亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        地基激光雷達提取大田玉米植株表型信息

        2019-07-23 06:29:02蔣坤萍朱德海張曉東
        農業(yè)工程學報 2019年10期
        關鍵詞:葉長大田葉面積

        蘇 偉,蔣坤萍,郭 浩,劉 哲,朱德海,張曉東

        地基激光雷達提取大田玉米植株表型信息

        蘇 偉,蔣坤萍,郭 浩,劉 哲,朱德海,張曉東

        (1. 中國農業(yè)大學土地科學與技術學院,北京 100083;2. 農業(yè)農村部農業(yè)災害遙感重點實驗室,北京 100083)

        玉米個體表型信息對于玉米的高產高效發(fā)育規(guī)律研究、玉米遺傳育種中基因型的確定具有重要意義,該文針對傳統(tǒng)的玉米表型信息提取方法費時、費力、效率低下、主觀性強等問題,提出一種基于TLS(terrestrial laser scanning,地面激光掃描)技術的大田玉米個體表型信息提取方法。利用地基激光雷達獲取毫米級精度的玉米個體植株三維點云數(shù)據(jù)并進行海量點云數(shù)據(jù)預處理,構建玉米葉片三角網(wǎng)模型和葉片骨架點云;基于葉片三角網(wǎng)提取綠葉葉面積,基于葉片骨架點云提取葉長和葉傾角,基于未去穗的玉米植株點云提取株高。試驗結果與實地手動測量值相比,真實葉面積、葉長、株高、葉傾角的均方根誤差(RMSE)分別為12.69 cm2、1.31 cm、1.30 cm和5.12°,平均絕對百分比誤差(MAPE)分別為2.38%、1.32%、0.61%和8.96%。試驗結果表明本文提出的基于TLS提取玉米個體表型參數(shù)的方法精度較高,具有可行性,為輔助玉米育種、生長監(jiān)測等提供了一種有效手段。

        作物;參數(shù);提??;地面激光掃描;骨架提?。蛔钚《朔?/p>

        0 引 言

        玉米是世界上種植面積最廣的糧食作物之一,玉米產業(yè)是中國國民經(jīng)濟的重要組成部分。提高玉米產量是玉米生產的一個重要目標[1-2],其主要手段是選育優(yōu)良品種,這離不開對大量作物表型的分析[3]。傳統(tǒng)玉米群個體表型信息獲取的方法主要是人工測量,存在費時、費力、規(guī)模小、效率低、誤差大、破壞性大等不足,限制了人們對高產作物基因型的剖析,成為當前玉米研究的瓶頸[4]。近年來,遙感技術的發(fā)展為獲取玉米植株個體的精確表型信息提供了條件[5]。

        目前基于遙感技術提取玉米植株表型信息的方法主要有2種,一種是基于數(shù)字圖像技術的表型信息提取方法。張寶來等[6]使用松下SZ1型相機獲取玉米圖像,經(jīng)過圖像細化、參數(shù)標定等提取了株高、葉尖距和葉基角等參數(shù);黃成龍等[7]使用高通量作物表型平臺采集玉米圖像,經(jīng)過圖像分割、骨架提取等算法得到單片葉長、葉角度、葉彎曲度參數(shù)。由于玉米生長在三維空間,自然生長狀態(tài)下葉片向空間各個方向伸展,而上述基于二維圖像的方法沒有考慮植株的三維結構特征。韓東等[8]采用多視角攝影并重建三維模型的方法獲取玉米雄穗的結構參數(shù),但該方法的精度受光照影響很大,不適用于大田環(huán)境。牛慶林等[9]基于無人機數(shù)碼影像提取玉米株高,該方法具有低成本、快速和高通量的優(yōu)點,但是精度相對較低(RMSE=28.69 cm)。隨著機器視覺的發(fā)展,一些研究者開始將其應用到作物表型提取上[10-12]。仇瑞承等[13]利用Kinect 2.0相機在玉米上方垂直拍攝,獲取彩色圖像和深度圖像,測量了拔節(jié)期玉米的株高。該方法成本較低,但數(shù)據(jù)獲取質量受光照影響較大,當玉米植株較高的時候,使用該方法測量株高的難度也會提高。另一種用于作物表型研究的遙感技術是三維掃描技術,與數(shù)字圖像技術相比,該方法可以直接掃描生成三維點云[14]。其中地面激光掃描(terrestrial laser scanning,TLS)具有精度高、抗干擾能力強等特點[15],在森林結構、森林生物量、林木屬性等森林調查研究中應用廣泛[16-18]。在作物表型參數(shù)獲取研究中,Paulus等[19]使用鉸接在測量臂上的ScanWork5掃描大麥,提取了葉長、株高等表型參數(shù);溫維亮等[20]設計了一種三維數(shù)字化系統(tǒng)來提取葉長、葉傾角等參數(shù),但上述2種方法對操作要求很高,難以推廣到大田環(huán)境。此前研究[21]中使用Trimble TX8、FARO Focus 3D X330兩種激光掃描儀獲取大田玉米點云,通過點云體素化的方法計算了玉米的真實葉面積,但葉片邊緣的鋸齒問題造成結果偏差較大。綜合當前文獻資料,目前將TLS用于大田作物的表型信息提取研究較少,TLS在大田作物表型信息提取中的可用性有待研究。

        針對上述問題,本文提出利用TLS提取大田玉米植株個體表型信息的方法,利用TLS掃描抽雄期的玉米植株獲取三維點云,通過建立葉片網(wǎng)格模型計算真實葉面積,通過提取葉片骨架計算葉長、分段計算葉傾角,并提取了株高。將提取結果與實測結果進行對比,驗證了TLS用于大田玉米個體表型參數(shù)提取的可行性,以期為輔助玉米育種、生長監(jiān)測等提供一種有效手段。

        1 材料與方法

        1.1 數(shù)據(jù)獲取

        本研究的田間試驗于2016年8月在河北省保定市北部的河北農業(yè)大學實驗田進行。選取種植行距60 cm、株距35 cm的抽雄期玉米為研究對象,使用Trimble TX8三維激光掃描儀進行掃描試驗,如圖1a所示。

        Trimble TX8是一種脈沖式三維激光掃描儀,主要參數(shù)如表1所示。掃描測站分布如圖1b所示,選取的樣地范圍內約有30排玉米,在樣地前約1 m處設置測站,儀器架設高度約為1.5 m,共設置3個測站,間距約8 m,如此設置可以使葉片遮擋影響較小,保證點云數(shù)據(jù)的完整性。在每個測站掃描范圍內設置3~6個標靶球以便于后期數(shù)據(jù)配準。每個測站掃描一次,一次掃描時間為10 min。

        表1 Trimble TX8掃描儀主要參數(shù) Table 1 Trimble TX8 scanner parameters

        圖1 激光掃描儀和測站分布

        采用手工測量的方法獲取樣地內玉米的實測表型參數(shù)。實測葉長為用軟尺測量葉片抻直情況下葉基到葉尖的距離;實測單葉面積為采用長寬系數(shù)法[22]計算得到,上、中、下3部分的長寬校正系數(shù)由實測確定,分別為0.83、0.78、0.76;葉傾角由圓形量角器直接測量,實測株高為用軟尺測量的玉米植株根莖部到頂端的最短距離。

        1.2 數(shù)據(jù)處理

        點云數(shù)據(jù)處理步驟包括數(shù)據(jù)配準、去除地面點、分離單株玉米、去噪點、重采樣、莖稈分離。

        點云配準是將激光掃描得到的多站原始點云配準到同一坐標系下,常用的算法是ICP算法[23]。本研究中采用Trimble TX8配套的軟件Trimble Realworks Survey完成,配準后的點云數(shù)據(jù)如圖2a。為了去除點云中包含的地面點、雜草點等無效點云,采用TerroSolid軟件進行點云分類,其分類原理是不規(guī)則三角網(wǎng)加密法[24],該算法從種子點創(chuàng)建一個稀疏不規(guī)則三角網(wǎng),然后對其進行迭代加密,直到識別和刪除所有無效點。為了計算個體表型參數(shù),需要從群體玉米點云分離出單株玉米,該過程通過CloudCompare軟件裁切工具手動完成,分離出的單株玉米點云如圖2b所示。由于環(huán)境、風等因素的影響,點云中不可避免地存在噪聲點,本文利用Geomagic Studio 2014軟件的去噪點工具(去除非連接項、去除體外孤點)去除噪聲點。激光掃描儀獲取的點云密度大而且空間分布不規(guī)則,為了降低后續(xù)處理復雜程度,對點云數(shù)據(jù)進行重采樣[25]處理,該處理通過Geomagic Studio 2014軟件完成,處理后的葉片點間距約0.3 mm,每個葉片包含3 000~6 000個點。為了提取葉片參數(shù),需要進行莖稈分離,本文采用DoN(difference of normals operator)法線差分算法[26]完成。該算法已被用于城市場景、動物器官、林木等對象的點云分割中,在作物莖稈分離研究中尚未涉及。本文基于DoN算法,利用玉米葉片和莖稈表面法線的差異,選擇2個不同半徑計算法線,并計算不同半徑下的法線差,差值較小的點即為莖稈點,剔除該部分點,得到葉片點,如圖2c。

        圖2 玉米植株點云及葉片點云

        1.3 葉片模型和骨架提取

        為了提取葉片信息,建立了葉片網(wǎng)格模型并提取了葉片骨架,如圖3。三角網(wǎng)模型[27]的建立和葉片骨架的提取通過Geomagic Studio 2014的曲率探測工具實現(xiàn),由于玉米葉片的葉脈呈現(xiàn)明顯的凸起,體現(xiàn)在建立的葉片三角網(wǎng)模型中即葉脈處的三角網(wǎng)曲率較大,因此可以通過提取三角網(wǎng)模型中曲率較大的葉脈點得到葉片骨架模型。

        圖3 玉米葉片三角網(wǎng)模型和骨架模型

        1.4 玉米個體表型信息提取

        根據(jù)上述處理步驟得到的葉片三角網(wǎng)模型和葉片骨架模型,對玉米綠葉葉面積、葉長、株高、葉傾角等玉米個體表型信息進行提取。綠葉葉面積為構成單片葉片的所有小三角網(wǎng)格的面積之和。葉長為葉片骨架點之間的歐氏距離之和。按本文提出的距離聚類算法進行點云分割和計算葉長:

        1)為點云總數(shù),、和代表點在三維空間中的笛卡爾坐標。遍歷點獲取坐標最小的點作為起始點0,將其劃分到葉片1。

        2)以0(1,1,1)為基本點,分別計算0到其他1個點(x,y,z)的距離(m):

        將距離0最近的點記為1,0與1之間的距離記為p0p1。分割閾值base最小值大于p0p1,最大值小于葉片間最短距離,本試驗中設定為base=10p0p1。把1劃分到葉片1,此時葉片1的長度為0與1的歐式距離,記為1p0p1;

        3)以1為基本點,分別計算1與-2個點的距離,若最小距離minbase,則將對應的點2劃分到葉片1,此時,1p0p1p1p2;若min≥base,則將2劃分到葉片2;

        4)循環(huán)3)步驟,直到最后一點被劃分到所屬葉片。此時骨架點分割完成,同時求得了每片葉子的葉長。

        株高的提取值為未去穗的點云中坐標最大和最小的2點的歐式距離。

        葉傾角為葉片腹背處的法線與天頂軸的夾角,隨著葉片彎曲程度變化,某處的葉傾角可由方向向量和天頂角方向向量求得,計算公式如下:

        式中的單位為弧度,rad。

        對應實測方法,以每10個點為間隔分段擬合并計算葉傾角。

        1.5 評價指標

        基于上述方法,選取25株玉米提取株高,選取5株玉米(57片葉)提取葉片長度、真實葉面積和葉傾角。用平均絕對百分比誤差(MAPE)和均方根誤差(RMSE)2個指標評價葉長、株高、真實面積和葉傾角的提取精度,計算公式如下

        2 結果與分析

        各表型參數(shù)提取結果與實測結果的對比如圖4所示,對比結果表明,葉長的MAPE、RMSE分別為1.32%、1.31 cm;綠葉葉面積的MAPE、RMSE分別為2.38%、12.69 cm2;株高的MAPE、RMSE分別為0.61%、1.30 cm,葉傾角的MAPE、RMSE分別為5.12%、8.96°,說明基于TLS的方法提取精度較高。葉長、綠葉葉面積、株高和葉傾角的TLS提取值與人工實測值的決定系數(shù)2分別為0.99、0.99、0.96、0.94,表明TLS提取值與人工實測值有較好的一致性,利用地基激光雷達掃描數(shù)據(jù)提取葉長、綠葉葉面積、株高和葉傾角的方法可行。

        相比利用深度相機提取株高[13]的方法(RMSE = 1.86 cm),本文方法的提取精度提高了30.1%。與此前基于點云體素化計算真實葉面積[21]的方法(RMSE = 61.90 cm2)對比,本文基于網(wǎng)格計算的葉面積精度提高了79.5%。對于葉長和葉傾角,相比黃成龍等[7]用高通量作物平臺室內采集二維圖像提取的葉長(苗期玉米植株,RMSE = 4.92 mm,MAPE=0.93%),本文方法提取的大田抽雄期玉米葉長RMSE = 1.31 cm,MAPE=1.32%;相比溫維亮等[20]使用FastScan三維數(shù)字化儀室內采集三維數(shù)據(jù)提取的葉傾角(RMSE = 3.41°,MAPE=4.72%),本文方法提取的大田抽雄期玉米葉傾角RMSE =5.12°,MAPE=8.96%,精度偏低。其原因是本研究為室外大田測量,容易受到風等自然擾動的影響,對穗部等形態(tài)細致的部位影響尤其明顯,使采集到的點云數(shù)據(jù)有偏差;二是本試驗的研究對象是抽雄期玉米,葉片之間的遮擋造成部分點云缺失。

        圖4 玉米個體表型參數(shù)提取值與實測值對比Fig.4 Comparisons between extracted values and measured values of corn single plant

        3 討 論

        本研究的目的是探討利用TLS采集高精度的大田玉米三維數(shù)據(jù)并提取表型信息的可行性。TLS獲取三維數(shù)據(jù)的方式具有高精度、快速、無破壞性、可進行多參數(shù)提取等特點。TLS(單點測量誤差2 mm左右、每秒976 000個點)可以快速獲取高精度的植株三維點云,點云中的每個點包含目標作物空間上對應點的位置、RGB、強度等豐富的維度信息,一次掃描獲取的數(shù)據(jù)可以用于提取多個表型參數(shù)。無破壞性的特點確保可以重復掃描同一植株在不同生長期的狀態(tài),可以用于分析和量化植株的生長過程。

        利用TLS獲取的三維點云數(shù)據(jù)重建精確的植株模型,可以用于植物功能結構模型的驗證模型[29],與葉綠素熒光等生理測量結合可以更好地解釋生理測量結果[30],可以提取葉片形態(tài)和角度參數(shù)用于光攔截研究以及光合作用性狀的QTL分析等[31]。

        抽雄期的大田玉米葉片間存在較嚴重的遮擋問題,本研究在田間過道設置多個掃描站,經(jīng)過數(shù)據(jù)拼接,可以獲取靠近過道的一排完整的玉米植株點云,而遠離過道的植株結構存在不同程度的點云缺失。針對點云缺失問題,Kolev等[32]采用形狀擬合的方法,基于缺漏數(shù)據(jù)擬合得到完整的莖稈、葉片;何東健等[33]提出一種基于改進三次B樣條曲線的點云缺失區(qū)域修復方法,針對奶牛體表點云缺失效果較好。

        本試驗從群體點云中分離出單株玉米的點云的工作手動完成,由于葉片交錯遮擋,該步驟花費時間較多。目前很少有從作物群體中分離出個體點云的研究,關于這一過程的自動化處理仍有待研究。

        4 結 論

        本文提出了基于TLS的玉米個體表型測量方法。采用TLS實現(xiàn)了對玉米植株三維點云數(shù)據(jù)的高精度、無破壞性采集。通過建立葉片網(wǎng)格模型提取了真實葉面積,通過提取葉片骨架計算葉長和葉傾角,以及提取了株高。通過對比參數(shù)提取值和實測值,得出以下結論:

        1)與已有研究相比,本文方法的株高提取精度提高了30.1%,葉面積提取精度提高了79.5%。

        2)本文方法提取的大田抽雄期玉米葉長RMSE = 1.31 cm,MAPE=1.32%,玉米葉傾角RMSE =5.12°,MAPE=8.96%。由于大田環(huán)境干擾和葉片遮擋等原因造成采集點云數(shù)據(jù)偏差和缺漏,對本文方法的葉長和葉傾角提取精度影響較大。

        本文為大田玉米的表型參數(shù)提取提供了一種有效途徑。下一步將研究如何減少環(huán)境干擾和葉片遮擋帶來的數(shù)據(jù)偏差,以及利用TLS測量無破壞性的特點,獲取玉米全部生育期的表型信息,量化分析玉米的生長過程。

        [1] Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize[J]. Field Crops Research, 2002, 75(2): 161—169.

        [2] 王元東,段民孝,邢錦豐,等. 玉米理想株型育種的研究進展與展望[J]. 玉米科學,2008,16(3):47—50. Wang Yuandong, Duan Minxiao, Xing Jinfeng, et al. Progress and prospect in ideal plant type breeding in maize[J]. Journal of Maize Science, 2008, 16(3): 47–50. (in Chinese with English abstract)

        [3] Furbank R T. Foreword: Plant phenomics: from gene to form and function[J]. Functional Plant Biology, 2009(36): V—VI.

        [4] Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects[J]. Plant Molecular Biology, 2005, 57(4): 461—485.

        [5] Fiorani F, Rascher U, Jahnke S, et al. Imaging plants dynamics in heterogenic environments[J]. Current Opinion in Biotechnology, 2012, 23(2): 227—235.

        [6] 張寶來,張樂佳. 基于數(shù)字圖像處理技術的玉米長勢預測[J]. 農業(yè)工程,2017,7(3):163—168. Zhang Baolai, Zhang Lejia. Prediction of corn growth based on digital imaging processing technology[J]. Agricultural Engineering, 2017, 7(3): 163—168. (in Chinese with English abstract)

        [7] 黃成龍,張雪海,吳迪,等. 基于時間序列的玉米葉片性狀動態(tài)提取方法研究[J]. 農業(yè)機械學報,2017,48(5):174—178,198. Huang Chenglong, Zhang Xuehai, Wu Di, et al. Dynamic extraction method of maize leaf traits based on time series[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 174—178, 198. (in Chinese with English abstract)

        [8] 韓東,楊貴軍,楊浩,等. 基于立體視覺的玉米雄穗三維信息提取[J]. 農業(yè)工程學報,2018,34(11):166—173. Han Dong, Yang Guijun, Yang Hao, et al. Three dimensional information extraction from maize tassel based on stereoscopic vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 166—173. (in Chinese with English abstract)

        [9] 牛慶林,馮海寬,楊貴軍,等. 基于無人機數(shù)碼影像的玉米育種材料株高和LAI監(jiān)測[J].農業(yè)工程學報,2018,34(5):73—82. Niu Qinglin, Ma Haikuan, Yang Guijun, et al. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 73—82. (in Chinese with English abstract)

        [10] 王傳宇,郭新宇,肖伯祥,等. 玉米葉片生長狀態(tài)的雙目立體視覺監(jiān)測技術[J]. 農業(yè)機械學報,2014,45(9):268—273. Wang Chuanyu, Guo Xinyu, Xiao Boxiang, et al. Maize leaf movement monitoring base on binocular stereo vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 268—273. (in Chinese with English abstract)

        [11] 宗澤,郭彩玲,張雪,等. 基于深度相機的玉米株型參數(shù)提取方法研究[J]. 農業(yè)機械學報,2015,46(S1):50—56. Zong Ze, Guo Cailing, Zhang Xue, et al. Maize plant type parameters extraction based on depth camera[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(S1): 50—56. (in Chinese with English abstract)

        [12] 朱冰琳,劉扶桑,朱晉宇,等. 基于機器視覺的大田植株生長動態(tài)三維定量化研究[J]. 農業(yè)機械學報,2018,49(5):256—262. Zhu Binglin, Liu Fusang, Zhu Jinyu, et al. Three-dimensional quantifications of plant growth dynamics in field-grown plants based on machine vision method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 256—262. (in Chinese with English abstract)

        [13] 仇瑞承,苗艷龍,季宇寒,等. 基于RGB–D相機的單株玉米株高測量方法[J]. 農業(yè)機械學報,2017,48(S1):211—219. Qiu Ruicheng, Miao Yanlong, Ji Yuhan, et al. Measurement of individual maize height based on RGB-D camera[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 211—219. (in Chinese with English abstract)

        [14] 張宏偉,賴百煉. 三維激光掃描技術特點及其應用前景[J]. 測繪通報,2012(S1):320—322. Zhang Hongwei, Lai Bailian. Characteristics and application prospect of 3D laser scanning technology[J]. Bulletin of Surveying and Mapping, 2012(S1): 320—322. (in Chinese with English abstract)

        [15] 徐進軍,余明輝,鄭炎兵. 地面三維激光掃描儀應用綜述[J].工程勘察,2008(12):31—34. Xu Jinjun, Yu Minghui, Zheng Yanbing. An overview of the applications of ground 3D laser scanners[J]. Geotechnical Investigation & Surveying, 2008(12): 31—34. (in Chinese with English abstract)

        [16] 王佳,張芳菲,高赫,等. 地基激光雷達提取單木冠層結構因子研究[J]. 農業(yè)機械學報,2018,49(2):199—206. Wang Jia, Zhang Fangfei, Gao He, et al. Extracting crown structure parameters of individual tree by using ground–based laser scanner[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 199—206. (in Chinese with English abstract)

        [17] 劉芳,馮仲科,楊立巖,等. 基于三維激光點云數(shù)據(jù)的樹冠體積估算研究[J]. 農業(yè)機械學報,2016,47(3):328—334. Liu Fang, Feng Zhongke, Yang Liyan, et al. Estimation of tree crown volume based on 3D laser point clouds data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 328—334. (in Chinese with English abstract)

        [18] 王佳,楊慧喬,馮仲科. 基于三維激光掃描的樹木三維綠量測定[J]. 農業(yè)機械學報,2013,44(8):229—233. Wang Jia, Yang Huiqiao, Feng Zhongke. Tridimensional green biomass measurement for trees using 3D laser scanning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 229—233. (in Chinese with English abstract)

        [19] Paulus S, Schumann H, Kuhlmann H, et al. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants[J]. Biosystems Engineering, 2014(121): 1—11.

        [20] 溫維亮,郭新宇,趙春江,等. 基于三維數(shù)字化的玉米株型參數(shù)提取方法研究[J]. 中國農業(yè)科學, 2018,51(6):1034—1044. Wen Weiliang, Guo Xinyu, Zhao Chunjiang, et al. Research on maize plant type parameter extraction by using three dimensional digitizing data[J]. Scientia Agricultura Sinica 2018, 51(6): 1034—1044. (in Chinese with English abstract)

        [21] 蘇偉,郭皓,趙冬玲,等. 基于地基激光雷達的玉米真實葉面積提取方法研究[J]. 農業(yè)機械學報,2016,47(7):345—353. Su Wei, Guo Hao, Zhao Dongling, et al. Estimating actual leaf area of maize based on terrestrial laser scanning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 345—353. (in Chinese with English abstract)

        [22] 郁進元,何巖,趙忠福,等. 長寬法測定作物葉面積的校正系數(shù)研究[J]. 江蘇農業(yè)科學,2007(2):37—39. Yu Jinyuan, He Yan, Zhao Zhongfu, et al. Study on the correction coefficient of measuring crop leaf area by length–width method[J], Jiangsu Agricultural Science, 2007(2): 37—39. (in Chinese with English abstract)

        [23] Besl P J, Mckay N D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis Machine Intellinegce, 1992, 14(2): 239—256.

        [24] Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry & Remote Sensing, 2000(33): 111—117.

        [25] Fleishman S, Drori I, Cohenor D. Bilateral mesh denoising[J]. ACM Transaction on Graphics, 2003, 22(3): 950—953.

        [26] Ioannou Y, Taati B, Harrap R, et al. Difference of normals as a multi-scale operator in unorganized point clouds[C]. International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 2012: 501—508.

        [27] Frasson M, Krajewski F. Three-dimensional digital model of a maize plant[J]. Agricultural & Forest Meteorology, 2010, 150(3): 478—488.

        [28] 姚宜斌,黃書華,孔建,等. 空間直線擬合的整體最小二乘算法[J]. 武漢大學學報·信息科學版,2014,39(5):571—574. Yao Yibin, Huang Shuhua, Kong Jian, et al. Total least squares algorithm for fitting spatial straight lines[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 571—574. (in Chinese with English abstract)

        [29] Vos J, Evers J B, Bucksorlin G H, et al. Functional-structural plant modelling: a new versatile tool in crop science[J]. Journal of Experimental Botany, 2010, 61(8): 2101—2115.

        [30] Chandra B, Julie O K, Radek T, et al. Computer reconstruction of plant growth and chlorophyll fluorescence emission in three spatial dimensions[J]. Sensors, 2012, 12(1): 1052—1071.

        [31] Ku L X, Zhao W M, Zhang J, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize(Zea mays L.)[J]. Theoretical & Applied Genetics, 2010, 121(5): 951—959.

        [32] Kolev K, Brox T, Cremers D. Fast joint estimation of silhouettes and dense 3D geometry from multiple images[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(3): 493—505.

        [33] 何東健,牛金玉,張子儒,等. 基于改進三次B樣條曲線的奶牛點云缺失區(qū)域修復方法[J]. 農業(yè)機械學報,2018,49(6):225—231. He Dongjian, Niu Jinyu, Zhang Ziru, et al. Denoising method of 3D point cloud data of plants obtained by kinect[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 225—231. (in Chinese with English abstract)

        Extraction of phenotypic information of maize plants in field by terrestrial laser scanning

        Su Wei, Jiang Kunping, Guo Hao, Liu Zhe, Zhu Dehai, Zhang Xiaodong

        (1.,,100083,; 2.,,100083,)

        Phenotypic information of individual corn plant is of great significance for the study on the rules of high yield and high efficiency growth of corn and the genotype determination on corn genetic breeding. However, the traditional method used to extract phenotypic information is time-consuming, inefficient and subjective, which cannot meet the needs of current corn research. For the past few years, the development of remote sensing technology has laid a foundation for the rapid and efficient extraction of crop phenotypic information. Terrestrial laser scanning (TLS) has the characteristics of high precision, non-destructive measuring and multi-parameter-extraction, which is suitable for high-precision phenotypic analysis of crop breeding. The structure of the whole plant can be measured on a millimeter scale, and the data analysis process enables the multiple morphological plant parameters can be derived simultaneously in a single laser scan. Therefore, a TLS-based method for extracting phenotypic information of corn grown in field was proposed in this paper. Field experiments were carried out in Baoding City, Hebei province in 2016. In order to ensure the integrity of data, three stations were set up to scan the corn in the target sample, and Trimble TX8 3D scanner was used to obtain high-precision 3D point cloud data of corn in tasseling stage. Generating the required phenotypic parameters from the massive point cloud data was performed in a multi-step process, including multi-station data registration, removal of ground points and other invalid points, denoising, separation of individual corn from the corn population, resampling and separation of stem and leaves. Data registration was done using the Trimble Realworks software. Points represented invalid points such as ground points were removed using the adaptive triangulated irregular network (TIN) algorithm provided by version 016.004 of the Terrasolid software. This algorithm creates a sparse TIN from seed points and then iteratively densifies the TIN until all noise points are identified and removed. The denoising was done by Geomagic studio 2014 software. Individual corn plant was separated from the corn population using cloudcompare. Then resampling was performed. Finally, corn leaf points were separated from stalk points using the difference of normals (DoN) method. Providing a description of corn plants was helpful to simplify data processing without affecting the underlying point cloud and to achieve objective parameterization of growth state. Therefore, leaf model was constructed using triangle meshes, and corn leaf skeleton was extracted using Geomagic Studio 2014. Then the actual leaf area was calculated by calculating the sum of the areas of all triangular meshes. Leaf length was extracted by calculating the euclidean distance between the leaf points, and the leaf inclination angle was obtained by piecewise fitting with least square method based on leaf skeleton model. The plant height was calculated from the corn plant point cloud. To compare the values obtained by the proposed method in this paper and those obtained by manual measurement, the regression analysis was done with the root mean square error and calculated mean absolute percentage errors. Results showed that the determination coefficients (2) of actual leaf area, leaf length, plant height and leaf inclination angle were 0.99, 0.99, 0.96 and 0.94, respectively, the root mean square error were 12.69 cm2, 1.31 cm, 1.30 cm and 5.12° respectively, and the average relative errors were 2.38%, 1.32%, 0.61% and 8.96% respectively. Therefore, the method proposed in this paper can be used to extract the phenotypic information for individual corn. Advances in high-throughput phenotypes will be conceivable through the combination of digital imaging techniques and further automated data analysis steps. This will help speed up the process of plant breeding.

        crops; parameters; extraction; terrestrial laser scanning; skeleton extraction; least square method

        10.11975/j.issn.1002-6819.2019.10.016

        TP391

        A

        1002-6819(2019)-10-0125-06

        2018-08-22

        2019-03-07

        國家十三五重點研發(fā)計劃項目(2017YFD0300903);國家自然科學基金項目(41671433)

        蘇 偉,博士,副教授,博士生導師,主要從事農業(yè)遙感、激光雷達農業(yè)應用方面的研究。Email:suwei@cau.edu.cn

        蘇 偉,蔣坤萍,郭 浩,劉 哲,朱德海,張曉東.地基激光雷達提取大田玉米植株表型信息[J]. 農業(yè)工程學報,2019,35(10):125-130. doi:10.11975/j.issn.1002-6819.2019.10.016 http://www.tcsae.org

        Su Wei, Jiang Kunping, Guo Hao, Liu Zhe, Zhu Dehai, Zhang Xiaodong. Extraction of phenotypic information of maize plants in field by terrestrial laser scanning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 125-130. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.016 http://www.tcsae.org

        猜你喜歡
        葉長大田葉面積
        作物葉面積測量的研究進展
        “大田后生仔”歌唱家鄉(xiāng)
        海峽姐妹(2020年1期)2020-03-03 13:35:54
        馬奶子葡萄葉面積評估模型的建立
        回歸方程法測定兩個龍眼品種葉面積研究
        小田變大田破解農地零碎化
        洛陽市13種綠化樹種葉面積的回歸測算
        “光合作用與細胞呼吸”重點分析和突破
        “小田并大田”要有序推進
        苧麻葉面積測定方法比較研究
        上位?
        美女草逼视频免费播放| 美女内射毛片在线看免费人动物| 99噜噜噜在线播放| 女人被狂躁高潮啊的视频在线看| 又粗又硬又黄又爽的免费视频 | 精品人妻中文无码av在线| 国产精品二区在线观看| 久久久综合九色合综国产| 精品av一区二区在线| 在线人妻va中文字幕| 99久久免费只有精品国产| 欧美大香线蕉线伊人久久| 无码啪啪熟妇人妻区| 乱老年女人伦免费视频| 成在线人免费视频| 国产无遮挡裸体免费视频| 在线一区不卡网址观看| 91福利精品老师国产自产在线| 成人免费毛片在线播放| 国产乱淫h侵犯在线观看| 免费观看国产短视频的方法| 少妇人妻综合久久中文字幕| 人妻无码aⅴ不卡中文字幕| 久久久久亚洲AV无码专区喷| 久久精品国产亚洲av热东京热| 亚洲高清一区二区三区在线播放| 夜夜高潮夜夜爽国产伦精品| 国产精品无码av一区二区三区 | 精品无码国产一区二区三区av| 欧美亚洲综合另类| 国产在视频线精品视频二代 | 在线成人影院国产av| 亚洲中文字幕日产无码| 久久婷婷人人澡人人喊人人爽| 精品2021露脸国产偷人在视频| 久久久成人av毛片免费观看| 人妻少妇精品视中文字幕免费| 少妇被粗大的猛烈进出免费视频 | 色欲AV成人无码精品无码| 亚洲传媒av一区二区三区| 人妻有码av中文幕久久|