亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        投加羥胺原位恢復(fù)城市污水短程硝化-厭氧氨氧化工藝

        2019-07-31 07:41:22李夕耀彭永臻
        中國(guó)環(huán)境科學(xué) 2019年7期
        關(guān)鍵詞:羥胺城市污水硝化

        李 佳,李夕耀,張 瓊,彭永臻

        投加羥胺原位恢復(fù)城市污水短程硝化-厭氧氨氧化工藝

        李 佳,李夕耀,張 瓊,彭永臻*

        (北京工業(yè)大學(xué),城鎮(zhèn)污水深度處理與資源化利用國(guó)家工程實(shí)驗(yàn)室,北京市污水脫氮除磷處理與過程控制工程技術(shù)研究中心,北京 100124)

        有效抑制或淘洗亞硝酸鹽氧化菌(NOB)是短程硝化-厭氧氨氧化(PN/A)工藝應(yīng)用于城市污水處理的關(guān)鍵.以因NOB大量增長(zhǎng)受到破壞的城市污水PN/A系統(tǒng)為對(duì)象(硝酸鹽(NO3--N)生成比例為0.90),考察了羥胺(NH2OH)投加濃度和投加方式對(duì)其恢復(fù)的效果.結(jié)果顯示,當(dāng)序批式反應(yīng)器中初始NH2OH投加濃度為10mg/L時(shí),每天投加1次,連續(xù)投加20d后,NO3--N生成量占NH4+-N消耗量的比例由0.90逐步降低至0.11.表明NH2OH(10mg/L)可原位恢復(fù)PN/A工藝.NH2OH停止投加59d后,出水NO3--N生成比例再次小幅度上升至0.15,此時(shí)繼續(xù)投加5d NH2OH (10mg/L),PN/A工藝運(yùn)行良好,因此間歇投加NH2OH可以維持PN/A工藝穩(wěn)定運(yùn)行.實(shí)時(shí)定量PCR結(jié)果表明,在投加NH2OH (10mg/L)后,NOB的豐度不斷下降,從(4.52±0.44)×1010copies/g VSS(第6d)下降到(2.30±0.80)×109copies/g VSS(第157d),說明NH2OH的投加有利于抑制和淘洗NOB.

        羥胺(NH2OH);短程硝化-厭氧氨氧化(PN/A);NOB;城市污水

        短程硝化-厭氧氨氧化(PN/A)的脫氮過程為:好氧條件下,原水中部分氨氮(NH4+-N)被氨氧化菌(AOB)氧化為亞硝態(tài)氮(NO2--N),生成的NO2--N繼而與NH4+-N在厭氧氨氧化菌(Anammox)的作用下轉(zhuǎn)化為氮?dú)?N2)[1-2].與傳統(tǒng)硝化-反硝化脫氮工藝相比,此工藝?yán)碚撋峡晒?jié)省60%的曝氣量,100%的碳源[3-4].然而,在研究中發(fā)現(xiàn),低氨氮城市污水PN/A工藝很容易出現(xiàn)亞硝酸鹽氧化菌(NOB)的大量增長(zhǎng)所導(dǎo)致的系統(tǒng)運(yùn)行惡化[5-6].

        NOB會(huì)與Anammox競(jìng)爭(zhēng)底物NO2--N,從而導(dǎo)致出水硝態(tài)氮(NO3--N)的積累,以至PN/A工藝脫氮性能的下降.因此,PN/A工藝成功應(yīng)用于污水處理的關(guān)鍵在于有效的抑制或淘洗NOB[7-8].目前,已經(jīng)有許多在PN/A系統(tǒng)中解決NOB的增長(zhǎng)的策略,如重新接種不含NOB的污泥、加大排泥量、降低系統(tǒng)溶解氧(DO)和采用間歇曝氣方式等,然而這些策略均不能有效的抑制或淘洗NOB,恢復(fù)PN/A工藝[9-11].羥胺(NH2OH)是硝化和厭氧氨氧化2個(gè)過程的中間產(chǎn)物,可以成功啟動(dòng)短程硝化[12-15],提高Anammox的活性[16-17].但以NH2OH恢復(fù)一體化PN/A工藝鮮有報(bào)道.

        本研究采用序批式反應(yīng)器(SBR),以因NOB大量增長(zhǎng)受到破壞的城市污水PN/A系統(tǒng)為對(duì)象,研究了投加NH2OH恢復(fù)PN/A工藝的適宜濃度及投加策略,通過測(cè)定SBR系統(tǒng)硝態(tài)氮生成比例及功能菌活性和豐度變化,分析了PN/A工藝原位恢復(fù)的微生物學(xué)機(jī)制.

        1 材料與方法

        1.1 反應(yīng)裝置及接種污泥

        試驗(yàn)采用敞口圓柱體SBR反應(yīng)器(圖1),材質(zhì)為有機(jī)玻璃,有效容積10L.反應(yīng)器用黑色遮光材料包裹,避光運(yùn)行.為保證反應(yīng)階段泥水充分混合及傳質(zhì)均勻,反應(yīng)器設(shè)有攪拌裝置;曝氣采用曝氣泵和曝氣頭實(shí)現(xiàn),由轉(zhuǎn)子流量計(jì)控制DO為0.2~0.5mg/L;反應(yīng)器中配有便攜式檢測(cè)儀(WTW340i, Germany),監(jiān)測(cè)反應(yīng)過程中的DO、pH值和溫度變化;設(shè)置有加熱棒,以保證反應(yīng)器內(nèi)溫度在30℃左右.

        接種污泥為短程硝化絮體污泥和厭氧氨氧化顆粒污泥,接種前短程硝化絮體污泥的亞硝酸鹽氮積累率平均為96.9%,厭氧氨氧化顆粒污泥總氮去除負(fù)荷平均為0.5kgN/(m3×d).短程硝化污泥與厭氧氨氧化顆粒污泥按質(zhì)量比1:2的比例混合,接種后的混合液懸浮固體濃度為6000mg/L,混合液揮發(fā)性懸浮固體濃度為4980mg/L.

        圖1 SBR實(shí)驗(yàn)裝置示意

        1.進(jìn)水箱;2.蠕動(dòng)泵;3.SBR反應(yīng)器;4.出水箱;5.DO、pH和溫度在線監(jiān)測(cè)儀;6.曝氣泵;7.流量計(jì);8.曝氣頭;9.攪拌器;10.加熱棒;11.電動(dòng)排水閥;12.取樣口

        1.2 進(jìn)水水質(zhì)及運(yùn)行方式

        試驗(yàn)用水為北京市某家屬區(qū)化糞池實(shí)際生活污水,污水先經(jīng)過前端預(yù)處理后再進(jìn)入SBR反應(yīng)器.具體水質(zhì):COD為55.7~128.2mg/L,NH4+-N濃度為25.8~83.5mgN/L,NO2--N和NO3--N濃度均小于1.0mgN/L,pH值7.1~7.6.

        表1 系統(tǒng)運(yùn)行階段

        反應(yīng)器每周期進(jìn)水5L,排水比為50%,污泥齡為10d(只排絮體污泥).每周期運(yùn)行方式為:進(jìn)水10min,缺氧攪拌30min,好氧曝氣60~300min,沉淀30min,排水10min, 閑置40~100min.試驗(yàn)過程分為A~I9個(gè)階段(表1),在階段B、D、F和H時(shí)向SBR反應(yīng)器中投加NH2OH,其中階段B投加的NH2OH濃度為4.5mg/L,階段D、F和H為10mg/L.NH2OH濃度均為SBR反應(yīng)器好氧階段初始時(shí)NH2OH濃度. NH2OH通過加藥泵投加,每天投加1次.

        1.3 檢測(cè)指標(biāo)及方法

        水樣經(jīng)0.45μm中速濾紙過濾后測(cè)定各參數(shù). NH4+-N、NO2--N和NO3--N采用Lachat Quikchem 8500型流動(dòng)注射儀測(cè)定(Lachat Instrument, Milwaukee, Wiscosin),TN為NH4+-N、NO2--N和NO3--N三者濃度之和;NH2OH采用羥基喹啉分光光度法測(cè)定[18];MLSS與MLVSS采用標(biāo)準(zhǔn)方法測(cè)定[19]; DO、pH值和溫度采用便攜式檢測(cè)儀(WTW340i, Germany)檢測(cè).

        通過一系列的批次試驗(yàn)測(cè)定功能菌AOB、NOB和Anammox的活性[20],試驗(yàn)條件如表2所示.采用實(shí)時(shí)定量PCR(real-time qPCR)對(duì)微生物的種群結(jié)構(gòu)進(jìn)行分析.泥樣DNA采用DNA快速提取試劑盒 (fast DNA spin kit for soil, Q BIOgene Inc., Carlsbad, USA) 提取,通過Nanodrop 分光光度計(jì)(NanoDrop Technologies,Wilmington, USA)測(cè)定DNA的質(zhì)量和數(shù)量;real-time qPCR采用MX 3500p熒光實(shí)時(shí)定量PCR擴(kuò)增儀測(cè)定(Agilent Technologies, USA).每個(gè)樣品設(shè)立平行,取均值,最終以每克干污泥中菌的基因拷貝數(shù)表示菌的含量.擴(kuò)增所用引物及其核苷酸序列見表3.

        表2 微生物活性測(cè)定的批次實(shí)驗(yàn)條件

        表3 real-time qPCR所用的引物及核苷酸序列

        2 結(jié)果與討論

        2.1 NH2OH投加對(duì)PN/A工藝的恢復(fù)

        如圖2中階段A所示,運(yùn)行初期出水的NO3--N濃度逐漸升高,運(yùn)行14d后,系統(tǒng)ΔNO3--N/ΔNH4+-N大于理論值0.11[25],說明PN/A工藝被破壞.在SBR反應(yīng)器運(yùn)行的第44d,ΔNO3--N/ΔNH4+-N升高至0.86(圖2),PN/A工藝運(yùn)行失穩(wěn).此時(shí),如圖3所示,NOB的活性由0.62mgN/(VSS·h)(第1d)升高為5.9mgN/(VSS·h)(第40d),說明PN/A工藝中短程硝化破壞;Anammox的活性由15.9mgN/(VSS·h)(第1d)下降為3.3mgN/(VSS·h)(第40d),Anammox活性的下降可能是由于NOB活性的提高使其底物NO2--N缺失,這表明Anammox與NOB在底物競(jìng)爭(zhēng)上處于劣勢(shì)地位.在階段B(第46~55d),向反應(yīng)器中投加NH2OH,使SBR中初始NH2OH濃度為4.5mg/L,每天投加1次,投加10d后系統(tǒng)中ΔNO3--N/ΔNH4+-N僅下降至0.63,PN/A工藝未恢復(fù)到較好狀態(tài).

        在階段B停止投加NH2OH后,ΔNO3--N/ ΔNH4+-N又上升為0.90(第65d),且NOB的活性在運(yùn)行第64d升高至8.6mgN/(VSS·h)(圖3),NH2OH的投加有助于PN/A工藝的恢復(fù),但是NH2OH濃度為4.5mg/L對(duì)PN/A工藝的恢復(fù)效果較差.因此在階段D(第66~85d)提高NH2OH的投加濃度到10mg/L.如圖2所示,在提高NH2OH投加濃度后,SBR反應(yīng)器出水NO3--N濃度明顯降低,ΔNO3--N/ΔNH4+-N由0.90(第65d)下降到0.11(第85d),并且NOB的活性下降為3.4mgN/(VSS·h)(圖3), NH2OH(10mg/L)的投加有效抑制了NOB的活性,使短程硝化過程在20d內(nèi)快速恢復(fù).

        圖2 SBR中氮素污染物濃度(a)和硝態(tài)氮生成比例(b)變化

        由于階段E(第86~104)進(jìn)水NH4+-N的濃度突然大幅度升高(由(30.2±3.4) mgN/L上升為(60.3±7.3) mgN/L),AOB的活性受到進(jìn)水波動(dòng)的影響從14.5mgN/(VSS·h)(第74d)下降至6.8mgN/VSS/h(第101d),水質(zhì)波動(dòng)會(huì)影響硝化菌的活性[26].此時(shí),即使適當(dāng)延長(zhǎng)曝氣時(shí)間(從60min延長(zhǎng)到150min),出水NH4+-N仍然由(1.1±0.8) mgN/L增長(zhǎng)為(26.6±5.6) mgN/L.為了恢復(fù)AOB的活性,從第98d繼續(xù)延長(zhǎng)曝氣時(shí)間到300min,運(yùn)行5d后出水NH4+-N下降到0.6mgN/L.但是隨著硝化效果的轉(zhuǎn)好,剛剛恢復(fù)的短程硝化又因過度曝氣而破環(huán),系統(tǒng)ΔNO3--N/ ΔNH4+-N逐漸升高至0.95(第104d),NOB的活性上升至7.9mgN/(VSS·h)(第101d).可見過曝氣對(duì)于短程硝化具有很強(qiáng)的破壞作用[27-28],尤其對(duì)于還未運(yùn)行穩(wěn)定的短程硝化.

        圖3 反應(yīng)器中功能菌活性變化

        在階段F(第105~124d)繼續(xù)投加NH2OH (10mg/L)以恢復(fù)PN/A工藝, 投加20d后(第124d)出水中的NO3--N濃度大幅度下降至5.75mgN/L,此時(shí)ΔNO3--N/ΔNH4+-N為0.11,PN/A工藝恢復(fù).此試驗(yàn)結(jié)果與階段D相似,進(jìn)一步驗(yàn)證了NH2OH對(duì)PN/A工藝恢復(fù)的有效性.在階段G(第125~183d), PN/A工藝運(yùn)行穩(wěn)定,出水NH4+-N為(1.7±0.8)mgN/ L,NO3--N為(5.2±1.0) mgN/L,ΔNO3--N/ΔNH4+-N穩(wěn)定在0.10±0.02.ΔNO3--N/ΔNH4+-N略低于理論值,表明系統(tǒng)中存在微弱的反硝化作用,將小部分NO3--N還原為N2,提高了總氮去除率[29].從圖3中可以看出,Anammox活性隨著NOB活性的降低而逐漸提高,到第131d升高為10.2mgN/(VSS·h).NH2OH的投加可能有利于Anammox在長(zhǎng)期缺少底物而失活的情況下較快的恢復(fù)活性,有文獻(xiàn)報(bào)道向在4℃條件下長(zhǎng)期儲(chǔ)存的Anammox系統(tǒng)中投加NH2OH,有利于血紅素含量的提高,進(jìn)而快速恢復(fù)Anammox的活性[17].在階段G末期(第183d) ΔNO3--N/ΔNH4+-N又有小幅的增長(zhǎng)(ΔNO3--N/ΔNH4+-N為0.15),故在階段H(第184~189d)投加了5d的NH2OH(10mg/ L),PN/A工藝在階段I(第190~219d)運(yùn)行良好.因此,短期的NH2OH投加并不能維持PN/A工藝的長(zhǎng)久穩(wěn)定,其它研究也有相同的結(jié)論[30],但間歇投加NH2OH的策略可以使NOB持續(xù)受到抑制,從而維持PN/A工藝的長(zhǎng)久穩(wěn)定運(yùn)行.

        2.2 PN/A工藝恢復(fù)前后的典型周期分析

        分析PN/A工藝破壞(第37d)和恢復(fù)(第150d)的典型周期內(nèi)氮素污染物濃度、pH值、DO和溫度變化.如圖4所示,反應(yīng)過程中pH值在6.6~7.4之間變化,反應(yīng)初的pH值受進(jìn)水水質(zhì)的影響而不同.反應(yīng)器中溫度均逐漸升高并維持在30℃左右.在好氧階段,2個(gè)典型周期的DO均在0.2~0.5mg/L.

        圖4(a)為PN/A工藝破壞的典型周期,NH4+-N濃度因上周期剩余泥水混合液的稀釋由34.07mgN/ L變?yōu)?7.88mgN/L,NO2--N為0.42mgN/L, NO3--N因上周期反應(yīng)末的剩余由0.51mgN/L變?yōu)?.95mgN/L.在缺氧攪拌階段,反硝化菌利用進(jìn)水中的有機(jī)物進(jìn)行將NO3--N反硝化為N2,30min后NO3--N濃度由4.95mgN/L降低為1.18mgN/L.在好氧階段,曝氣60min后NH4+-N由17.00mgN/L降低為1.17mgN/L(ΔNH4+-N為15.83mgN/L),NO3--N由1.18mgN/L上升為12.56mgN/L(ΔNO3--N為11.83mgN/L).反應(yīng)過程ΔNO3--N/ΔNH4+-N為0.74,遠(yuǎn)大于理論值0.11,TN去除率僅為23.0%,說明Anammox氮去除途徑發(fā)揮的作用很小,短程硝化的破壞使PN/A工藝失穩(wěn)而脫氮性能下降.

        圖4(b)為PN/A工藝通過投加NH2OH策略恢復(fù)后的典型周期.在好氧階段,曝氣120min后NH4+-N由29.45mgN/L降低為1.53mgN/L(ΔNH4+-N為27.92mgN/L),NO3--N由2.52mgN/L上升為5.49mgN/L(ΔNO3--N為2.97mgN/L),在反應(yīng)過程中沒有NO2--N的積累.ΔNO3--N/ΔNH4+-N為0.11,即PN/A工藝NO3--N生成比例的理論值,TN去除率為76.8%.此典型周期說明NH4+-N大部分氧化NO2--N而非NO3--N,且生成的NO2--N與進(jìn)水中的NH4+-N進(jìn)一步進(jìn)行厭氧氨氧化反應(yīng),PN/A工藝呈現(xiàn)較好的運(yùn)行狀態(tài).

        2.3 NH2OH投加后系統(tǒng)微生物種群結(jié)構(gòu)變化

        為了進(jìn)一步了解系統(tǒng)運(yùn)行狀態(tài),對(duì)反應(yīng)器中各功能菌AOB、NOB(和之和)及Anammox豐度進(jìn)行了測(cè)定.

        從圖5中可以看出,NOB的豐度從第6d的(1.20±0.2)×107copies/g VSS上升到第44d的(2.65± 0.16)×108copies/g VSS,為原來的22倍左右, 此時(shí)ΔNO3--N/ΔNH4+-N大幅度上升(圖2).因此NOB豐度的大量增長(zhǎng)導(dǎo)致了PN/A工藝破壞.在階段B(第46~50d)投加4.5mg/L的NH2OH后,NOB的豐度沒有下降,反而上升為(4.06±0.80) ×109copies/g VSS(第60d),這與NOB活性升高相對(duì)應(yīng)(圖3).在階段D(第66~86d)和F(第105~124d),提高NH2OH投加濃度到10mg/L后,NOB數(shù)量不斷下降,最終降低為(3.03± 0.11)×107copies/g VSS(第157d).系統(tǒng)中NOB活性受到抑制或菌種被淘洗對(duì)于PN/A工藝的穩(wěn)定性非常關(guān)鍵[31].本試驗(yàn)結(jié)果表明,NH2OH(10mg/L)的投加不僅抑制了NOB的活性,還抑制了NOB的增長(zhǎng),從而在排泥條件下實(shí)現(xiàn)菌種淘洗[13-14],以恢復(fù)PN/A工藝.在硝化過程中,AOB在氨單加氧酶(AMO)和羥胺氧化還原酶(HAO)的催化作用下完成NH4+-N的氧化; NOB在亞硝酸鹽氧化還原酶(nitrite oxidoreductase enzyme, NXR)的催化作用下氧化NO2--N.當(dāng)添加NH2OH后,AOB中HAO的存在可以分解NH2OH以減緩NH2OH的毒性,而在NOB的代謝過程中沒有相應(yīng)的緩解措施[32].有文獻(xiàn)報(bào)道,在反應(yīng)器中加入NH2OH后的拷貝數(shù)下降了一個(gè)數(shù)量級(jí)[33].因此,NH2OH的這種抑制作用可能是因?yàn)槠鋵?duì)NOB中NXR的活性表達(dá)或合成過程的抑制[13].

        圖5 反應(yīng)器中功能菌豐度變化

        在運(yùn)行中AOB的豐度呈現(xiàn)小幅波動(dòng),但基本維持在(2.37±0.23)×109copies/g VSS之上,即使在AOB的活性顯著下降時(shí)豐度也并沒有明顯降低,這說明在不利條件下微生物的活性和豐度變化并不相一致[34].Anammox豐度在運(yùn)行過程中逐漸降低,從(4.52±0.44)×1010copies/g VSS(第6d)下降到(2.30± 0.80)×109copies/g VSS(第157d).Anammox豐度的降低可能是由于PN/A工藝運(yùn)行的不穩(wěn)定性,即短程硝化的不斷破壞,使得Anammox底物缺失,長(zhǎng)期處于饑餓狀態(tài),同時(shí)Anammox的有效持留也是PN/A工藝運(yùn)行的關(guān)鍵點(diǎn)之一[35].

        3 結(jié)論

        3.1 向SBR中每天投加1次NH2OH并使其初始NH2OH濃度為10mg/L,20d后系統(tǒng)ΔNO3—N/ ΔNH4+-N逐漸降低至理論值0.11.表明NH2OH可快速原位恢復(fù)PN/A工藝.

        3.2 NH2OH投加停止59d后,反應(yīng)器出水NO3--N再次出現(xiàn)積累趨勢(shì),此時(shí)繼續(xù)投加5dNH2OH,PN/A工藝運(yùn)行良好,因此間歇投加NH2OH是一種維持PN/A工藝的穩(wěn)定運(yùn)行的有效策略.

        3.3 實(shí)時(shí)定量PCR結(jié)果表明,在投加NH2OH (10mg/L)后NOB的豐度不斷降低,從(4.52±0.44)× 1010copies/g VSS(第6d)下降到(2.30±0.80)× 109copies/g VSS(第157d),說明NH2OH的投加有利于抑制和淘洗NOB.

        [1] 胡 石,甘一萍,張樹軍,等.一體化全程自養(yǎng)脫氮(CANON)工藝的效能及污泥特性[J]. 中國(guó)環(huán)境科學(xué), 2014,34(1):111-117. Hu S, Gan Y P, Zhang S J, et al. Performance and sludge characteristics of the CANON process [J]. China Environmental Science, 2014,34(1):111-117.

        [2] 楊延棟,黃 京,韓曉宇,等.一體式厭氧氨氧化工藝處理高氨氮污泥消化液的啟動(dòng)[J]. 中國(guó)環(huán)境科學(xué), 2015,35(4):1082-1087. Yang Y D, Huang J, Han X Y. Start-up of one-stage partial nitrification/anammox process treating ammonium-rich reject water [J]. Chian Environmental Science, 2015,35(4):1082-1087.

        [3] Mulder A. The quest for sustainable nitrogen removal technologies [J]. Water Science and Technology, 2003,48:67-75.

        [4] Wang Z B, Zhang S J, Zhang L, et al. Restoration of real sewage partial nitritation-anammox process from nitrate accumulation using free nitrous acid treatment [J]. Bioresource Technology, 2018,251: 341-349.

        [5] Joss A, Derlon N, Cyprien C, et al. Combined nitritation-anammox: advances in understanding process stability [J]. Environmental Science and Technology, 2011,45:9735–9742.

        [6] Vlaeminck S E, De Clippeleir H, Verstraete W. Microbial resource management of one-stage partial nitritation/anammox [J]. Microbial Biotechnology, 2012,5:433-448.

        [7] Lackner S, Gilbert E M, Vlaeminck S E, et al. Full-scale partial nitritation/anammox experiences-an application survey [J]. Water Research, 2014,55:292-303.

        [8] Wett B, Omari A, Podmirseg S, et al. Going for mainstream deammonification from bench-to full-scale for maximized resource efficiency [J]. Water Science and Technology, 2013,68:283-289.

        [9] Jardin N, Hennerkes J. Full-scale experience with the deammonification process to treat high strength sludge water-a case study [J]. Water Science and Technology, 2012,65:447-455.

        [10] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology, 1998,50:589-596.

        [11] Katsogiannis A N, Kornaros M, Lyberatos G. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs [J]. Water Science and Technology, 2003,47:53-59.

        [12] Okabe S, Oshiki M, Takahashi Y, et al. Development of long-term stable partial nitrification and subsequent anammox process [J]. Bioresource Technology, 2011,102:6801-6807.

        [13] Xu G J, Xu X C, Yang F L, et al. 2012. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent anammox for low C/N wastewater treatment [J]. Chemical Engineering Journal, 2012,213:338-345.

        [14] Kindaichi T, Okabe S, Satoh H, et al. Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes [J]. Water Science and Technology, 2004,49:61-68.

        [15] Hao O J, Chen J M. Factors affecting nitrite buildup in submerged filter system [J]. Journal of Environmental Engineering, 1994,120: 1298-1307.

        [16] Tian Z Y, Zhang J, Song Y H. 2015. Several key factors influencing nitrogen removal performance of anammox process in a bio-filter at ambient temperature [J]. Environmental Earth Sciences, 2015,73: 5019-5026.

        [17] Wang G, Xu X C, Zhou L, et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment [J]. Bioresource Technology, 2017,241:181-189.

        [18] Frear D S, Burrell R C. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants [J]. Analytical Chemistry, 1995,27:1664-1665.

        [19] APHA. Standard methods for the examination of water and wastewater [M]. American Public Health Association, 1976.

        [20] Miao Y Y, Zhang L, Li B K, et al. Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrification-anammox system treating low-strength sewage under intermittent aeration condition [J]. Bioresource Technology, 2017,231:36-44.

        [21] Wang S Y, Wang Y, Feng X J, et al. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China [J]. Applied Microbiology and Biotechnology, 2011,90:779-787.

        [22] Degrange V, Bardin R. Detection and counting of nitrobacter populations in soil by PCR [J]. Applied and Environmental Microbiology, 1995,61:2093-2098.

        [23] Geets J, de Cooman M, Wittebolle L, Het al. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge [J]. Applied Microbiology and Biotechnology, 2007,75:211-221.

        [24] Schmid M C, Maas B, Dapena A, et al. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria [J]. Applied and Environmental Microbiology, 2005,71:1677-1684.

        [25] Sliekers A O, Derwort N, Gampos-Gomez J L, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor [J]. Water Reseach, 2002,36:2475-2482.

        [26] 程 軍,張 亮,楊延棟,等.氨氮負(fù)荷波動(dòng)對(duì)城市污水短程硝化-厭氧氨氧化工藝硝態(tài)氮的影響 [J]. 中國(guó)環(huán)境科學(xué), 2017,37(2):520- 525. Cheng J, Zhang L, Yang Y D, et al. The effects of ammonium loading rate fluctuation on nitrate accumulation in municipal wastewater partial nitritation/anammox (PN/A) process [J]. China Environmental Science, 2017,37(2):520-525.

        [27] Gao D W, Peng Y Z, Li B K, et al. Shortcut nitrification– denitrification by real-time control strategies [J]. Bioresource Technology, 2009,100:2298-2300.

        [28] Qian W T, Peng Y Z, Li X Y, et al. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition [J]. Bioresource Technology, 2017,243: 1247-1250.

        [29] 孫艷波,周少奇,李伙生,等.ANAMMOX與反硝化協(xié)同脫氮反應(yīng)器啟動(dòng)及有機(jī)負(fù)荷對(duì)其運(yùn)行性能的影響[J]. 化工學(xué)報(bào), 2009,60(10): 2596-2602. Sun Y B, Zhou S Q, Li H S, et al. Start-up of ANAMMOX- denitrification reactor and effect of organic loading on its performance of synergistic interaction [J]. CIESC Joernal, 2009,60(10):2596-2602.

        [30] Wang Y Y, Wang Y W, Wei Y S, et al. In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up [J]. Biochemical Engineering Journal, 2015,98:127-136.

        [31] Zeng W, Bai X L, Zhang L M, et al. Population dynamics of nitrifying bacteria for nitritation achieved in Johannesburg (JHB) process treating municipal wastewater [J]. Bioresource Technology, 2014,162: 30-37.

        [32] Hooper A B, Vannelli T, Bergmann D J, et al. Enzymology of the oxidation of ammonia to nitrite by bacteria [J]. Antonie van Leeuwenhoek, 1997,71:59-67.

        [33] Harper W F, Terada A, Poly F, et al. The Effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures. Biotechnology and Bioengineering, 2009,102:714-724.

        [34] Liu W, Yang Q, Ma B, et al. Rapid achievement of nitritation using aerobic starvation [J]. Environmental Science and Technology, 2017, 51:4001-4008.

        [35] Li J W, Li J L, Gao R T, et al. A Critical Review of One-stage Anammox Processes for Treating Industrial Wastewater: Optimization Strategies Based on Key Functional Microorganisms [J]. Bioresource Technology, 2018,265:498-505.

        In-situ restoring demostic wastewater partial nitritation/anammox (PN/A) process by addition of hydroxylamine.

        LI Jia, LI Xi-yao, ZHANG Qiong, PENG Yong-zhen*

        (National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China)., 2019,39(7):2789~2795

        The effective inhibition or wash-out of nitrite oxidizing bacteria (NOB) is the key challenge for the application of partial nitritation/anammox (PA/N) process in domestic wastewater treatment. The deteriorated domestic wastewater PN/A system was used to investigate the recovery effect of hydroxylamine (NH2OH) concentration and dosing mode on it. The nitrate (NO3--N) production ratio of the PN/A system was 0.90, which was due to the overgrowth of NOB. The results showed that when the initial NH2OH concentration was 10mg/L in the sequencing batch reactor (SBR) and NH2OH was added once a day, the ratio of NO3--Nproducted/NH4+-Nconsumedwas decreased from 0.90 to 0.11 after adding NH2OH for 20d. It indicated that NH2OH (10mg/L) addition could restore PN/A process-. The ratio of NO3--Nproducted/NH4+-Nconsumedincreased to 0.15 again after stopping NH2OH addition for 59d. When continued to add NH2OH into reactor for 5d, the PN/A process operated well. Therefore, the intermittent addition of NH2OH strategy could maintain the stable performance of the PN/A process. The real-time quantitative PCR results showed that the NOB abundance was decreased continuously from (4.52±0.44)×1010copies/g VSS (Day 6) to (2.30±0.80)×109copies/g VSS (Day 157) after NH2OH (10mg/L) addition. It indicated that NH2OH addition was beneficial to inhibit and wash out NOB.

        hydroxylamin (NH2OH);partial nitritation/anammox (PN/A);NOB;demostic wastewater

        X703

        A

        1000-6923(2019)07-2789-07

        李 佳(1994-),女,河北保定人,北京工業(yè)大學(xué)碩士研究生,主要從事污水生物處理理論與應(yīng)用研究.

        2018-12-03

        北京市科技計(jì)劃(D171100001017001);北京市教委資助項(xiàng)目

        * 責(zé)任作者, 教授, pyz@bjut.edu.cn

        猜你喜歡
        羥胺城市污水硝化
        Klebsiella oxytoca EN-B2高效轉(zhuǎn)化羥胺和亞硝態(tài)氮的影響因素研究
        微波輔助羥胺降解全氟辛酸
        城市污水處理中相關(guān)微生物技術(shù)的應(yīng)用
        云南化工(2021年6期)2021-12-21 07:31:10
        利用羥胺實(shí)現(xiàn)城市污水短程硝化最優(yōu)投加點(diǎn)選擇
        鹽酸羥胺的合成與生產(chǎn)方法
        城市污水處理廠占地研究
        智能城市(2018年8期)2018-07-06 01:11:10
        基于城市污水處理的人工濕地規(guī)劃設(shè)計(jì)初探
        MBBR中進(jìn)水有機(jī)負(fù)荷對(duì)短程硝化反硝化的影響
        基于環(huán)境保護(hù)的城市污水處理
        厭氧氨氧化與反硝化耦合脫氮除碳研究Ⅰ:
        各类熟女熟妇激情自拍| 日中文字幕在线| 亚洲成a人片在线观看高清| 亚洲av资源网站手机在线| 中文字幕av伊人av无码av| 亚洲欧洲∨国产一区二区三区| AV成人午夜无码一区二区| 一区二区三区在线观看精品视频 | 日韩AV无码乱伦丝袜一区| 一区视频免费观看播放| 欧美变态另类刺激| 乱中年女人伦av| 亚洲国产精品成人久久av| 一区二区三区午夜视频在线| 国产狂喷潮在线观看| 亚洲黄视频| 91大神蜜桃视频在线观看| 色婷婷久久精品一区二区| 99久久久国产精品免费蜜臀| 久久精品波多野结衣中文字幕| 中文字幕乱码亚洲美女精品一区| 日韩三级一区二区三区| 欧美裸体xxxx极品少妇| 精品国产免费久久久久久| 国产精品黄色在线观看| 亚洲一区二区三区尿失禁| 亚洲av永久无码一区| 无码人妻丰满熟妇区免费| 高潮内射主播自拍一区| 亚洲一区 日韩精品 中文字幕| 国产爆乳乱码女大生Av| 蜜桃视频一区二区三区| 午夜精品久久久久久久99老熟妇 | 精品国产第一国产综合精品| 粗一硬一长一进一爽一a级| 亚洲中文字幕有综合久久| 中文字幕一区二区人妻秘书| 国产av人人夜夜澡人人爽麻豆| 国产av综合一区二区三区最新| 国产三级国产精品国产专播| 又粗又硬又大又爽免费视频播放|