亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        New Double-Periodic Soliton Solutions for the(2+1)-Dimensional Breaking Soliton Equation?

        2018-06-11 12:21:22JianGuoLiu劉建國(guó)andYuTian田玉
        Communications in Theoretical Physics 2018年5期
        關(guān)鍵詞:劉建國(guó)

        Jian-Guo Liu(劉建國(guó)) and Yu Tian(田玉)

        1School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

        2School of automation,Beijing University of Posts and Telecommunications,Beijing 100876,China

        3College of Computer,Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,China

        1 Introduction

        Nonlinear evolution equations(NLEEs)are frequently used to model a wide variety of nonlinear scientific phenomena,such as marine engineering, fluid dynamics,plasma physics,chemistry,physics and so on.Direct seeking for exact solutions to NLEEs has become one of the most exciting and extremely active areas in mathematical physics.[1?23]In the past few decades,with the development of symbolic computation,many powerful and systematic methods have been proposed,such as Hirota direct method,[24]F-expansion method,[25]exp function method,[26?28]the auxiliary equation method,[29]three wave approach[30?36]and etc.

        The breaking soliton equations can be applied to describe the(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave propagating along the x-axis.[37]In this paper,we will discuss the following(2+1)-dimensional breaking soliton equation:[37?41]

        where α is an arbitrary constant. Radaha and Lakshmanan have proved that Eq.(1)has the Painlev′e property and dromion-like structures.[38]The folded solitary waves and other coherent soliton structures are discussed.[39?40]By introducing Jacobi elliptic functions in the seed solution,two families of doubly periodic propagating wave patterns are obtained.[37]Exact breathertype and periodic-type soliton solutions for the(2+1)-dimensional breaking soliton equation are derived via the extended three-wave method.[41]

        However,to our knowledge,double-periodic soliton solutions for Eq.(1)have not been discussed,which turn out to be the main goal of the present work.In Sec.2,new double-periodic soliton solutions for Eq.(1)are researched by virtue of the symbolic computation,bilinear form and the special ans¨atz functions.Finally,Sec.3 will be the conclusions.

        2 New Double-Periodic Soliton Solutions and Bilinear Form

        Using the following dependent variable transformation

        Substituting Eq.(2)into Eq.(1),the(2+1)-dimensional breaking soliton equation can be written in the following bilinear form

        Equation(3)is equivalent to the following equation

        Supposing the solution of Eq.(4)be expressed in the form

        where θi= αix+ βiy+ δit,i=1,2,3,4 and αi,βi,and δiare constants to be determined later.Solution(5)is if rst proposed in the literature[36]for the purpose of solving the multi periodic soliton solutions of the Kadomtsev-Petviashvili equation.This method is simple and direct,and can obtain a large number of periodic solutions of the high dimensional nonlinear equations.But the amount of computation is large and the help of symbolic computing software Mathematica is needed.Substituting Eq.(5)into Eq.(4)and equating corresponding coefficients of eθ1,eθ3,eθ4,cosθ2,sinθ2,cosθ4,and sinθ4to zero,a set of algebraic equations for αi,βi,δican be derived as follows

        Solving the system with the aid of symbolic computation software Mathematica,we have

        Case 1

        where α,α1,β1,β2,β3,β4,k2,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the fi rst new double-periodic soliton solutions for Eq.(1)as follows:

        The evolution and mechanical feature of solutions(25)–(26)are shown in Figs.1–2.

        Fig.1 The physical structure of solution(25),at k2= β3= ?1,α1= γ1=1,γ2= γ3= γ4= β1= β2= β4= α =1,(a)x=?5,(b)x=0 and(c)x=5.

        Fig.2 The physical structure of solution(26),at k2= β3= ?1,α1= γ1=1,γ2= γ3= γ4= β1= β2= β4= α =1,(a)x=?5,(b)x=0 and(c)x=5.

        Case 2

        where α,α1,β1,β2,β3,β4,k1,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the second new double-periodic soliton solutions for Eq.(1)as follows:ξ has been explained in Eq.(28).The evolution and mechanical feature of solutions(29)–(30)are shown in Figs.3–4.

        Fig.3 The physical structure of solution(29),at k1= β3= ?1,α1= γ1=1,γ2= γ3= γ4= β1= β2= β4= α =1,(a)t=?5,(b)t=0 and(c)t=5.

        Fig.4 The physical structure of solution(30),at k2= β3= ?1,α1= γ1=1,γ2= γ3= γ4= β1= β2= β4= α =1,(a)t=?5,(b)t=0 and(c)t=5.

        Fig.5 The physical structure of solution(33),at k1= β1= β3= ?1,α1=1,γ1= γ2= γ3= γ4= β2= β4= α =1,(a)y=?5,(b)y=0 and(c)y=5.

        Case 3

        where α,α1,β1,β2,β3,β4,k1,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the third new double-periodic soliton solutions for Eq.(1)as follows:ξ has been explained in Eq.(32).The evolution and mechanical feature of solutions(33)–(34)are shown in Figs.5–6.

        Fig.6 The physical structure of solution(34),at k1= β1= β3= ?1,α1=1,γ1= γ2= γ3= γ4= β2= β4= α =1,(a)y=?5,(b)y=0 and(c)y=5.

        Fig.7 The physical structure of solution(37),at α2= γ1= β1= γ4= ?1,β4= ?2,k1= γ2= γ3= β3= α =1,(a)y=?5,(b)y=0 and(c)y=5.

        Fig.8 The physical structure of solution(38),at α2= γ1= β1= γ4= ?1,β4= ?2,k1= γ2= γ3= β3= α =1,(a)y=?5,(b)y=0 and(c)y=5.

        Case 4

        where α,α2,β1,β3,β4,k1,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the fourth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(36).The evolution and mechanical feature of solutions(37)–(38)are shown in Figs.7–8.

        Case 5

        where α,α1,α2,α3,β1,k2,γ2,and γ4are free real constants,?1= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the fi fth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(40).

        Case 6

        where α,α1,α2,β1,β4,k2,γ2,and γ4are free real constants,?2= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the sixth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(44).

        Case 7

        where α,α1,α3,β1,β3,β4,k2,γ2,γ3,and γ4are free real constants,?3= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the seventh new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(48).The evolution and mechanical feature of solutions(49)–(50)are shown in Figs.9–10.

        Fig.9 The physical structure of solution(49),at α3= γ2= β1= γ4= ?1,k2= ?2,γ3=2,α1= β3= β4= α = ?3=1,γ2=0(a)x=?10,(b)x= ?5 and(c)x=?1.

        Fig.1 0 The physical structure of solution(50),at α3= γ2= β1= γ4= ?1,k2= ?2,γ3=2,α1= β3= β4= α =?3=1,γ2=0(a)x= ?10,(b)x= ?5 and(c)x= ?1.

        Case 8

        where α,α1,α2,β1,β2,β3,β4,k2,δ2,γ1,γ3,and γ4are free real constants,?4= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the eighth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(52).

        Case 9

        where α,α3,α4,β1,β2,β4,k2,δ2,γ2,and γ3are free real constants,?5= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the ninth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(56).

        Case 10

        where α,α4,β1,β2,β3,β4,k1,k2,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the tenth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(60).The evolution and mechanical feature of solutions(61)–(62)are shown in Figs.11–12.

        Fig.1 1 The physical structure of solution(61),at α3= β2= α =1,k2=3, γ2= γ3=2,k1= β4= ?2,γ1= β1= β3= γ4= ?1,(a)t= ?10,(b)t=0 and(c)t=10.

        Fig.1 2 The physical structure of solution(62),at α3= β2= α =1,k2=3, γ2= γ3=2,k1= β4= ?2,γ1= β1= β3= γ4= ?1,(a)t= ?10,(b)t=0 and(c)t=10.

        Fig.1 3 The physical structure of solution(65),at α1= β2= α = ?6=1,k1= ?2,γ2=2,α3= γ1= β1= γ3= ?1,(a)t=?10,(b)t=0 and(c)t=10.

        Fig.1 4 The physical structure of solution(66),at α1= β2= α = ?6=1,k1= ?2,γ2=2,α3= γ1= β1= ?1,γ3=0,(a)t= ?10,(b)t=0 and(c)t=10.

        Case 11

        where α,α1,α3,β1,β2,k1,γ1,γ2,and γ3are free real constants,?6= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the eleventh new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(64). The evolution and mechanical feature of solutions(65)–(66)are shown in Figs.13–14.

        3 Conclusion

        In this work,the(2+1)-dimensional breaking soliton equation is investigated.With the help of the bilinear form and the special ans¨atz functions,some entirely new double-periodic soliton solutions for the(2+1)-dimensional breaking soliton equation are presented.All these solutions are brought back to the original equation with the Mathematica software,and the results are all right.Many important and interesting properties for these obtained solutions are revealed with some figures(see Figs.1–14)by the help of symbolic computation software Mathematica.The special ans¨atz functions method is simple and straightforward than the others method.If the bilinear form of nonlinear evolution equations is existent,then rich variety of periodic-soliton solutions can be derived by the special ans¨atz functions method.

        [1]K.Hosseini,D.Kumar,M.Kaplan,and E.Yazdani Bejarbaneh,Commun.Theor.Phys.68(2017)761.

        [2]W.X.Ma and Y.Zhou,Int.J.Geom.Methods Mod.Phys.13(2016)1650105.

        [3]W.X.Ma,J.H.Meng,and M.S.Zhang,Math.Comput.Simulat.127(2016)166.

        [4]Z.F.Zeng,J.G.Liu,Y.Jiang,and B.Nie,Fund.Inform.145(2016)207.

        [5]S.Ahmad,Ata-ur-Rahman,S.A.Khan,and F.Hadi,Commun.Theor.Phys.68(2017)783.

        [6]X.Lü,J.P.Wang,F.H.Lin,and X.W.Zhou,Nonlinear Dyn.,DOI:10.1007/s11071-017-3942-y(2017);X.Lü,W.X.Ma,S.T.Chen,and M.K.Chaudry,Appl.Math.Lett.58(2016)13;X.Lü and F.H.Lin,Commun.Nonlinear.Sci.32(2016)241.

        [7]W.X.Ma,Z.Y.Qin,and X.Lü,Nonlinear Dyn.84(2016)923.

        [8]M.Eslami,B.F.Vajargah,M.Mirzazadeh,and A.Biswas,Indian.J.Phys.88(2014)177.

        [9]X.Lü,S.T.Chen,and W.X.Ma,Nonlinear Dyn.86(2016)1;X.Lü and W.X.Ma,Nonlinear Dyn.85(2016)1217;X.Lü,W.X.Ma,J.Yu,and C.M.Khalique,Commun.Nonlinear.Sci.31(2016)40.

        [10]I.Aslan,Appl.Math.Comput.217(2011)6013.

        [11]M.Eslami,Appl.Math.Comput.285(2016)141.

        [12]F.H.Lin,S.T.Chen,Q.X.Qu,et al.,Appl.Math.Lett.78(2018)112.

        [13]M.Eslami,M.Mirzazadeh,and A.Neirameh,Pramana 84(2015)1.

        [14]A.Biswas,M.Mirzazadeh,M.Eslami,et al.,Frequenz 68(2014)525.

        [15]A.W.Wazwaz,Chaos,Solitons&Fractals 28(2006)1005.

        [16]J.G.Liu,Y.Tian,and Z.F.Zeng,AIP Adv.7(2017)105013.

        [17]A.M.Wazwaz,Appl.Math.Comput.200(2008)437.

        [18]A.M.Wazwaz,Appl.Math.Comput.204(2008)162.

        [19]M.Sarker,B.Hosen,M.R.Hossen,and A.A.Mamun,Commun.Theor.Phys.69(2018)107.

        [20]A.Qawasmeh and M.Alquran,Appl.Math.Sci.8(2014)2455.

        [21]J.G.Liu and Y.He,Nonlinear Dyn.90(2017)363.

        [22]A.M.Wazwaz and S.A.El-Tantawy,Nonlinear.Dyn.373(2015)1.

        [23]A.M.Wazwaz,Chaos,Solitons&Fractals 76(2015)93.

        [24]J.G.Liu,Y.Tian,ahd J.G.Hu,Appl.Math.Lett.79(2018)162.

        [25]E.Fan,Phys.Lett.A 265(2000)353.

        [26]M.Senthilvelan,Appl.Math.Comput.123(2001)381.

        [27]S.Zhang,Chaos,Solitons&Fractals 30(2006)1213.

        [28]M.F.El-Sabbagh and A.T.Ali,Commun.Theor.Phys.56(2011)611.

        [29]M.F.El-Sabbagh,A.T.Ali,and S.El-Ganaini,Appl.Math.Inform.Sci.2(2008)31.

        [30]C.J.Wang,Z.D.Dai,et al.,Commun.Theor.Phys.52(2009)862.

        [31]J.G.Liu,J.Q.Du,Z.F.Zeng,and B.Nie,Nonlinear Dyn.88(2017)655.

        [32]X.P.Zeng,Z.D.Dai,and D.L.Li,Chaos,Solitons&Fractals 42(2009)657.

        [33]Z.D.Dai,S.L.Li,Q.Y.Dai,and J.Huang,Chaos,Solitons&Fractals 34(2007)1148.

        [34]L.Wei,Appl.Math.Comput.218(2011)368.

        [35]J.G.Liu,J.Q.Du,Z.F.Zeng,and G.P.Ai,Chaos 26(2016)989.

        [36]Z.D.Dai,Z.J.Liu,and D.L.Li,Chin.Phys.Lett.25(2008)1151.

        [37]Z.H.Zhao,Z.D.Dai,and G.Mu,Comput.Math.Appl.61(2011)2048.

        [38]R.Radha and M.Lakshmanan,Phys.Lett.A 197(1995)7.

        [39]J.F.Zhang,J.P.Meng,C.L.Zheng,and W.H.Huang,Chaos,Solitons&Fractals 20(2004)523.

        [40]B.G.He,C.Z.Xu,and J.F.Zhang,Acta Phys.Sin.55(2006)511.

        [41]W.H.Huang,Y.L.Liu,and J.F.Zhang,Commun.Theor.Phys.49(2008)268.

        猜你喜歡
        劉建國(guó)
        社火迎新
        金秋(2024年2期)2024-04-17 08:10:28
        Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients?
        Module 11 Units 1—2單元訓(xùn)練
        “勵(lì)志北漂”涉腐驚魂:我傍的“首長(zhǎng)”是貪官(下)
        守秘“安樂死”配方,手刃那個(gè)覬覦者
        失 火
        失 火
        “大官小貪”
        黨建(2011年3期)2012-04-06 02:19:02
        受賄“才”80余萬,副市長(zhǎng)該不該被容忍
        方圓(2011年1期)2011-01-12 09:47:08
        劉建國(guó):“墾荒”生活搜索
        国产乱人伦偷精品视频还看的| 一区二区三区在线观看精品视频| 日本a在线看| 国产日本在线视频| 伊人亚洲综合影院首页| 国产黄色三级三级三级看三级| 亚洲三级中文字幕乱码| 亚洲性无码av中文字幕| 成人精品视频一区二区| 国产又黄又大又粗的视频| 97se在线观看| 国产欧美日本亚洲精品一4区| 国产一区二区三区蜜桃av| 国产av无毛无遮挡网站| 久久精品国产亚洲夜色av网站| 青青青爽在线视频观看| 7878成人国产在线观看| 国产高清在线91福利| 午夜亚洲精品一区二区| 国产精品国产三级野外国产| 国产亚洲精品成人aa片新蒲金| a级国产乱理伦片在线播放| 亚洲视频在线看| 人妻少妇人人丰满视频网站| 婷婷开心五月亚洲综合| 亚洲日韩精品一区二区三区| 亚洲国产另类久久久精品黑人| 日本a在线免费观看| 亚洲国产精品成人av| 国产高潮流白浆视频在线观看| 国模冰莲极品自慰人体| 永久免费av无码网站yy| 国产成人精品免费久久久久| 中文字幕一区二区三区在线视频| 亚洲av熟女传媒国产一区二区| 国产精品欧美久久久久久日本一道| 五月天激情婷婷婷久久| 麻豆国产乱人伦精品一区二区 | 永久免费无码av在线网站| 2022国内精品免费福利视频| 午夜亚洲精品视频网站|