水生生物的慢性影響和急性風(fēng)險均較低.

        圖1 9種典型重金屬在八大流域水體中的暴露濃度和急性、慢性毒性的概率密度

        由此可見,我國流域水生生物受重金屬污染造成的生態(tài)風(fēng)險較高,而礦業(yè)開采是造成我國流域重金屬污染的主要原因,我國作為礦產(chǎn)資源大國,Cd、Sb等金屬儲量列世界第一[90],我國近10a來Cd、Pb、Cu、Hg和Zn的產(chǎn)量增長了1倍[91-101],其中2016年Cu、Zn和Pb的產(chǎn)量均達(dá)到百萬t以上,Zn最高年產(chǎn)量高到493萬t.我國在持有豐富礦產(chǎn)資源的同時,也面臨著巨大的環(huán)境安全隱患.例如,2012年廣西龍江Cd污染事件,泄露量約20t,波及河段約300km[102].2015年甘肅隴南Sb污染事件,尾礦庫尾砂泄露造成嘉陵江及西漢水300多km水域Sb超標(biāo),污染涉及甘陜川三省,影響巨大[103].

        根據(jù)風(fēng)險表征結(jié)果,得出各流域水生生物受重金屬污染慢性影響的生態(tài)風(fēng)險排序(圖2),以長江、黃河和松花江為例,水生生物在長江流域中受重金屬慢性影響的生態(tài)風(fēng)險排序?yàn)?Cu>Ni>Pb>Zn> Hg>Cd>Cr>As>Sb>Se;在黃河流域中受慢性影響的風(fēng)險排序?yàn)?Zn>Cu>Cd>Pb>Cr>As;在松花江流域中受慢性影響的風(fēng)險排序?yàn)?Cu>Pb>Zn>Cd> Cr>Se>As.水生生物在長江流域的急性風(fēng)險排序?yàn)?Cu>Ni>Zn>Pb>Hg>Cd>Cr>As>Sb>Se;在黃河流域中的急性風(fēng)險排序?yàn)?Zn>Cu>Pb>Cr>Cd>As;在松花江流域的急性風(fēng)險排序?yàn)?Cu>Pb>Zn> Cr>Cd> As>Se.以上結(jié)果可以看出,Cu和Zn在各流域水體中生態(tài)風(fēng)險較大,Cu和Zn雖為人體必需元素,相對于人體對水生動物具有較大的毒性危害[104].

        圖2 八大流域水體中10種典型重金屬的慢性生態(tài)風(fēng)險

        2.2.2 聯(lián)合概率分布法生態(tài)風(fēng)險評估 應(yīng)用聯(lián)合概率分布法,計算了10種典型重金屬在八大流域水體中的暴露濃度超過保護(hù)95%生物不受影響的急性和慢性HC5值的超標(biāo)率,Sb僅有長江流域暴露濃度數(shù)據(jù),信息量較少,未給出聯(lián)合概率分布.如圖3所示,暴露濃度對應(yīng)的累積概率值越小,超標(biāo)情況越嚴(yán)重,重金屬污染對水生生物造成的生態(tài)風(fēng)險越嚴(yán)重.與重疊面積法表征生態(tài)風(fēng)險結(jié)果一致,Cu和Zn對慢性毒性HC5的超標(biāo)率在各流域水體均較高,相比于人體對水生生物的更敏感性[105].

        圖3表明,Cu在海河流域中對慢性HC5值超標(biāo)率高達(dá)88.7%,除太湖超標(biāo)為43.2%外,其他流域均超過60%.Cu在海河、長江和松花江流域中對急性HC5值的超標(biāo)率均超過50%,說明Cu污染在我國流域水體中對水生生物存在極大的安全隱患.遼河超標(biāo)率較低是暴露數(shù)據(jù)采樣點(diǎn)均來自東遼河地區(qū),且暴露濃度相近,多數(shù)采樣點(diǎn)為5μg/L,而急性HC5值為11.83μg/L,因此造成遼河急性超標(biāo)率較低;Zn在黃河和長江流域中對慢性HC5值超標(biāo)率分別為64.4%和41.1%,其余流域中超標(biāo)率均在30%左右.Zn在黃河流域中對急性HC5超標(biāo)率為38%,其余流域均超標(biāo)率低或不超標(biāo);Ni除在長江流域中對慢性和急性HC5超標(biāo)率分別高達(dá)68.4%和47.7%外,其余流域急、慢性HC5超標(biāo)率均較低;Hg在珠江流域中慢性HC5超標(biāo)率較高為49.6%;Pb在淮河流域慢性HC5超標(biāo)率高達(dá)65.5%,在黃河、長江和太湖慢性HC5超標(biāo)均超過40%;Cd和Cr對慢性HC5超標(biāo)率最高的流域均為黃河流域,分別為55.8%和38%;Se、Sb和As對慢性HC5均表現(xiàn)為較低超標(biāo)和不超標(biāo);Hg、Pb、Cd、Cr、Se、Sb和As對急性HC5均表現(xiàn)為較低超標(biāo)和不超標(biāo)的情況.

        各流域水體中超標(biāo)率的排序情況,以黃河、長江和松花江流域?yàn)槔?在黃河流域中各金屬對慢性HC5超標(biāo)排序?yàn)?Zn>Cu>Cd>Pb>Cr>As,對急性HC5超標(biāo)率排序?yàn)?Cu>Zn>Pb>Cr>Cd>As;在長江流域中各金屬對慢性HC5超標(biāo)排序?yàn)?Cu>Ni>Pb>Zn> Cd>Hg>As>Sb>Se,對急性HC5超標(biāo)率排序?yàn)?Cu> Ni>Zn>Pb>Hg>Cd>Cr>As>Sb>Se;在松花江流域中各金屬對慢性HC5超標(biāo)排序?yàn)?Cu>Pb>Cd>Zn> Cr>Se>As,對急性HC5超標(biāo)率排序?yàn)?Cu>Pb>Zn> Cr>Cd>Se>As.與重疊面積法結(jié)論基本一致,Cu和Zn這兩種金屬在各流域中超標(biāo)率情況均較嚴(yán)重,對水生生物存在嚴(yán)重安全隱患.

        圖3 9種典型重金屬在八大流域水體中的暴露濃度和急/慢性毒性的聯(lián)合概率分布

        2.3 現(xiàn)行水質(zhì)標(biāo)準(zhǔn)修訂建議

        2.3.1 重金屬水體暴露濃度對水質(zhì)標(biāo)準(zhǔn)的超標(biāo)率 基于聯(lián)合概率分布法,計算了8大流域水體中重金屬暴露濃度對我國現(xiàn)行《地表水水質(zhì)標(biāo)準(zhǔn)GB3838-2002》的超標(biāo)率情況,如表2所示,各流域中Cu對Ⅰ類水質(zhì)標(biāo)準(zhǔn)超標(biāo)情況嚴(yán)重,淮河水體中Cu對Ⅰ類水質(zhì)標(biāo)準(zhǔn)超標(biāo)率為86.6%,長江和松花江水體中Cu對Ⅰ類水超標(biāo)率也均超過50%,但各流域水體中Cu的暴露濃度對Ⅱ~Ⅴ類水質(zhì)標(biāo)準(zhǔn)基本均處于不超標(biāo)狀態(tài);Zn、Cd與Cu的情況相似,Zn和Cd在各流域水體中對Ⅰ類水質(zhì)標(biāo)準(zhǔn)普遍存在超標(biāo)情況,其中黃河水體中Zn和Cd超標(biāo)率最為嚴(yán)重,分別超Ⅰ類水質(zhì)標(biāo)準(zhǔn)59.9%和41.9%,超Ⅱ類、Ⅲ類水質(zhì)標(biāo)準(zhǔn)16%和11.3%.Pb、Hg和Cr在各流域水體中含量均對Ⅰ類~Ⅲ類水質(zhì)標(biāo)準(zhǔn)存在超標(biāo)現(xiàn)象,其中淮河水體中Pb對Ⅰ類和Ⅱ類水超標(biāo)率為66.4%,遼河和珠江水體中Hg含量均超Ⅰ類和Ⅱ類水質(zhì)標(biāo)準(zhǔn)50%以上,黃河、長江和松花江水體中Cr含量均超Ⅰ類和Ⅱ類水質(zhì)標(biāo)準(zhǔn)50%以上,黃河水體中Cr暴露濃度對Ⅰ類水超標(biāo)率高達(dá)70.7%.其余金屬如Ni在長江水體中含量超現(xiàn)行標(biāo)準(zhǔn)70%以上,As和Se在各流域水體中含量對現(xiàn)行標(biāo)準(zhǔn)未存在顯著性超標(biāo).

        現(xiàn)行水質(zhì)標(biāo)準(zhǔn)和HC5超標(biāo)率評估均采用聯(lián)合概率分布法,現(xiàn)行水質(zhì)標(biāo)準(zhǔn)選用現(xiàn)行五類水標(biāo)準(zhǔn)作為特定臨界濃度,表示10種典型重金屬暴露濃度對于現(xiàn)行水質(zhì)標(biāo)準(zhǔn)的超標(biāo)率情況.現(xiàn)行地表水五類水質(zhì)標(biāo)準(zhǔn)中,Ⅰ類~Ⅲ類水標(biāo)準(zhǔn)涉及保護(hù)水生生物,主要研究以上3類水質(zhì)標(biāo)準(zhǔn).HC5超標(biāo)率評估采用保護(hù)95%水生生物不受影響或不致死的急、慢性HC5值作為特定臨界濃度,表示10種典型重金屬暴露濃度對保護(hù)95%水生生物不受影響或不致死的超標(biāo)率情況.水質(zhì)標(biāo)準(zhǔn)的制定基于慢性毒性,主要對比慢性HC5超標(biāo)率.對比以上兩類超標(biāo)率結(jié)果,若結(jié)果一致,說明現(xiàn)行標(biāo)準(zhǔn)適中;若水質(zhì)標(biāo)準(zhǔn)超標(biāo)率較低,HC5超標(biāo)率較高,說明現(xiàn)行水質(zhì)標(biāo)準(zhǔn)對水生生物存在“欠保護(hù)”現(xiàn)象,應(yīng)適度加嚴(yán);若水質(zhì)標(biāo)準(zhǔn)超標(biāo)率較高,HC5超標(biāo)率較低,說明現(xiàn)行水質(zhì)標(biāo)準(zhǔn)對水生生物存在“過保護(hù)”現(xiàn)象,應(yīng)適度放寬.

        表2 重金屬水體中暴露濃度對水質(zhì)標(biāo)準(zhǔn)的超標(biāo)率

        續(xù)表2

        注:Ni和Sb水質(zhì)標(biāo)準(zhǔn)不分Ⅰ類~Ⅴ類水,僅有一個標(biāo)準(zhǔn)限值.

        2.3.2 基于風(fēng)險評估法的現(xiàn)行水質(zhì)標(biāo)準(zhǔn)評價 表2結(jié)果表明,Cu在各流域水體中對現(xiàn)行Ⅰ類水質(zhì)標(biāo)準(zhǔn)均超標(biāo),例如黃河流域Ⅰ類水超標(biāo)率為48.1%,但Ⅱ~Ⅲ類水標(biāo)準(zhǔn)超標(biāo)率極低甚至不超標(biāo),最高為6.7%,最低為0.Cu在黃河流域?qū)Π踩撝礖C5的超標(biāo)率為62.8%,其他流域情況與黃河一致,超標(biāo)率在43.2%~88.7%,屬于水質(zhì)標(biāo)準(zhǔn)超標(biāo)率較低,HC5超標(biāo)率較高,由此可以說明,Cu的現(xiàn)行水質(zhì)標(biāo)準(zhǔn)對保護(hù)水生生物過松,建議適度加嚴(yán);Zn和Cd與Cu情況類似,例如,Zn在黃河流域中Ⅰ類水超標(biāo)率為59.9%, Ⅱ~Ⅴ類水超標(biāo)較低或不超標(biāo),最高超標(biāo)率為16%,最低為0.Zn在黃河流域中對安全閾值HC5的超標(biāo)率為64.4%,其他流域情況與黃河一致,HC5超標(biāo)率均較高,Zn的現(xiàn)行標(biāo)準(zhǔn)不足以保護(hù)水生生物的生態(tài)安全,現(xiàn)行水質(zhì)標(biāo)準(zhǔn)過松,建議適度加嚴(yán);Cd與Zn和Cu情況一致,建議適度加嚴(yán);Hg和Ni的情況與Cu、Zn和Cd相反,Hg在各流域水體中對Ⅰ類和Ⅱ類水標(biāo)準(zhǔn)超標(biāo)較嚴(yán)重,超標(biāo)范圍在34.9%~55.6%之間.但Hg對各流域安全閾值的超標(biāo)率為26%~49.6%之間,各流域超標(biāo)率均低于Ⅰ類和Ⅱ類水標(biāo)準(zhǔn)超標(biāo)率,主要因?yàn)镠g對人體健康影響較大,Hg具有極強(qiáng)的生物富集作用[106],在水環(huán)境中不易降解,現(xiàn)行水質(zhì)標(biāo)準(zhǔn)考慮人體健康因素較多,對水生生物存在“過保護(hù)”現(xiàn)象,非飲用水源地等水體可建議適度放寬.Hg的Ⅲ類水標(biāo)準(zhǔn)超標(biāo)率與安全閾值超標(biāo)率一致,現(xiàn)行標(biāo)準(zhǔn)適中.Ni在長江、珠江、太湖和海河的水質(zhì)標(biāo)準(zhǔn)限值的超標(biāo)率也均高于安全閾值HC5在各流域的超標(biāo)率,與Hg一致現(xiàn)行標(biāo)準(zhǔn)存在“過保護(hù)”現(xiàn)象,建議適度放寬.As、Pb、Cr、Se、Sb對各流域水體中現(xiàn)行標(biāo)準(zhǔn)超標(biāo)率與安全閾值超標(biāo)率結(jié)果一致,現(xiàn)行標(biāo)準(zhǔn)適中.

        2.3.3 現(xiàn)行水質(zhì)標(biāo)準(zhǔn)不確定性分析 現(xiàn)行水質(zhì)標(biāo)準(zhǔn)按照水體的功能等級分類,對于水生生物和人體健康的針對對象不明確,對人體健康考慮較多,而許多污染物,例如Cu和Zn,水生生物對這兩類金屬更為敏感.近些年我國水生態(tài)系統(tǒng)問題嚴(yán)重,生物多樣性呈銳減下降趨勢,應(yīng)明確保護(hù)對象,加強(qiáng)對水生態(tài)系統(tǒng)的保護(hù).以Cu和Zn為例,二者均是有機(jī)體維持生命所必需的微量營養(yǎng)元素,但當(dāng)其濃度超過生物體所需量時,就會變成有毒物質(zhì),產(chǎn)生毒性效應(yīng)[107].美國環(huán)保局2009年發(fā)布Zn的保護(hù)淡水水生生物水質(zhì)基準(zhǔn)值為120μg/L[108],而保護(hù)人體健康基準(zhǔn)值為26000μg/L[109],可以看出水生生物對Zn的敏感性遠(yuǎn)遠(yuǎn)高于人體.Cu對哺乳類動物的毒性一般很少考慮,經(jīng)過測試的大多數(shù)哺乳動物在飲食中能夠承受高濃度的Cu.Cu對哺乳動物的無毒性作用主要是由于兩方面原因:第一,哺乳動物的肝和腎擁有一套能夠解毒的生化系統(tǒng).第二,由于Cu能被有機(jī)物固定,因此在很多食物中Cu的可利用性較低.而Cu對水生生物的敏感性是哺乳動物的10~100倍,藻類更是大1000倍[110].對于魚類,Cu與魚體內(nèi)的巰基結(jié)合,阻斷生物分子的基本生物官能團(tuán),抑制生命元素鈣和鎂的攝入,修飾生物分子的活性構(gòu)象,造成魚類的毒性效應(yīng).

        3 結(jié)論

        3.1 概率密度重疊面積法表征生態(tài)風(fēng)險結(jié)果表明,水生生物受重金屬污染造成慢性影響的生態(tài)風(fēng)險中,Cu和Zn在各流域水體的生態(tài)風(fēng)險均較高,其中Cu在海河流域中風(fēng)險概率最高為77.8%,在遼河流域中風(fēng)險最低為19%.Zn在黃河流域中概率最高,在遼河流域中最低,分別為65.2%和11.6%.Ni在長江流域、Hg在珠江流域、Cd在黃河流域以及Cr在海河流域風(fēng)險最高分別為65.8%、52.7%、40.3%和26%.Se、As和Sb在各流域中生態(tài)風(fēng)險均較低.

        3.2 聯(lián)合概率分布法評估重金屬在各流域水體中超過安全閾值HC5(慢性毒性)的概率結(jié)果表明,Cu、Zn、Ni、Pb、Cd、Hg、Cr的在各流域水體中超標(biāo)率均較高,其中Cu和Zn對水生生物最為敏感,Cu在海河流域中超標(biāo)率高達(dá)88.7%,Zn在黃河流域中超標(biāo)率達(dá)到64.4%.Se、As和Sb在各流域中超標(biāo)情況均較低.

        3.3 聯(lián)合概率分布法評估現(xiàn)行水質(zhì)標(biāo)準(zhǔn)和安全閾值HC5超標(biāo)率情況,比較結(jié)果發(fā)現(xiàn)Cu、Zn和Cd在各流域水體中生態(tài)風(fēng)險較高,但Ⅱ類和Ⅲ類水質(zhì)標(biāo)準(zhǔn)超標(biāo)率較低或不超標(biāo),現(xiàn)行標(biāo)準(zhǔn)存在“欠保護(hù)”現(xiàn)象,建議水質(zhì)標(biāo)準(zhǔn)適度加嚴(yán),增強(qiáng)對水生生物生態(tài)安全的保護(hù).其余金屬,As、Pb、Cr、Se、Sb的現(xiàn)行標(biāo)準(zhǔn)適中,Hg和Ni的水質(zhì)標(biāo)準(zhǔn)建議適度放寬.

        [1] 付融冰,郭小品,徐 珍.國際重金屬污染防治制度[M]. 北京:中國環(huán)境出版社, 2016. Fu R, Guo X, Xu Z. International heavy metal pollution control system [M]. Beijing: China Environment Press, 2016.

        [2] GB 3838-2002 地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)[S]. GB 3838-2002 Surface Water Environmental Quality Standards [S].

        [3] 夏 青,陳艷卿,劉憲兵,等.水質(zhì)基準(zhǔn)與水質(zhì)標(biāo)準(zhǔn)[M]. 北京:中國標(biāo)準(zhǔn)出版社, 2004. Xia Q, Chen Y, Liu X, et al. Water quality standards and water quality standards [M]. Beijing: China: China Standard Press, 2004.

        [4] 侯 俊,趙芊淵,王 超,等.應(yīng)用概率物種敏感度分布法研究太湖銅水生生物水質(zhì)基準(zhǔn)[J]. 生態(tài)毒理學(xué)報, 2015,10(1):191-201. Hou J, Zhao Q, Wang C, et al. Study on water quality criteria of copper aquatic organisms in Taihu lake by probabilistic species sensitivity distribution method [J]. Journal of Ecotoxicology, 2015, 10(1):191-201.

        [5] 陳璐璐,周北海,徐冰冰,等.太湖水體典型重金屬鎘和鉻含量及其生態(tài)風(fēng)險[J]. 生態(tài)學(xué)雜志, 2011,30(10):2290-2296. Chen L, Zhou B, Xu B, et al. Cadmium and chromium content in Taihu lake and their ecological risks [J]. Journal of Ecology, 2011, 30(10):2290-2296.

        [6] 劉大慶,李小峰,付衛(wèi)強(qiáng),等.我國淡水中鋅的水生生物水質(zhì)基準(zhǔn)和生態(tài)風(fēng)險[J]. 環(huán)境工程, 2017,35(9):18-23. Liu D, li X, Fu W, et al. Aquatic biological water quality standards and ecological risk environmental engineering of freshwater zinc in China [J]. Environmental Engineering, 2017,35(9):18-23.

        [7] 王 穎,馮承蓮,穆云松,等.非參數(shù)核密度估計在銅、銀物種敏感度分布中的應(yīng)用 [J]. 中國環(huán)境科學(xué), 2017,37(4):1548-1555. Wang Y, Feng C, Mu Y, et al. Application of nonparametric kernel density estimation in sensitivity distribution of copper and silver species [J]. China Environmental Science, 2017,37(4):1548-1555.

        [8] 趙紅霞,詹 勇,許梓榮.重金屬對水生動物毒性的研究進(jìn)展(一) [J]. 內(nèi)陸水產(chǎn), 2003,(1):38-40. Zhao H, Zhan Y, Xu Z. Research progress on toxicity of heavy metals to aquatic animals (I) [J]. Inland Fisheries, 2003,(1):38-40.

        [9] Solomon K, Giesy J, Jones P, et al. Probabilistic risk assessment of agrochemicals in the environment. [J]. Crop Protection, 2000, 19(8–10):649-655.

        [10] Qin N, He W, Kong X, et al. Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators [J]. Ecological Indicators, 2013,24:599- 608.

        [11] 羅固源,杜 嫻,許曉毅,等.鄰苯二甲酸酯在長江重慶段水體的概率風(fēng)險分析 [J]. 長江流域資源與環(huán)境, 2011,20(1):80-83.

        [12] Luo G, Du X, Xu X, et al. Probabilistic risk analysis of phthalates in Chongqing section of Yangtze river [J]. Resources and Environment in the Yangtze Basin, 2011,20(1):80-83.

        [13] Oberg T, Bergback B. A review of probabilistic risk assessment of contaminated land [J]. Probabilistic Risk Assessment, 2005,5(4):213- 224.

        [14] 楊忠芳,夏學(xué)齊,余 濤,等.湖南洞庭湖水系A(chǔ)s和Cd等重金屬元素分布特征及輸送通量[J]. 現(xiàn)代地質(zhì), 2008,22(6):897-908. Yang Z, Xia X, Yu T, et al. Distribution characteristics and transport flux of heavy metal elements such As As and Cd in dongting lake water system in hunan province [J]. Modern Geology, 2008,22(6): 897-908.

        [15] Wang Y, Chen P, Cui R, et al. Heavy metal concentrations in water, sediment, and tissues of two fish species (Triplohysa pappenheimi, Gobio hwanghensis) from the Lanzhou section of the Yellow River, China [J]. Environmental Monitoring and Assessment, 2010,165(1-4): 97-102.

        [16] Fan Q, He J, Xue H, et al. Heavy metal pollution in the Baotou section of the Yellow River, China [J]. Chemical Speciation & Bioavailability, 2008,20(2):65-76.

        [17] 趙云霞,楊自軍.洛陽地區(qū)澗河水中重金屬含量及污染評價[J]. 中國畜牧雜志, 2011,47(18):57-59. Zhao Y, Yang Z. Heavy metal content and pollution evaluation in Jian he river in Luo yang [J]. Chinese Journal of Animal Science, 2011, 47(18):57-59.

        [18] 張 敏,王德淑.長江銅陵段表層水中重金屬含量及存在形態(tài)分布研究[J]. 安全與環(huán)境學(xué)報, 2003,3(6):61-64. Zhang M, Wang D. Study on heavy metal content and existing form distribution in surface water of Tong ling section of the Yangtze river [J]. Journal of Safety and Environment, 2003,3(6):61-64.

        [19] 王 麗,陳 凡,馬千里,等.東江淡水河流域地表水和沉積物重金屬污染特征及風(fēng)險評價[J]. 環(huán)境化學(xué), 2015,34(9):1671-1684. Wang L, Chen F. Ma Q, et al. Heavy metal pollution characteristics and risk assessment of surface water and sediment in Dong jiang fresh river basin [J]. Environmental Chemistry, 2015,34(9):1671-1684.

        [20] 王漫漫,陸 昊,李慧明,等.太湖流域典型河流重金屬污染和生態(tài)風(fēng)險評估[J]. 環(huán)境化學(xué), 2016,35(10):2025-2035. Wang M, Lu H, Li H, et al. Heavy metal pollution and ecological risk assessment of typical rivers in Taihu basin [J]. Environmental Chemistry, 2016,35(10):2025-2035

        [21] 張曉琳,陳洪濤,姚慶禎,等.黃河下游水體中重金屬元素的季節(jié)變化及入海通量研究[J]. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2013,43(8): 69-75. Zhang X, Chen H, Yao Q, et al. Seasonal changes of heavy metal elements in the water of the lower Yellow River and their flux into the sea [J]. Journal of Ocean University of China (natural science edition), 2013,43(8):69-75.

        [22] 劉菁鈞,劉 穎.黃河甘寧蒙段重金屬及其生態(tài)風(fēng)險研究(英文) [J]. 光譜學(xué)與光譜分析, 2013,33(12):3249-3254. Liu J, Liu Y. Heavy metals and their ecological risks in the Ganningmeng section of the Yellow River [J]. Spectroscopy and Spectral Analysis, 2013,33(12):3249-3254.

        [23] 趙鎖志,劉麗萍,王喜寬,等.黃河內(nèi)蒙古段上覆水、懸浮物和底泥重金屬特征及生態(tài)風(fēng)險研究[J]. 現(xiàn)代地質(zhì), 2008,22(2):304-312.Zhao S, Liu L, Wang X, et al. Heavy metal characteristics and ecological risks of overlying water, suspended matter and sediment in Inner Mongolia section of the Yellow River [J]. Geoscience, 2008, 22(2):304-312.

        [24] 劉 成,何 耘,王兆印.黃河口的水質(zhì)、底質(zhì)污染及其變化[J]. 中國環(huán)境監(jiān)測, 2005,21(3):58-61.Liu C, He Y, Wang Z. Water quality, sediment pollution and its changes in the Yellow River estuary [J]. Environmental Monitoring in China, 2005,21(3):58-61.

        [25] Tang A, Liu R, Ling M, et al. Distribution Characteristics and Controlling Factors of Soluble Heavy Metals in the Yellow River Estuary and Adjacent Sea [J]. Procedia Environmental Sciences, 2010, 2:1193-1198.

        [26] 李亭亭,王京剛,王 穎,等.長江口濱岸重金屬含量、形態(tài)及其分布特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2014,33(6):1189-1196.Li T, Wang J, Wang Y, et al. Content, morphology and distribution characteristics of heavy metals in coastal areas of Yangtze river estuary [J]. Journal of Agro-Environmental Science, 2014,33(6):1189-1196.

        [27] 劉倩純,胡 維,葛 剛,等.鄱陽湖枯水期水體營養(yǎng)濃度及重金屬含量分布研究[J]. 長江流域資源與環(huán)境, 2012,21(10):1230-1235.Liu Q, Hu W, Ge G, et al. Distribution of nutrient concentration and heavy metal content in water during dry season of poyang lake [J]. Resources and Environment of the Yangtze Basin, 2012,21(10): 1230-1235.

        [28] Florence T. Electrochemical approaches to trace element speciation in waters. A review [J]. Analyst, 1986,5(111):489-505.

        [29] 陳喜保,章 申.湘江水體中重金屬的化學(xué)形態(tài)及分布特征的研究[J]. 環(huán)境科學(xué)學(xué)報, 1986,6(2):131-140.Chen X, Zhang S. Study on chemical morphology and distribution characteristics of heavy metals in xiangjiang river [J]. Journal of Environmental Sciences, 1986,6(2): 131-140.

        [30] Wang H, Sun L, Liu Z, et al. Spatial distribution and seasonal variations of heavy metal contamination in surface waters of Liaohe River, Northeast China [J]. Chinese Geographical Science, 2017,27(1): 52-62.

        [31] Xiao M, Bao F, Wang S, et al. Water quality assessment of the Huaihe River segment of Bengbu (China) using multivariate statistical techniques [J]. Water Resources, 2016,43(1):166-176.

        [32] 陸繼龍,郝立波,趙玉巖,等.第二松花江中下游水體重金屬特征及潛在生態(tài)風(fēng)險[J]. 環(huán)境科學(xué)與技術(shù), 2009,30(5):168-172.Lu J, Hao L, Zhao Y, et al. Characteristics and potential ecological risks of heavy metals in the middle and lower reaches of the Songhua river [J]. Environmental Science and Technology, 2009,30(5):168- 172.

        [33] Wang Y, Wang P, Bai Y, et al. Assessment of surface water quality via multivariate statistical techniques: A case study of the Songhua River Harbin region, China [J]. Journal of Hydro-Environment Research, 2013,7(1):30-40.

        [34] 燕姝雯,余 輝,張璐璐,等.2009年環(huán)太湖入出湖河流水量及污染負(fù)荷通量[J]. 湖泊科學(xué), 2011,23(6):855-862.Yan S, Yu H, Zhang L, et al. Water quantity and pollution load flux of water inlets and out of Taihu lake in 2009 [J]. Journal of Lake Sciences, 2011,23(6):855-862.

        [35] Wang L, Wang Y, Xu C, et al. Analysis and evaluation of the source of heavy metals in water of the River Changjiang [J]. Environ Monit Assess, 2011,173(1-4):301-313.

        [36] Shao H, Shan C, Bai J, et al. Distribution and Contamination Assessment of Heavy Metals in Water and Soils from the College Town in the Pearl River Delta, China [J]. CLEAN - Soil, Air, Water, 2012,10(40):1167-1173.

        [37] 謝文平,陳昆慈,朱新平,等.珠江三角洲河網(wǎng)區(qū)水體及魚體內(nèi)重金屬含量分析與評價[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2010,29(10):1917-1923.Xie W, Chen K, Zhu X, et al. Analysis and evaluation of heavy metal content in water body and fish in the Pearl river delta river network [J]. Journal of Agro-Environmental Science, 2010,29(10):1917-1923.

        [38] Liu X, Jiang J, Yan Y, et al. Distribution and risk assessment of metals in water, sediments, and wild fish from Jinjiang River in Chengdu, China [J]. Chemosphere, 2018,196:45-52.

        [39] Zhen G, Li Y, Tong Y, et al. Temporal variation and regional transfer of heavy metals in the Pearl (Zhujiang) River, China [J]. Environmental Science and Pollution Research, 2016,23(9):8410-8420.

        [40] 嚴(yán)睿文,李玉成.淮河安徽段水及沉積物中重金屬的研究[J]. 生物學(xué)雜志, 2010,27(2):74-75.Yan R, Li Y. Study on heavy metals in water and sediments in An hui section of Huai river [J]. Journal of Biology, 2010,27(2):74-75.

        [41] 王增煥,林 欽,李純厚,等.珠江口重金屬變化特征與生態(tài)評價[J]. 中國水產(chǎn)科學(xué), 2004,11(3):214-219.Wang Z, Lin Q, Li C, et al. Characteristics and ecological evaluation of heavy metals in Pearl River estuary [J]. Journal of Fishery Sciences of China, 2004,11(3):214-219.

        [42] 王 璐,支崇遠(yuǎn),周玉春,等.紅水河上游重金屬分布及污染評價[J]. 安徽農(nóng)業(yè)科學(xué), 2013,41(8):3626-3627,3717. Wang L, Zhi C, Zhou Y, et al. Distribution and pollution evaluation of heavy metals in the upper reaches of Hongshui river [J]. Journal of Anhui Agricultural Sciences, 2013,41(8):3626-3627,3717.

        [43] Tao Y, Yuan Z, Wei M, et al. Characterization of heavy metals in water and sediments in Taihu Lake, China [J]. Environmental Monitoring and Assessment, 2012,7(184):4367-4382.

        [44] 賀 軍.吉林省靖宇縣天然礦泉水及其周圍環(huán)境微量元素含量的現(xiàn)況調(diào)查[D]. 長春:吉林大學(xué), 2013.He J. Investigation of trace elements in natural mineral water and its surrounding environment in Jingyu county, Jilin province [D]. Changchun: Jilin University, 2013.

        [45] 王漫漫.太湖流域典型河流重金屬風(fēng)險評估及來源解析[D]. 南京:南京大學(xué), 2016.Wang M. Risk assessment and source analysis of heavy metals in typical rivers of Taihu lake basin [D]. Nanjing: Nanjing University, 2016.

        [46] 史香爽.海河干流水體中重金屬元素地球化學(xué)及時空分布特征[D]. 天津:天津師范大學(xué), 2014.Shi X. Geochemical and spatial-temporal distribution characteristics of heavy metal elements in the main stream of Haihe river [D]. Tianjin: Tianjin Normal University, 2014.

        [47] 張 科.梁灘河流域重金屬復(fù)合污染研究[D]. 重慶:重慶大學(xué), 2011.Zhang K. Study on heavy metal complex pollution in Liangtan River basin [D]. Chongqing: Chongqing University, 2011.

        [48] 劉寶林.松花江流域(吉林省部分)水環(huán)境持久性污染物的環(huán)境特征[D]. 長春:吉林大學(xué), 2013.Liu B. Environmental characteristics of persistent pollutants in water environment in the Songhua river basin (part of jilin province) [D]. Changchun: Jilin University, 2013.

        [49] 熊代群.海河干流與鄰近海域典型污染物的分布及其生態(tài)環(huán)境行為[D]. ???華南熱帶農(nóng)業(yè)大學(xué), 2005.Xiong D. Distribution and ecological environmental behavior of typical pollutants in the main stream of Haihe river and adjacent sea [D]. Haikou: South China Tropical Agricultural University, 2005.

        [50] 吳錦濤.東江流域水質(zhì)監(jiān)測分析及沉積物對菲和銅的吸附特性研究[D]. 北京:北京交通大學(xué), 2011.Wu J. Water quality monitoring and analysis of Dongjiang river basin and adsorption characteristics of phenanthene and copper by sediments [D]. Beijing: Beijing Jiaotong University, 2011.

        [51] 張曉琳.長江口、黃河口及鄰近海域重金屬的分布特征及影響因素研究[D]. 青島:中國海洋大學(xué), 2013.Zhang X. Distribution characteristics and influencing factors of heavy metals in Changjiang estuary, Yellow River estuary and adjacent sea [D]. Qingdao: Ocean University of China, 2013.

        [52] 吳二威.海河支流重金屬污染特征及Hg~(2+)對水生藻類的毒性研究[D]. 石河子:石河子大學(xué), 2014.Wu E. Characteristics of heavy metal pollution in tributaries of Hai river and toxicity of Hg~(2+) to aquatic algae [D]. Shihezi: Shihezi University, 2014.

        [53] 陳璐璐.太湖典型重金屬生態(tài)風(fēng)險評估研究[D]. 北京:北京科技大學(xué),2011.Chen lulu. Ecological risk assessment of typical heavy metals in Taihu lake [D]. Beijing: University of Science and Technology Beijing, 2011.

        [54] 梁 峰.我國典型流域重金屬的風(fēng)險評價及六價鉻水質(zhì)基準(zhǔn)的推導(dǎo)[D]. 南京:南京大學(xué), 2011.Liang F. Risk assessment of heavy metals in typical watershed of China and derivation of hexavalent chromium water quality benchmark [D]. Nanjing: Nanjing University, 2011.

        [55] Tao Y, Yuan Z, Wei M, et al. Characterization of heavy metals in water and sediments in Taihu Lake, China [J]. Environmental Monitoring and Assessment, 2012,184(7):4367-4382.

        [56] 吳錦濤.東江流域水質(zhì)監(jiān)測分析及沉積物對菲和銅的吸附特性研究[D]. 北京:北京交通大學(xué), 2011.Wu J. Water quality monitoring and analysis of Dongjiang river basin and adsorption characteristics of phenanthene and copper by sediments [D]. Beijing: Beijing Jiaotong University, 2011.

        [57] 張立成,屈翠輝,董文江,等.湘江水體中重金屬的遷移轉(zhuǎn)化和歸宿[J]. 環(huán)境科學(xué), 1981,2(5):28-35.Zhang L, Qu C, Dong W, et al. Migration, transformation and end-result of heavy metals in water bodies of Xiangjiang river [J]. Environmental Science, 1981,2(5):28-35.

        [58] 陳學(xué)慶,蘇春利.武漢市墨水湖重金屬污染現(xiàn)狀分析[J]. 資源環(huán)境與工程, 2006,20(4):470-474.Chen X, Su C. Analysis of heavy metal pollution in Wuhan ink lake [J]. Resources, Environment and Engineering, 2006,20(4):470-474.

        [59] 曹秀紅.長江流域、黃河口及其鄰近海域溶解態(tài)砷、硒、銻的分布、季節(jié)變化及影響因素[D]. 青島:中國海洋大學(xué), 2012.Cao X. Distribution, seasonal variation and influencing factors of dissolved arsenic, selenium and antimony in Yangtze river basin, Yellow River estuary and adjacent sea [D]. Qingdao: Ocean University of China, 2012.

        [60] 陳嫚莉.渭河西安段水體中汞、砷、硒的遷移規(guī)律研究[D]. 西安:長安大學(xué), 2016.Chen M. Study on the migration rules of mercury, arsenic and selenium in Xi 'an section of Weihe river [D]. Xi 'an: Chang 'an University, 2016.

        [61] 盧抒懌.遼河流域重金屬污染分析及風(fēng)險評價[D]. 北京:北京交通大學(xué), 2014.Lu S. Analysis and risk assessment of heavy metal pollution in Liao river basin [D]. Beijing: Beijing Jiaotong University, 2014.

        [62] 張 娟,閆振廣,高 富,等.不同形態(tài)的砷水生生物基準(zhǔn)探討及在遼河流域的初步應(yīng)用[J]. 環(huán)境科學(xué)學(xué)報, 2015,35(4):1164-1173.Zhang J, Yan Z, Gao F, et al. Study on different forms of arsenic aquatic organisms and their preliminary application in Liaohe River basin [J]. Journal of Environmental Science, 2015,35(4):1164-1173.

        [63] 廖 靜.我國太湖水體中重金屬污染分布特征及鉛水質(zhì)基準(zhǔn)推導(dǎo)[D]. 南京:南京大學(xué), 2014.Liao J. Distribution characteristics of heavy metal pollution in Taihu lake of China and derivation of lead water quality benchmark [D]. Nanjing: Nanjing University, 2014.

        [64] 李艷紅,王茂林,周曉嵐,等.鄱陽湖流域砷的理化特性及來源分析[J]. 南昌大學(xué)學(xué)報(理科版), 2015,39(3):280-285.Li Y, Wang M, Zhou X, et al. Physicochemical characteristics and source analysis of arsenic in Poyang lake basin [J]. Journal of Nanchang University (Science Edition), 2015,39(3):280-285.

        [65] 姚慶禎,張 經(jīng).長江口及鄰近海域痕量元素砷、硒的分布特征[J]. 環(huán)境科學(xué), 2009,30(1):33-38.Yao Q, Zhang J. Distribution characteristics of trace elements as and se in Changjiang estuary and adjacent sea [J]. Environmental Science, 2009,30(1):33-38.

        [66] 王 艷.嘉陵江水體中有毒重金屬(汞、砷)的研究[D]. 重慶:西南大學(xué), 2008.Wang Y. Study on toxic heavy metals (mercury, arsenic) in water of Jialing river [D]. Chongqing: Southwest University, 2008.

        [67] 王小嬌,胡國成,張麗娟,等.廣西刁江流域主要河流水質(zhì)評價[J]. 生態(tài)科學(xué), 2016,35(6):128-135.Wang X, Hu G, Zhang L, et al. Evaluation of water quality of major rivers in Diao river basin, Guangxi [J]. Ecological Science, 2016,35(6): 128-135.

        [68] 張玉璽,向小平,張 英,等.云南陽宗海砷的分布與來源[J]. 環(huán)境科學(xué), 2012,33(11):3768-3777.Zhang Y, Xiang X, Zhang Y, et al. Distribution and source of arsenic in Yangzonghai, Yunnan [J]. Environmental Science, 2012,33(11):3768- 3777.

        [69] 鄭國璋.西安市黑河地表水源地水環(huán)境質(zhì)量評價及可持續(xù)利用對策[J]. 安徽農(nóng)業(yè)科學(xué), 2011,39(19):11671-11673.Zheng G. Water environment quality evaluation and sustainable utilization countermeasures of Heihe surface water source in xi 'an [J]. Anhui Agricultural Science, 2011,39(19):11671-11673.

        [70] 尹 華,馮 羽.伊通河長春市區(qū)段鉛污染及其遷移轉(zhuǎn)化規(guī)律[J]. 吉林水利, 2008,11(318):29-30,32.Yin H, Feng Y. Lead pollution and its migration and transformation in Yitong river section of Changchun [J]. Jilin Water Resources, 2008, 11(318):29-30,32.

        [71] 陳 靜.重慶嘉陵江流域水中有毒重金屬鉛、鉻的研究[D]. 重慶:西南大學(xué), 2008.Chen J. Study on the toxic heavy metals lead and chromium in Jialing river basin of Chongqing [D]. Chongqing: Southwest University, 2008.

        [72] 左 嘉,戴書浩,涂曉彬.南昌縣地表水中鉛濃度變化趨勢研究——以近2年贛江南昌縣橋首段面為例[J]. 黑龍江科技信息, 2016, (10):6.Zuo J, Dai S, Tu X. Study on the change trend of lead concentration in surface water in Nanchang county -- taking the first section of the bridge in Nanchang county of Ganjiang river as an example in recent 2years [J]. Heilongjiang Science and Technology Information, 2016, (10):6.

        [73] 陳瑜鵬.烏江流域河水、降雨中汞的地球化學(xué)分布特征[D]. 重慶:西南大學(xué), 2010.Chen Y. Geochemical distribution characteristics of mercury in river water and rainfall in Wujiang river basin [D]. Chongqing: Southwest University, 2010.

        [74] 孟 博,馮新斌,陳春宵,等.烏江流域不同營養(yǎng)水平水庫水體中汞的含量和形態(tài)分布[J]. 生態(tài)學(xué)雜志, 2011,30(5):951-960.Meng B, Feng X, Chen C, et al. Content and morphological distribution of mercury in water bodies of reservoirs with different nutrient levels in Wujiang river basin [J]. Journal of Ecology, 2011, 30(5):951-960.

        [75] 何天容,馮新斌.紅楓湖出入庫河流汞濃度分布特征及影響因素分析[J]. 環(huán)境科學(xué)與技術(shù), 2010,33(7):138-141.He T, Feng X. Distribution characteristics and influencing factors of mercury concentration in inflow and outflow rivers of Hongfeng lake [J]. Environmental Science and Technology, 2010,33(7):138-141.

        [76] 侯亞敏,馮新斌,仇廣樂,等.貴州百花湖表層水中不同形態(tài)汞的分布規(guī)律[J]. 湖泊科學(xué), 2004,16(2):125-132.Hou Y, Feng X, Chou G, et al. Distribution rules of different forms of mercury in surface water of Baihua lake in Guizhou [J]. Journal of Lake Sciences, 2004,16(2):125-132.

        [77] 白薇揚(yáng),馮新斌,孫 力,等.貴陽市阿哈湖水體和沉積物間隙水中汞的含量和形態(tài)分布初步研究[J]. 環(huán)境科學(xué)學(xué)報, 2006,26(1):91-98.Bai W, Feng X, Sun L, et al. A preliminary study on the content and morphological distribution of mercury in the lake body and sediment interstital water of Aha lake in Guiyang [J]. Journal of Environmental Science, 2006,26(1):91-98.

        [78] 蔣紅梅,馮新斌,戴前進(jìn),等.烏江流域水體中不同形態(tài)汞分布特征的初步研究[J]. 環(huán)境化學(xué), 2004,23(5):556-561.Jiang H, Feng X, Dai Q, et al. Study on distribution characteristics of different forms of mercury in water bodies of wujiang river basin [J]. Environmental Chemistry, 2004,23(5):556-561.

        [79] 陳璐璐,周北海,徐冰冰,等.太湖水體典型重金屬鎘和鉻含量及其生態(tài)風(fēng)險[J]. 生態(tài)學(xué)雜志, 2011,30(10):2290-2296.Chen L, Zhou B, Xu B, et al. Cadmium and chromium content in Taihu lake and their ecological risks [J]. Journal of Ecology, 2011, 30(10):2290-2296.

        [80] 張寶軍,朱蒙曼,王 鵬,等.贛江流域水體中可溶態(tài)鎘的時空分布特征及水質(zhì)評價[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報, 2014,30(4):495-499.Zhang B, Zhu M, Wang P, et al. Spatial-temporal distribution characteristics and water quality evaluation of soluble cadmium in Ganjiang river basin [J]. Journal of Ecology and Rural Environment, 2014,30(4):495-499.

        [81] 申銳莉,鮑征宇,周 旻,等.洞庭湖濕地水相中重金屬的地球化學(xué)評價[J]. 人民長江, 2007,38(11):121-123.Shen R, Bao Z, Zhou M, et al. Geochemical evaluation of heavy metals in water facies of Dongting lake wetland [J]. Yangtze River, 2007,38(11):121-123.

        [82] 李德亮,張 婷,余建波,等.長江中游典型湖泊重金屬分布及其風(fēng)險評價—以大通湖為例[J]. 長江流域資源與環(huán)境, 2010,19(1): 183-189.Li D, Zhang T, Yu J, et al. Distribution and risk assessment of heavy metals in typical lakes in the middle reaches of the Yangtze river -- a case study of Daodong lake [J]. Resources and Environment in the Yangtze Basin, 2010,19(1):183-189.

        [83] 程 杰.巢湖水體重金屬污染評價及水中重金屬污染的植物修復(fù)研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué), 2008.Cheng J. Evaluation of heavy metal pollution in Chaohu lake and phytoremediation of heavy metal pollution in water [D]. Hefei: Anhui Agricultural University, 2008.

        [84] 朱 飛,李彥旭,許振成,等.龍江河水體與沉積物鎘污染特征與潛在生態(tài)風(fēng)險評價[J]. 環(huán)境污染與防治, 2013,35(11):56-61.Zhu F, Li Y, Xu Z, et al. Cadmium pollution characteristics and potential ecological risk assessment of water and sediment in Longjiang river [J]. Environmental Pollution and Control, 2013,35(11): 56-61.

        [85] 胡錫永,賴子尼,趙元鳳,等.珠江河口重金屬鎘的含量與分布的季節(jié)特征[J]. 中國水產(chǎn)科學(xué), 2011,18(3):629-635.Hu X, Lai Z, Zhao Y, et al. Seasonal characteristics of heavy metal cadmium content and distribution in the pearl river estuary [J]. Journal of Fishery Sciences of China, 2011,18(3):629-635.

        [86] 孫 蕾,黃 懿,胡 軍,等.工業(yè)廢水中銻污染物排放標(biāo)準(zhǔn)制定的原則與依據(jù)[J]. 中國環(huán)境監(jiān)測, 2009,25(6):54-58.Sun L, Huang Y, Hu J, et al. Principles and basis for the emission standard of antimony in industrial wastewater [J]. Environmental Monitoring in China, 2009,25(6):54-58.

        [87] 王玉強(qiáng).渭河干流中下游鉻(Ⅵ)污染遷移轉(zhuǎn)化規(guī)律[D]. 楊凌:西北農(nóng)林科技大學(xué), 2012.Wang Y. (Ⅵ) in the middle and lower reaches of Weihe river chromium pollution migration transformation rule [D]. Yangling: Northwest A&F University, 2012.

        [88] 吳學(xué)麗,楊永亮,湯奇峰,等.沈陽河水、地下水及沉積物中重金屬的生態(tài)風(fēng)險評價及來源辨析[J]. 生態(tài)學(xué)雜志, 2011,30(3):438-447.Wu X, Yang Y, Tang Q, et al. Ecological risk assessment and source discrimination of heavy metals in river water, groundwater and sediments in Shenyang [J]. Journal of Ecology, 2011,30(3):438-447.

        [89] 黃 堅,李建文,陳勝福,等.湘江(長沙段)水中鉻的形態(tài)分布及其遷移[J]. 分析測試學(xué)報, 2007,26(3):335-338.Huang J, Li J, Chen S, et al. Morphological distribution and migration of chromium in water of Xiangjiang river [J]. Journal of Instrumental Analytical, 2007,26(3):335-338.

        [90] 李其林,黃 昀,劉光德,等.嘉陵江與烏江重要漁業(yè)功能區(qū)水生態(tài)環(huán)境質(zhì)量研究[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2003,11(3):175-177.Li Q, Huang Y, Liu G, et al. Study on water ecological environment quality in important fishery functional areas of Jialing river and Wujiang river [J]. Chinese Journal of Eco-Agriculture, 2003,11(3): 175-177.

        [91] 邱定蕃,柴立元.有色冶金與環(huán)境保護(hù)[M]. 長沙:中南大學(xué)出版社, 2015.Qiu D, Chai L. Nonferrous metallurgy and environmental protection [M]. Changsha: Central South University Press, 2015.

        [92] Mineral commodity summaries 2008 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2008.

        [93] Mineral commodity summaries 2009 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2009.

        [94] Mineral commodity summaries 2010 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2010.

        [95] Mineral commodity summaries 2011 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2011.

        [96] Mineral commodity summaries 2012 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2012.

        [97] Mineral commodity summaries 2013 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2013.

        [98] Mineral commodity summaries 2014 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2014.

        [99] Mineral commodity summaries 2015 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2015.

        [100]Mineral commodity summaries 2016 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2016.

        [101]Mineral commodity summaries 2017 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2017.

        [102]Mineral commodity summaries 2018 [R]. U.S. Department of the Interior & U.S. Geological Survey, 2018.

        [103]張 影,楊鄲丹,盧忠林.廣西龍江鎘污染事件及反思[J]. 化學(xué)教育, 2013,34(6):1-2.Zhang Y, Yang D, Lu Z. Cadmium pollution incident and reflection in Longjiang, Guangxi [J]. Chinese Journal of Chemical Education, 2013,34(6):1-2.

        [104]雷天雷.銻污染事故應(yīng)急處理研究——以嘉陵江廣元河段為例[J]. 城市地理, 2016,(24):88.Lei T. Emergency treatment of antimony pollution accident -- a case study of Guangyuan reach of Jialing river [J]. City Geography, 2016, (24):88.

        [105]Fu Z, Wu F, Chen L, et al. Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China [J]. Environmental Pollution, 2016,219:1069-1076.

        [106]Fu Z, Guo W, Dang Z, et al. Refocusing on nonpriority toxic metals in the aquatic environment in China [J]. Environmental Science & Technology, 2017,51(6):3117-3118.

        [107]孫淑蘭.汞的來源、特性、用途及對環(huán)境的污染和對人類健康的危害[J]. 上海計量測試, 2006,(195):6-9.Sun S. Sources, characteristics, USES, environmental pollution and hazard to human health of mercury [J]. Shanghai Measurement and Testing, 2006,(195):6-9.

        [108]吳豐昌,馮承蓮,曹宇靜,等.鋅對淡水生物的毒性特征與水質(zhì)基準(zhǔn)的研究[J]. 生態(tài)毒理學(xué)報, 2011,6(4):367-382.Wu F, Feng C, Cao Y, et al. Study on the toxicity characteristics and water quality baseline of zinc in freshwater organisms [J]. Journal of Ecological Toxicology, 2011,6(4):367-382.

        [109]1995Updates: Water quality criteria documents for the protection of aquatic life in ambient water[R]. United States Environmental Protection Agency (US EPA), 1995.

        [110]National recommended water quality criteria - human health criteria table [Z].https://www.epa.gov/wqc/national-recommended-water- quality-criteria-human-health-criteria-table.

        [111]Wright David A., Welbourn Pamela. 環(huán)境毒理學(xué)[M]. 北京:高等教育出版社, 2007.Wright David A., Welbourn Pamela. Environmental toxicology [M]. Beijing: Higher Education Press, 2007.

        Ecological risk assessment and water quality standard evaluation of 10typical metals in eight basins in China.

        HE Jia1,2, SHI Di1, WANG Bei-bei1, FENG Cheng-lian1, SU Hai-lei1, WANG Ying1,3, QIN Ning1,4*

        (1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;2.College of Water Sciences, Beijing Normal university, Beijing 100875, China;3.School of Space and Environment, Beihang University, Beijing 102206, China;4.School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China )., 2019,39(7):2970~2982

        Concentrations of 10 priority metals were compiled for eight major river basins in China. In addition, toxicology data of metals were collected and validated. The overlapping area and joint probability curve methods were adopted to characterize ecological risk and results were compared to current water quality standards. Copper and zinc were identified as the elements exhibiting the greatest potential to cause adverse effects to aquatic organisms. Current water quality criteria might not be sufficiently protective of aquatic organisms. Conversely, the water quality standards for mercury and nickel were deemed sufficient or even slightly over-protective of aquatic organisms. The ecological risks of selenium, arsenic and antimony were relatively low. Water quality standards were moderately protective for these three elements. It is suggested that current water quality standards should be revised and monitoring should be strengthened in order to provide effective protection for the aquatic ecosystem safety in China.

        heavy metal;ecological risk assessment;water quality standard;overlapping area method;joint probability curve method

        X50

        A

        1000-6923(2019)07-2970-13

        何 佳(1987-),女,吉林長春人,講師,博士,主要從事水質(zhì)基準(zhǔn)與標(biāo)準(zhǔn),生態(tài)風(fēng)險評估,預(yù)測毒理學(xué)研究.發(fā)表論文15篇.

        2018-12-07

        國家自然科學(xué)基金青年基金項(xiàng)目(41603113,41503104);創(chuàng)新研究群體項(xiàng)目(41521003);博士后科學(xué)基金面上項(xiàng)目(2016M591227);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(FRF-TP-18-071A1)

        * 責(zé)任作者, 講師, qinning@ustb.edu.cn

        猜你喜歡
        水質(zhì)標(biāo)準(zhǔn)水生水體
        農(nóng)村黑臭水體治理和污水處理淺探
        美國水質(zhì)標(biāo)準(zhǔn)制定研究及其對中國的借鑒意義
        生態(tài)修復(fù)理念在河道水體治理中的應(yīng)用
        采油廢水處理技術(shù)探討
        廣元:治理黑臭水體 再還水清岸美
        三氯生對4種水生生物的急性毒性研究
        城市污水回用現(xiàn)狀及存在的問題
        依托科技創(chuàng)新 打造現(xiàn)代水生蔬菜產(chǎn)業(yè)
        長江蔬菜(2014年1期)2014-03-11 15:09:48
        跟我進(jìn)城的兄弟
        椰城(2013年4期)2013-11-16 06:31:11
        親密的陌生人
        青春(2012年10期)2012-04-29 00:44:03
        人人摸人人操| 亚洲视频在线观看青青草| 亚洲二区精品婷婷久久精品| 国产自拍视频在线观看网站| 成人网站免费看黄a站视频| 麻豆第一区MV免费观看网站| 东风日产系列全部车型| 九九久久精品国产免费av| 日日天干夜夜狠狠爱| 国产精品久久久久免费a∨| 日本一区二区三区啪啪| 国模91九色精品二三四| 韩国三级中文字幕hd| 中文亚洲日韩欧美| 亚洲一区日本一区二区| 国产不卡精品一区二区三区| 小荡货奶真大水真多紧视频 | 日韩在线 | 中文| a级毛片高清免费视频就| 中文字幕大屁股熟女乱| 亚洲一区二区三区av天堂| 夫妻免费无码v看片| 国内a∨免费播放| 欧美日韩综合在线视频免费看| 久久精品国产9久久综合| 国产七十六+老熟妇| 国产午夜无码视频免费网站| 国产精品女同一区二区久| 国内自拍速发福利免费在线观看| 中文字幕av免费专区| 亚洲产在线精品亚洲第一站一| 日本久久黄色高清视频| 深夜放纵内射少妇| 欧美变态口味重另类在线视频 | 色综合天天综合欧美综合| 又色又爽又黄又硬的视频免费观看 | 丰满人妻熟妇乱又伦精品软件| 国产无套视频在线观看香蕉| 国产丝袜长腿在线看片网站 | 亚洲av激情一区二区| 色综合久久88色综合天天|