亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        New Double-Periodic Soliton Solutions for the(2+1)-Dimensional Breaking Soliton Equation?

        2018-06-11 12:21:22JianGuoLiu劉建國(guó)andYuTian田玉
        Communications in Theoretical Physics 2018年5期
        關(guān)鍵詞:劉建國(guó)

        Jian-Guo Liu(劉建國(guó)) and Yu Tian(田玉)

        1School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

        2School of automation,Beijing University of Posts and Telecommunications,Beijing 100876,China

        3College of Computer,Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,China

        1 Introduction

        Nonlinear evolution equations(NLEEs)are frequently used to model a wide variety of nonlinear scientific phenomena,such as marine engineering, fluid dynamics,plasma physics,chemistry,physics and so on.Direct seeking for exact solutions to NLEEs has become one of the most exciting and extremely active areas in mathematical physics.[1?23]In the past few decades,with the development of symbolic computation,many powerful and systematic methods have been proposed,such as Hirota direct method,[24]F-expansion method,[25]exp function method,[26?28]the auxiliary equation method,[29]three wave approach[30?36]and etc.

        The breaking soliton equations can be applied to describe the(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave propagating along the x-axis.[37]In this paper,we will discuss the following(2+1)-dimensional breaking soliton equation:[37?41]

        where α is an arbitrary constant. Radaha and Lakshmanan have proved that Eq.(1)has the Painlev′e property and dromion-like structures.[38]The folded solitary waves and other coherent soliton structures are discussed.[39?40]By introducing Jacobi elliptic functions in the seed solution,two families of doubly periodic propagating wave patterns are obtained.[37]Exact breathertype and periodic-type soliton solutions for the(2+1)-dimensional breaking soliton equation are derived via the extended three-wave method.[41]

        However,to our knowledge,double-periodic soliton solutions for Eq.(1)have not been discussed,which turn out to be the main goal of the present work.In Sec.2,new double-periodic soliton solutions for Eq.(1)are researched by virtue of the symbolic computation,bilinear form and the special ans¨atz functions.Finally,Sec.3 will be the conclusions.

        2 New Double-Periodic Soliton Solutions and Bilinear Form

        Using the following dependent variable transformation

        Substituting Eq.(2)into Eq.(1),the(2+1)-dimensional breaking soliton equation can be written in the following bilinear form

        Equation(3)is equivalent to the following equation

        Supposing the solution of Eq.(4)be expressed in the form

        where θi= αix+ βiy+ δit,i=1,2,3,4 and αi,βi,and δiare constants to be determined later.Solution(5)is if rst proposed in the literature[36]for the purpose of solving the multi periodic soliton solutions of the Kadomtsev-Petviashvili equation.This method is simple and direct,and can obtain a large number of periodic solutions of the high dimensional nonlinear equations.But the amount of computation is large and the help of symbolic computing software Mathematica is needed.Substituting Eq.(5)into Eq.(4)and equating corresponding coefficients of eθ1,eθ3,eθ4,cosθ2,sinθ2,cosθ4,and sinθ4to zero,a set of algebraic equations for αi,βi,δican be derived as follows

        Solving the system with the aid of symbolic computation software Mathematica,we have

        Case 1

        where α,α1,β1,β2,β3,β4,k2,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the fi rst new double-periodic soliton solutions for Eq.(1)as follows:

        The evolution and mechanical feature of solutions(25)–(26)are shown in Figs.1–2.

        Fig.1 The physical structure of solution(25),at k2= β3= ?1,α1= γ1=1,γ2= γ3= γ4= β1= β2= β4= α =1,(a)x=?5,(b)x=0 and(c)x=5.

        Fig.2 The physical structure of solution(26),at k2= β3= ?1,α1= γ1=1,γ2= γ3= γ4= β1= β2= β4= α =1,(a)x=?5,(b)x=0 and(c)x=5.

        Case 2

        where α,α1,β1,β2,β3,β4,k1,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the second new double-periodic soliton solutions for Eq.(1)as follows:ξ has been explained in Eq.(28).The evolution and mechanical feature of solutions(29)–(30)are shown in Figs.3–4.

        Fig.3 The physical structure of solution(29),at k1= β3= ?1,α1= γ1=1,γ2= γ3= γ4= β1= β2= β4= α =1,(a)t=?5,(b)t=0 and(c)t=5.

        Fig.4 The physical structure of solution(30),at k2= β3= ?1,α1= γ1=1,γ2= γ3= γ4= β1= β2= β4= α =1,(a)t=?5,(b)t=0 and(c)t=5.

        Fig.5 The physical structure of solution(33),at k1= β1= β3= ?1,α1=1,γ1= γ2= γ3= γ4= β2= β4= α =1,(a)y=?5,(b)y=0 and(c)y=5.

        Case 3

        where α,α1,β1,β2,β3,β4,k1,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the third new double-periodic soliton solutions for Eq.(1)as follows:ξ has been explained in Eq.(32).The evolution and mechanical feature of solutions(33)–(34)are shown in Figs.5–6.

        Fig.6 The physical structure of solution(34),at k1= β1= β3= ?1,α1=1,γ1= γ2= γ3= γ4= β2= β4= α =1,(a)y=?5,(b)y=0 and(c)y=5.

        Fig.7 The physical structure of solution(37),at α2= γ1= β1= γ4= ?1,β4= ?2,k1= γ2= γ3= β3= α =1,(a)y=?5,(b)y=0 and(c)y=5.

        Fig.8 The physical structure of solution(38),at α2= γ1= β1= γ4= ?1,β4= ?2,k1= γ2= γ3= β3= α =1,(a)y=?5,(b)y=0 and(c)y=5.

        Case 4

        where α,α2,β1,β3,β4,k1,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the fourth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(36).The evolution and mechanical feature of solutions(37)–(38)are shown in Figs.7–8.

        Case 5

        where α,α1,α2,α3,β1,k2,γ2,and γ4are free real constants,?1= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the fi fth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(40).

        Case 6

        where α,α1,α2,β1,β4,k2,γ2,and γ4are free real constants,?2= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the sixth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(44).

        Case 7

        where α,α1,α3,β1,β3,β4,k2,γ2,γ3,and γ4are free real constants,?3= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the seventh new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(48).The evolution and mechanical feature of solutions(49)–(50)are shown in Figs.9–10.

        Fig.9 The physical structure of solution(49),at α3= γ2= β1= γ4= ?1,k2= ?2,γ3=2,α1= β3= β4= α = ?3=1,γ2=0(a)x=?10,(b)x= ?5 and(c)x=?1.

        Fig.1 0 The physical structure of solution(50),at α3= γ2= β1= γ4= ?1,k2= ?2,γ3=2,α1= β3= β4= α =?3=1,γ2=0(a)x= ?10,(b)x= ?5 and(c)x= ?1.

        Case 8

        where α,α1,α2,β1,β2,β3,β4,k2,δ2,γ1,γ3,and γ4are free real constants,?4= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the eighth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(52).

        Case 9

        where α,α3,α4,β1,β2,β4,k2,δ2,γ2,and γ3are free real constants,?5= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the ninth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(56).

        Case 10

        where α,α4,β1,β2,β3,β4,k1,k2,γ1,γ2,γ3,and γ4are free real constants.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the tenth new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(60).The evolution and mechanical feature of solutions(61)–(62)are shown in Figs.11–12.

        Fig.1 1 The physical structure of solution(61),at α3= β2= α =1,k2=3, γ2= γ3=2,k1= β4= ?2,γ1= β1= β3= γ4= ?1,(a)t= ?10,(b)t=0 and(c)t=10.

        Fig.1 2 The physical structure of solution(62),at α3= β2= α =1,k2=3, γ2= γ3=2,k1= β4= ?2,γ1= β1= β3= γ4= ?1,(a)t= ?10,(b)t=0 and(c)t=10.

        Fig.1 3 The physical structure of solution(65),at α1= β2= α = ?6=1,k1= ?2,γ2=2,α3= γ1= β1= γ3= ?1,(a)t=?10,(b)t=0 and(c)t=10.

        Fig.1 4 The physical structure of solution(66),at α1= β2= α = ?6=1,k1= ?2,γ2=2,α3= γ1= β1= ?1,γ3=0,(a)t= ?10,(b)t=0 and(c)t=10.

        Case 11

        where α,α1,α3,β1,β2,k1,γ1,γ2,and γ3are free real constants,?6= ±1.Substituting these results into Eq.(5),we obtain

        Therefore we obtain the eleventh new double-periodic soliton solutions for Eq.(1)as follows:

        ξ has been explained in Eq.(64). The evolution and mechanical feature of solutions(65)–(66)are shown in Figs.13–14.

        3 Conclusion

        In this work,the(2+1)-dimensional breaking soliton equation is investigated.With the help of the bilinear form and the special ans¨atz functions,some entirely new double-periodic soliton solutions for the(2+1)-dimensional breaking soliton equation are presented.All these solutions are brought back to the original equation with the Mathematica software,and the results are all right.Many important and interesting properties for these obtained solutions are revealed with some figures(see Figs.1–14)by the help of symbolic computation software Mathematica.The special ans¨atz functions method is simple and straightforward than the others method.If the bilinear form of nonlinear evolution equations is existent,then rich variety of periodic-soliton solutions can be derived by the special ans¨atz functions method.

        [1]K.Hosseini,D.Kumar,M.Kaplan,and E.Yazdani Bejarbaneh,Commun.Theor.Phys.68(2017)761.

        [2]W.X.Ma and Y.Zhou,Int.J.Geom.Methods Mod.Phys.13(2016)1650105.

        [3]W.X.Ma,J.H.Meng,and M.S.Zhang,Math.Comput.Simulat.127(2016)166.

        [4]Z.F.Zeng,J.G.Liu,Y.Jiang,and B.Nie,Fund.Inform.145(2016)207.

        [5]S.Ahmad,Ata-ur-Rahman,S.A.Khan,and F.Hadi,Commun.Theor.Phys.68(2017)783.

        [6]X.Lü,J.P.Wang,F.H.Lin,and X.W.Zhou,Nonlinear Dyn.,DOI:10.1007/s11071-017-3942-y(2017);X.Lü,W.X.Ma,S.T.Chen,and M.K.Chaudry,Appl.Math.Lett.58(2016)13;X.Lü and F.H.Lin,Commun.Nonlinear.Sci.32(2016)241.

        [7]W.X.Ma,Z.Y.Qin,and X.Lü,Nonlinear Dyn.84(2016)923.

        [8]M.Eslami,B.F.Vajargah,M.Mirzazadeh,and A.Biswas,Indian.J.Phys.88(2014)177.

        [9]X.Lü,S.T.Chen,and W.X.Ma,Nonlinear Dyn.86(2016)1;X.Lü and W.X.Ma,Nonlinear Dyn.85(2016)1217;X.Lü,W.X.Ma,J.Yu,and C.M.Khalique,Commun.Nonlinear.Sci.31(2016)40.

        [10]I.Aslan,Appl.Math.Comput.217(2011)6013.

        [11]M.Eslami,Appl.Math.Comput.285(2016)141.

        [12]F.H.Lin,S.T.Chen,Q.X.Qu,et al.,Appl.Math.Lett.78(2018)112.

        [13]M.Eslami,M.Mirzazadeh,and A.Neirameh,Pramana 84(2015)1.

        [14]A.Biswas,M.Mirzazadeh,M.Eslami,et al.,Frequenz 68(2014)525.

        [15]A.W.Wazwaz,Chaos,Solitons&Fractals 28(2006)1005.

        [16]J.G.Liu,Y.Tian,and Z.F.Zeng,AIP Adv.7(2017)105013.

        [17]A.M.Wazwaz,Appl.Math.Comput.200(2008)437.

        [18]A.M.Wazwaz,Appl.Math.Comput.204(2008)162.

        [19]M.Sarker,B.Hosen,M.R.Hossen,and A.A.Mamun,Commun.Theor.Phys.69(2018)107.

        [20]A.Qawasmeh and M.Alquran,Appl.Math.Sci.8(2014)2455.

        [21]J.G.Liu and Y.He,Nonlinear Dyn.90(2017)363.

        [22]A.M.Wazwaz and S.A.El-Tantawy,Nonlinear.Dyn.373(2015)1.

        [23]A.M.Wazwaz,Chaos,Solitons&Fractals 76(2015)93.

        [24]J.G.Liu,Y.Tian,ahd J.G.Hu,Appl.Math.Lett.79(2018)162.

        [25]E.Fan,Phys.Lett.A 265(2000)353.

        [26]M.Senthilvelan,Appl.Math.Comput.123(2001)381.

        [27]S.Zhang,Chaos,Solitons&Fractals 30(2006)1213.

        [28]M.F.El-Sabbagh and A.T.Ali,Commun.Theor.Phys.56(2011)611.

        [29]M.F.El-Sabbagh,A.T.Ali,and S.El-Ganaini,Appl.Math.Inform.Sci.2(2008)31.

        [30]C.J.Wang,Z.D.Dai,et al.,Commun.Theor.Phys.52(2009)862.

        [31]J.G.Liu,J.Q.Du,Z.F.Zeng,and B.Nie,Nonlinear Dyn.88(2017)655.

        [32]X.P.Zeng,Z.D.Dai,and D.L.Li,Chaos,Solitons&Fractals 42(2009)657.

        [33]Z.D.Dai,S.L.Li,Q.Y.Dai,and J.Huang,Chaos,Solitons&Fractals 34(2007)1148.

        [34]L.Wei,Appl.Math.Comput.218(2011)368.

        [35]J.G.Liu,J.Q.Du,Z.F.Zeng,and G.P.Ai,Chaos 26(2016)989.

        [36]Z.D.Dai,Z.J.Liu,and D.L.Li,Chin.Phys.Lett.25(2008)1151.

        [37]Z.H.Zhao,Z.D.Dai,and G.Mu,Comput.Math.Appl.61(2011)2048.

        [38]R.Radha and M.Lakshmanan,Phys.Lett.A 197(1995)7.

        [39]J.F.Zhang,J.P.Meng,C.L.Zheng,and W.H.Huang,Chaos,Solitons&Fractals 20(2004)523.

        [40]B.G.He,C.Z.Xu,and J.F.Zhang,Acta Phys.Sin.55(2006)511.

        [41]W.H.Huang,Y.L.Liu,and J.F.Zhang,Commun.Theor.Phys.49(2008)268.

        猜你喜歡
        劉建國(guó)
        社火迎新
        金秋(2024年2期)2024-04-17 08:10:28
        Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients?
        Module 11 Units 1—2單元訓(xùn)練
        “勵(lì)志北漂”涉腐驚魂:我傍的“首長(zhǎng)”是貪官(下)
        守秘“安樂死”配方,手刃那個(gè)覬覦者
        失 火
        失 火
        “大官小貪”
        黨建(2011年3期)2012-04-06 02:19:02
        受賄“才”80余萬,副市長(zhǎng)該不該被容忍
        方圓(2011年1期)2011-01-12 09:47:08
        劉建國(guó):“墾荒”生活搜索
        永久天堂网av手机版| 熟女少妇丰满一区二区| 久久人妻精品免费二区| 精品国产亚洲亚洲国产| 国产精品国产三级久久| 综合色就爱涩涩涩综合婷婷| 人与嘼交av免费| 国产精品色内内在线播放| 日本少妇又色又紧又爽又刺激| 久久成人国产精品一区二区| 欧美艳星nikki激情办公室| 日韩国产成人精品视频| 手机在线中文字幕av| 久久久久人妻精品一区二区三区| 亚洲av无码av制服另类专区| 国产最新AV在线播放不卡| 黄色大片国产精品久久| 国产欧美在线观看不卡| 无码av免费精品一区二区三区| 亚洲另类激情专区小说婷婷久 | 欧美性巨大╳╳╳╳╳高跟鞋| 亚洲精品成人区在线观看| 国产一级在线现免费观看| 亚洲人妻精品一区二区三区| 久青草影院在线观看国产| 国产精品麻豆成人av电影艾秋 | 一区二区三区字幕中文| 欧美另类高清zo欧美| 亚洲人成人一区二区三区| 国产成人精品一区二三区在线观看 | 91在线视频在线视频| 幻女bbwxxxx在线视频| 亚洲国产成人久久综合一区77| 女同亚洲一区二区三区精品久久| 无码色av一二区在线播放| 欧美精品久久久久久久自慰| 中国老太老肥熟女视频| 蜜桃视频网站在线观看一区 | 亚洲男同志gay 片可播放| 在线一区二区三区视频观看| 最好看的亚洲中文字幕 |