亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients?

        2019-07-25 02:00:56JianGuoLiu劉建國WenHuiZhu朱文慧andLiZhou周麗
        Communications in Theoretical Physics 2019年7期
        關鍵詞:劉建國朱文

        Jian-Guo Liu (劉建國), Wen-Hui Zhu (朱文慧), and Li Zhou (周麗)

        1College of Computer,Jiangxi University of Traditional Chinese Medicine,Jiangxi 330004,China

        2Institute of Artificial Intelligence,Nanchang Institute of Science and Technology,Jiangxi 330108,China

        Abstract Based on the Hirota’s bilinear form and symbolic computation,the Kadomtsev-Petviashvili equation with variable coefficients is investigated.The lump solutions and interaction solutions between lump solution and a pair of resonance stripe solitons are presented.Their dynamical behaviors are described by some three-dimensional plots and corresponding contour plots.

        Key words: Hirota’s bilinear form,dynamical behaviors,stripe solitons

        1 Introduction

        Nonlinear partial differential equations (NPDEs) are mathematical models to describe nonlinear phenomena in many fields of modern science and engineering,such as physical chemistry and biology,atmospheric space science,etc.[1?6]In recent years,the solutions of NPDEs have become a hot topic,and various methods have been proposed.[6?12]

        In these NPDEs,Kadomtsev-Petviashvili (KP) equation can be used to model waves in ferromagnetic media,water waves of long wavelength with weakly non-linear restoring forces and frequency dispersion.[13]However,when modeling various nonlinear phenomena under different physical backgrounds,variable coefficient NPDEs can describe the actual situation more accurately than constant coefficient NPDEs.As an illustration,a KP equation with variable coefficients is considered as follows[14]

        whereu=u(x,y,t) is the amplitude of the long wave of two-dimensional fluid domain on varying topography or in turbulent flow over a sloping bottom.The B?cklund transformation,soliton solutions,Wronskian and Gramian solutions of Eq.(1) have been obtained.[14?16]Lump and interactions solutions have been discussed in Ref.[17].However,interactions among the lump soliton,one stripe soliton,and a pair of stripe solitons have not been investigated,which will become our main task.

        The organization of this paper is as follows.Section 2 obtains the lump solutions based on Hirota’s bilinear form and symbolic computation.[18?34]Their dynamical behaviors are described in some plots.Section 3 derives the interaction solutions between lump solution and a pair of resonance stripe solitons.Their dynamical behaviors are also shown in some three-dimensional plots and corresponding contour plots.Section 4 makes a summary.

        2 Lump Solutions

        Substituting

        into Eq.(1),the bilinear form can be obtained as follows

        This is equivalent to:

        To research the lump solutions,suppose that

        where Θi(i=1,2,4,5) are unknown constants.Θ3(t)and Θ6(t)are unkown functions.Substituting Eq.(4)into Eq.(3),we have

        with Θ21+Θ24≠0,Θ2Θ4?Θ1Θ5≠0.τi(i=1,2) are integral constants.Substituting Eq.(5) into Eq.(4) and the transformationu=2Θ0[lnξ]xx,the lump solutions for Eq.(1) can be presented as follows

        whereξsatisfies constraint condition (5).

        To discuss the dynamical behaviors for solution (6),we suppose that

        Substituting Eq.(7) into Eq.(6),three-dimensional plots and corresponding contour plots are presented in Figs.1–3,Figure 1 shows the spatial structure of the bright lump solution on the (y,t) plane,which includes one peak and two valleys.Figure 2 shows the spatial structure of the bright lump solution on the (y,x) plane.Figure 3 shows the spatial structure of the bright lump solution on the(t,x) plane.

        Fig.1 (Color online) Lump solution (6) via Eq.(7) when x=0 (a) three-dimensional graph (b) contour graph.

        Fig.2 (Color online) Lump solution (6) via Eq.(7) when t=0 (a) three-dimensional graph (b) contour graph.

        Fig.3 (Color online) Lump solution (6) via Eq.(7) when y=0 (a) three-dimensional graph (b) contour graph.

        3 Interaction Solutions Between Lump Solution and a Pair of Resonance Stripe Solitons

        To find the interaction solutions between the lump solution and a pair of resonance stripe solitons,assume that

        where?i(i=1,2,4,5) andζi(i=1,2) are unknown constants.Θ3(t),Θ6(t),ζ3(t),andσi(t) (i=1,2) are unkown functions.Substituting Eq.(4) into Eq.(3),we have

        withζ21(Θ21+Θ24) ≠0,Θ4≠0.η1andκi(i=1,2,3) are integral constants.Substituting Eq.(9) into Eq.(8) and the transformationu=2Θ0[lnξ]xx,the interaction solutions between lump solution and two stripe solitons can be presented as follows

        whereξsatisfies constraint condition (9).

        To discuss the dynamical behaviors for solution (10),we suppose that

        Substituting Eq.(11)into Eq.(10),three-dimensional plots and corresponding contour plots are presented in Figs.4–8.

        Fig.4 (Color online) Solution (10) via Eq.(11) with γ(t)=1,η1=0 when (a) x=?20,(b) x=?5,(c) x=0,(d) x=5,(e) x=20.

        Fig.5 (Color online) The corresponding contour plots of Fig.4.

        Whenη1=0,Figs.4 and 5 describe the interaction solution between lump solution and one stripe soliton in the(t,y)-plane,the fusion between the lump soliton and one stripe soliton is shown in Fig.4.Whenx=?20,one lump and one stripe soliton can be found in Fig.4(a).In Fig.4(b),the lump soliton meets with one stripe soliton.In Figs.4(c) and 4(d),we can see the interaction between the lump and one stripe soliton.In Fig.4(e),lump starts to be swallowed until lump blend into one stripe soliton and go on spreading.Figure 5 shows the corresponding contour plots of Fig.4.

        Fig.6 (Color online) Solution (10) via Eq.(11) with γ(t)=1,η1=1 when (a) x=?20,(b) x=?5,(c) x=0,(d) x=5,(e) x=20.

        Fig.7 (Color online) The corresponding contour plots of Fig.6.

        Whenη1=1,Figs.6,7,and 8 demonstrate the interaction solution between lump solution and a pair of resonance stripe soliton in the (t,y)-plane,the fusion between the lump soliton and two stripe solitons is shown in Fig.6.Whenx=?20,two stripe solitons and one lump can be found in Fig.6(a).In Fig.6(b),the lump soliton meets with two stripe soliton.In Figs.6(c) and 6(d),we can see the interaction between the lump and two stripe solitons.In Fig.6(e),lump starts to be swallowed until lump blend into two stripe solitons and go on spreading.Figure 7 shows the corresponding contour plots of Fig.6 to help us better understand the interaction for solution (10).Figure 8 lists the interaction between the lump and two stripe solitons whenγ(t)=tis a function.

        Fig.8 (Color online) Solution (10) via Eq.(11) with γ(t)=t,η1=1 when x=?10 in (a) (d),x=0 in (b) (e),and x=10 in (c) (f).

        4 Conclusion

        In this work,the (2+1)-dimensional KP equation with variable coefficients are studied based on Hirota’s bilinear form and symbolic computation.Lump solutions and interaction solutions are presented.The spatial structure of the bright lump solution are shown in Figs.1–3.The dynamical behaviors for the interaction solutions between lump solution and one stripe soliton are described in Figs.4 and 5.The dynamical behaviors for the interaction solutions between lump solution and a pair of resonance stripe solitons are shown in Figs.6–8.

        猜你喜歡
        劉建國朱文
        社火迎新
        金秋(2024年2期)2024-04-17 08:10:28
        Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
        Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
        New Double-Periodic Soliton Solutions for the(2+1)-Dimensional Breaking Soliton Equation?
        Teacher:Teacher—dominant or Student—centered
        西部論叢(2017年3期)2017-09-11 06:21:44
        朱文韜 平凡之中展現(xiàn)別樣風采
        北方人(2017年12期)2017-07-25 09:17:06
        Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion
        石油物探(2017年1期)2017-03-15 10:46:51
        發(fā)現(xiàn)木耳
        Module 11 Units 1—2單元訓練
        守秘“安樂死”配方,手刃那個覬覦者
        精品欧美一区二区在线观看| 人妻尤物娇呻雪白丰挺| 久久婷婷国产五月综合色| 日本在线一区二区三区四区| 一本色道久久亚洲加勒比| 亚洲av无码无线在线观看| 亚洲人成77777在线播放网站| 久久久久久久岛国免费观看| 亚洲日韩图片专区小说专区| 97av在线播放| 中文字幕被公侵犯的丰满人妻| 国产一区二区三区不卡视频| 文字幕精品一区二区三区老狼| 亚洲理论电影在线观看| 日韩人妻无码精品久久久不卡| 亚洲欲色欲香天天综合网| 人妻少妇一区二区三区| 久久青青草原一区网站| 97超碰国产成人在线| 风情韵味人妻hd| 五十路丰满中年熟女中出| 亚洲熟妇无码av不卡在线播放| 国产aⅴ丝袜旗袍无码麻豆| 人妻中文字幕一区二区三区| 欲香欲色天天天综合和网| 久草青青91在线播放| 中文字幕手机在线精品| 免费无码专区毛片高潮喷水| 人人狠狠综合久久亚洲| 99热免费观看| 在线观看黄片在线播放视频| 日本av一区二区三区在线| 中文字幕一区二区人妻性色| 免费无码中文字幕A级毛片| 亚洲又黄又大又爽毛片| 亚洲一区中文字幕视频| 国产禁区一区二区三区| 香港台湾经典三级a视频| 黄视频国产| 久久久亚洲精品免费视频| 开心五月激情五月五月天|