馬龍 徐薇 竇玲玲 柯笑楠 劉明月 耿艷飛 黃霞 賈玉芳 劉慶坡
摘要:花粉發(fā)育為水稻生殖發(fā)育不可或缺的過程之一,其育性高低對(duì)水稻育種以及經(jīng)濟(jì)產(chǎn)量具有重要意義。大量研究發(fā)現(xiàn),水稻花粉發(fā)育是嚴(yán)格受基因表達(dá)調(diào)控的生物學(xué)過程?;诖耍疚木C述與水稻花粉育性相關(guān)的蛋白編碼基因和調(diào)控性miRNA的研究現(xiàn)狀,總結(jié)有關(guān)基因在調(diào)控水稻花粉育性方面的生物學(xué)功能及作用機(jī)制,并對(duì)該領(lǐng)域未來(lái)的發(fā)展趨勢(shì)作出分析與展望,從而為水稻分子設(shè)計(jì)育種提供理論參考。
關(guān)鍵詞:水稻;花粉發(fā)育;生殖發(fā)育;相關(guān)基因;miRNA;育種利用
中圖分類號(hào): S511.03? 文獻(xiàn)標(biāo)志碼: A? 文章編號(hào):1002-1302(2019)10-0042-05
水稻是世界性主要糧食作物之一,為全球50%以上人口提供食物,同時(shí)也是重要的單子葉模式植物之一[1],因此對(duì)水稻的不斷深入研究具有重要理論和現(xiàn)實(shí)意義。隨著人口數(shù)量的不斷增長(zhǎng)、生態(tài)環(huán)境的惡化、耕地面積的持續(xù)減少以及人們對(duì)食品安全的重視,在可預(yù)見的將來(lái),糧食短缺及由此引發(fā)的其他問題將日益突顯。因此,培育出優(yōu)質(zhì)、高產(chǎn)、抗逆性強(qiáng)的水稻新品種顯得尤為重要,這要求研究者在了解水稻宏觀表型變化的基礎(chǔ)上更深入理解其分子調(diào)控機(jī)制等?;蚪M學(xué)育種及分子育種能夠高效地對(duì)植物生理學(xué)、遺傳學(xué)、生物技術(shù)及基因表達(dá)調(diào)控等研究進(jìn)行有機(jī)整合,因此已成為解決當(dāng)前問題的有效途徑。鑒于基因組學(xué)育種主要通過轉(zhuǎn)基因技術(shù)和分子標(biāo)記技術(shù)等充分挖掘并利用有利基因[2],近幾十年來(lái)大量調(diào)控不同農(nóng)藝性狀的相關(guān)基因被相繼鑒定和克隆[3-4]。
水稻單產(chǎn)是受內(nèi)在遺傳和外部環(huán)境影響的綜合性狀,與植株器官形態(tài)構(gòu)建、光合效率、礦質(zhì)元素的高效利用以及授粉和授精過程、抗逆性等密切相關(guān)[5]。穗數(shù)、穗粒數(shù)、結(jié)實(shí)率和粒質(zhì)量等是構(gòu)成水稻稻谷產(chǎn)量的主要因素[6],其中穗數(shù)、穗粒數(shù)[7]、粒質(zhì)量[8-10]和株型等水稻產(chǎn)量性狀已被深入研究,且研究者已鑒定并克隆了許多相應(yīng)的基因[11-12];而對(duì)水稻產(chǎn)量同樣具有決定作用的結(jié)實(shí)率相關(guān)功能基因鑒定及調(diào)控水稻單產(chǎn)形成內(nèi)在機(jī)制等方面的研究,進(jìn)展相對(duì)比較緩慢[13]。迄今,已克隆到幾個(gè)調(diào)控水稻結(jié)實(shí)率的重要基因,且其中多數(shù)基因參與了水稻花粉的發(fā)育進(jìn)程[6,13-16]。例如通過促進(jìn)花粉管生長(zhǎng)正向調(diào)節(jié)水稻結(jié)實(shí)率的PTB1基因[13]以及通過促進(jìn)花粉管伸長(zhǎng)和調(diào)控胞內(nèi)鈣離子平衡提高水稻穗籽粒結(jié)實(shí)率的OsCNGC13基因[16]等。盡管如此,對(duì)于通過調(diào)控水稻花粉發(fā)育進(jìn)而影響結(jié)實(shí)率的內(nèi)在機(jī)制認(rèn)識(shí)仍十分有限。此外,雄性不育的發(fā)現(xiàn)和利用為主要農(nóng)作物的雜種優(yōu)勢(shì)利用提供了保障,其中雜交水稻的培育為世界糧食生產(chǎn)發(fā)揮了舉足輕重的作用[17]。然而,雜交后代的結(jié)實(shí)率往往低于親本,且已成為利用雜種優(yōu)勢(shì)進(jìn)行水稻產(chǎn)量性狀改良的一個(gè)主要瓶頸[13],因此對(duì)結(jié)實(shí)率相關(guān)基因的研究已成為水稻育種工作的主要熱點(diǎn)之一,其中花粉育性作為結(jié)實(shí)率的決定因素之一,其相關(guān)研究備受關(guān)注。
在高等植物中,花粉發(fā)育是一個(gè)非常復(fù)雜的生物學(xué)過程。在一系列相關(guān)基因的協(xié)同作用下,小孢子母細(xì)胞在花粉囊中進(jìn)行減數(shù)分裂產(chǎn)生小孢子,并進(jìn)一步發(fā)育成花粉粒;當(dāng)花粉囊裂開時(shí),成熟的花粉粒被釋放出來(lái)[18]。馮九煥等以秈稻品種IR36為材料,對(duì)水稻花粉發(fā)育過程及其藥壁組織進(jìn)行了系統(tǒng)觀察,詳細(xì)地描繪了其超微結(jié)構(gòu)特征,并依據(jù)不同時(shí)期特點(diǎn)將水稻花粉發(fā)育過程劃分為8個(gè)時(shí)期[19-20]。Itoh等也將該過程分成8個(gè)時(shí)期,其中前4個(gè)時(shí)期是花藥孢子體發(fā)育時(shí)期,后4個(gè)時(shí)期是花粉發(fā)育時(shí)期[1,21]。在此基礎(chǔ)上,后來(lái)的研究者進(jìn)一步將水稻花藥發(fā)育過程由原來(lái)的8時(shí)期細(xì)分為14時(shí)期[22-23],這些時(shí)期不同生物過程的循序漸進(jìn)最終保證了花粉的完整發(fā)育。目前,基因表達(dá)調(diào)控機(jī)制等研究最深入的主要涉及水稻絨氈層和花粉壁等發(fā)育過程?;诖耍疚闹饕C述當(dāng)前與水稻花粉育性相關(guān)蛋白編碼基因和miRNA的研究進(jìn)展并初步闡釋其在水稻花粉育性調(diào)控中的作用及機(jī)制,以期加深相關(guān)研究人員和育種工作者對(duì)花粉育性相關(guān)基因及生物學(xué)功能、調(diào)控途徑等方面的認(rèn)識(shí),從而為相關(guān)基因的進(jìn)一步育種利用等提供參考。
1 水稻花粉育性相關(guān)蛋白編碼基因
水稻的成熟花粉是由2或3個(gè)細(xì)胞組成的雄配子體,廣義的花粉概念則包括從小孢子到成熟花粉的各個(gè)階段[24],每個(gè)階段都是在特定基因協(xié)作下完成的。任何參與花粉形成過程的基因發(fā)生突變,均可導(dǎo)致花藥花粉異常,最終導(dǎo)致雄性不育[25]。近年來(lái),隨著研究的不斷深入,研究者已陸續(xù)鑒定并克隆了多個(gè)與水稻花粉敗育及花粉缺失等相關(guān)的功能基因(表1)。
1.1 花粉敗育相關(guān)基因
花粉敗育是指受內(nèi)外環(huán)境因素影響導(dǎo)致花粉不能正常發(fā)育起到生殖作用的現(xiàn)象,其主要原因是花粉母細(xì)胞不能正常減數(shù)分裂以及絨氈層細(xì)胞作用失常。絨氈層細(xì)胞是花藥發(fā)育過程中短暫存在的并位于花藥最內(nèi)層的細(xì)胞,它直接包裹著小孢子母細(xì)胞及分化后的小孢子[48]。絨氈層細(xì)胞的細(xì)胞質(zhì)中富含線粒體、內(nèi)質(zhì)網(wǎng)、高爾基體等細(xì)胞器,代謝非常旺盛[49]。研究發(fā)現(xiàn),絨氈層細(xì)胞的降解是一個(gè)細(xì)胞程序性死亡的過程,在此過程中會(huì)釋放大量在絨氈層細(xì)胞內(nèi)合成的物質(zhì),用于小孢子及其外壁的發(fā)育[40,50]。因而,絨氈層和花粉的發(fā)育是受一系列基因調(diào)控的復(fù)雜生理進(jìn)程,時(shí)序上嚴(yán)格匹配。
1.1.1 絨氈層發(fā)育和PCD相關(guān)調(diào)控基因 目前,研究者利用突變體克隆了一些絨氈層發(fā)育相關(guān)基因,包括Udt1和TDR等。UDT1為bHLH轉(zhuǎn)錄因子,主要作用于細(xì)胞減數(shù)分裂早期,其T-DNA或Tos17插入突變體表現(xiàn)為雄性不育[37]。突變體udt1的絨氈層不能分化和液泡化,并且性母細(xì)胞不能分化成小孢子,中間層細(xì)胞不退化,因而花粉囊內(nèi)不能產(chǎn)生正常花粉[51]。TDR也是bHLH類轉(zhuǎn)錄因子。在水稻花藥發(fā)育過程中,TDR通過觸發(fā)絨氈層PCD而調(diào)控花粉壁發(fā)育[40]。突變體tdr的絨氈層和中層降解延遲,花粉粒皺縮,且TDR可直接與2個(gè)下游基因OsCP1和OsC6互作[40],其中OsCP1編碼一個(gè)半胱氨酸蛋白酶,在花藥發(fā)育中發(fā)揮重要作用[51];OsC6是一個(gè)脂質(zhì)轉(zhuǎn)移蛋白基因,在水稻未成熟花藥的絨氈層細(xì)胞中特異表達(dá)[43],該基因可通過抑制水稻烏氏體和花粉外壁發(fā)育而使其發(fā)生缺陷,并且降低花粉育性。Zhang等發(fā)現(xiàn),TDR突變后還可導(dǎo)致花藥表皮蠟質(zhì)和花粉壁的形成異常[52-53]。進(jìn)一步分析發(fā)現(xiàn),TDR能結(jié)合OsADF基因啟動(dòng)子的E-box基序并調(diào)控其表達(dá),進(jìn)而通過參與ADF(花藥發(fā)育相關(guān)的F-box蛋白)介導(dǎo)的蛋白水解途徑調(diào)節(jié)絨氈層細(xì)胞的發(fā)育和花粉形成[54]。
水稻花藥絨氈層細(xì)胞的程序性死亡是受一系列基因嚴(yán)格調(diào)控的過程。除正向調(diào)控因子TDR等外,Niu等克隆了1個(gè)在絨氈層細(xì)胞特異表達(dá)的bHLH類轉(zhuǎn)錄因子EAT1基因,該基因的突變體eat1表現(xiàn)為絨氈層降解延遲,不能形成正常的花粉粒,導(dǎo)致花藥干癟;深入研究發(fā)現(xiàn),EAT1作用于TDR的下游,可通過直接調(diào)控天冬氨酸蛋白酶基因OsAP25和OsAP37的表達(dá),促進(jìn)植物絨氈層細(xì)胞的程序性死亡[39]。Yi等利用 T-DNA插入突變體鑒定到一個(gè)調(diào)控絨氈層PCD的基因DTC1,其突變體dtc1表現(xiàn)為雄性不育,花藥發(fā)育缺陷,絨氈層增大不退化,中層降解延遲;進(jìn)一步分析發(fā)現(xiàn),DTC1可通過抑制OsMT2b的活性氧清除活性,調(diào)控絨氈層的PCD進(jìn)程[38]。
1.1.2 花粉壁發(fā)育相關(guān)調(diào)控基因 花粉壁是花粉不可缺少的重要部分,也是花粉育性重要的決定因子之一。Ueda等從水稻Tos17插入突變體庫(kù)中鑒定到一個(gè)花粉敗育的突變體cap1,該突變體的雜合體有1/2的花粉粒發(fā)生干癟畸變,且畸形花粉粒內(nèi)所有的細(xì)胞質(zhì)內(nèi)充物、細(xì)胞核和內(nèi)孢細(xì)胞壁幾乎全部缺失,因而不能萌發(fā);利用原位雜交等技術(shù)研究發(fā)現(xiàn),CAP1主要在發(fā)育的花粉粒、絨氈層和藥室內(nèi)壁中表達(dá);進(jìn)一步分析發(fā)現(xiàn),該突變體花粉?;冎饕怯蒐-阿拉伯糖(L-arabinose)毒性積累所致或由UDP-L-arabinose(源于 L- 阿拉伯糖1-磷酸鹽轉(zhuǎn)變)缺乏而抑制細(xì)胞壁代謝造成[29]。此外,Moon等鑒定到一個(gè)主要在成熟花粉粒中表達(dá)的編碼糖基化轉(zhuǎn)移酶的基因OsGT1,其T-DNA插入突變體osgt1的花粉在減數(shù)分裂階段正常但在成熟期活力丟失;進(jìn)一步觀察發(fā)現(xiàn),該突變體的花粉內(nèi)壁結(jié)構(gòu)遭到破壞,且其淀粉、蛋白含量顯著下降[42]。因此,花粉壁發(fā)育缺陷將導(dǎo)致水稻花粉育性降低。
1.1.3 其他基因 除了絨氈層和花粉壁發(fā)育相關(guān)基因外,人們利用花粉突變體還克隆到一些其他調(diào)控基因,比如rip1和Osabcg15。rip1是Han等從水稻T-DNA插入突變體庫(kù)中篩選到的一個(gè)花粉特異突變體,其花粉中線粒體、高爾基體、脂肪體、質(zhì)體和內(nèi)質(zhì)網(wǎng)的發(fā)育都表現(xiàn)為延遲;在體外培養(yǎng)條件下,該突變體的花粉不能萌發(fā),而野生型對(duì)照的花粉萌發(fā)率>90%,表明RIP1基因是水稻花粉發(fā)育晚期的調(diào)節(jié)因子,是花粉成熟和萌發(fā)所必需的[26]。另外,Wu等利用秈稻恢復(fù)系縉恢一號(hào)獲得一個(gè)不能產(chǎn)生有活力花粉的突變體Osabcg15,該突變體的花藥短窄且白化,花藥表皮異常、中層增大、烏氏體發(fā)育異常、絨氈層不完全退化、沒有外壁,花粉粒收縮[32]。Niu等深入分析發(fā)現(xiàn),OsABCG15可能在孢子花粉素合成或孢子花粉素從絨氈層細(xì)胞向花藥室轉(zhuǎn)移的過程中發(fā)揮關(guān)鍵作用[33]。
1.2 花粉缺失相關(guān)基因
除花粉敗育外,花粉缺失是另一個(gè)影響水稻正常生殖發(fā)育的主要因素。Jung等曾鑒定到一個(gè)蠟質(zhì)缺陷的花藥突變體Wda1,該突變體所有細(xì)胞壁層的超長(zhǎng)鏈脂肪酸合成受阻,花藥外層的角質(zhì)臘層缺失,小孢子的發(fā)育嚴(yán)重遲緩,導(dǎo)致花粉外壁的形成發(fā)生缺陷,最終造成花粉缺失[27]。同樣地,Jiang等鑒定到一個(gè)無(wú)花粉突變體基因Osnop,該基因只在花粉發(fā)育和花粉管萌發(fā)時(shí)表達(dá),因而控制水稻雄配子的發(fā)育[30],但是它在水稻花粉成熟時(shí)的具體調(diào)控機(jī)制尚不清楚。
此外,研究者還克隆了許多其他造成花粉缺失的相關(guān)基因。例如絨氈層PCD的必需調(diào)控因子基因OsTDF1[55]、絨氈層決定基因OsTDL1A[56]、控制水稻花器官尤其花粉發(fā)育及水稻籽粒糊粉層α淀粉酶活性的基因OsGAMYB[44]、調(diào)控水稻孢子花粉素合成并參與誘導(dǎo)絨氈層降解的酰基輔酶A合成酶基因OsACOS12[57-58]以及影響花粉發(fā)育過程中淀粉合成,進(jìn)而影響花粉缺失的基因OsPGM[59]等,這些基因的發(fā)現(xiàn)與功能研究加深了人們對(duì)水稻花粉發(fā)育分子機(jī)制的了解。
2 水稻miRNA與花粉育性
miRNA是一類長(zhǎng)20~24個(gè)核苷酸的內(nèi)源單鏈非編碼小分子RNA,通過與靶基因互補(bǔ)結(jié)合來(lái)介導(dǎo)mRNA的降解或在翻譯水平上抑制其表達(dá),進(jìn)而調(diào)控植物的生長(zhǎng)發(fā)育及環(huán)境適應(yīng)性等[45]。例如,miRNA可參與調(diào)控水稻根系的生長(zhǎng)發(fā)育[46]、水稻營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng)轉(zhuǎn)換[47]以及水稻衰老期葉片發(fā)育[60]等不同生物學(xué)過程。
近年來(lái),隨著基因組學(xué)和生物信息學(xué)的迅猛發(fā)展,在不同物種中鑒定到越來(lái)越多的具有不同調(diào)控功能的miRNA。截至目前,在miRBase數(shù)據(jù)庫(kù)中已注冊(cè)有來(lái)自223個(gè)不同物種的28 645個(gè)前體miRNA(pre-miRNA),共表達(dá)35 828個(gè)成熟序列,其中從水稻基因組中鑒定到592個(gè)前體miRNA和713個(gè)成熟miRNA(http://www.mirbase.org,release 21)[61]。大量研究發(fā)現(xiàn),同一miRNA在植物不同生長(zhǎng)發(fā)育時(shí)期具有不同的表達(dá)模式,且在同一時(shí)期表達(dá)的miRNA也具有明顯的多樣性;miRNA與其作用靶基因組成調(diào)控網(wǎng)絡(luò)參與植物生長(zhǎng)發(fā)育的調(diào)節(jié)過程,進(jìn)而在植物生命周期中發(fā)揮重要作用[62-64]。
花粉發(fā)育是開花植物生命周期中最重要的時(shí)期之一。近年來(lái),隨著高通量測(cè)序等技術(shù)的應(yīng)用,有關(guān)miRNA參與調(diào)控水稻花粉發(fā)育的研究不斷展開并取得一定進(jìn)展。Wei等系統(tǒng)探究了水稻花粉發(fā)育過程中miRNA的表達(dá)情況,共鑒定到292個(gè)已知miRNA和75個(gè)新miRNA,其中202個(gè)已知miRNA在花粉發(fā)育過程有所表達(dá),且其中103個(gè)的表達(dá)明顯富集,而新鑒定的75個(gè)miRNA中半數(shù)以上在花粉發(fā)育中呈現(xiàn)出組織特異性或者在發(fā)育時(shí)期特異表達(dá)[65]。在比較同源四倍體和二倍體水稻花粉發(fā)育過程中miRNA的表達(dá)譜時(shí),Li等發(fā)現(xiàn),相對(duì)于二倍體,四倍體水稻有321個(gè)差異表達(dá)的miRNA,且同源四倍體水稻花粉和胚囊中miRNA的表達(dá)譜也截然不同,每個(gè)miRNA平均有3個(gè)與花粉發(fā)育有關(guān)的作用靶基因[66];此外,與轉(zhuǎn)座因子相關(guān)的siRNA在四倍體水稻胚囊中上調(diào)表達(dá),而在花粉發(fā)育過程中發(fā)生下調(diào)[67]。由此可見,miRNA可能確實(shí)參與了水稻花粉發(fā)育的生物學(xué)調(diào)控過程,但其與靶基因互作進(jìn)而調(diào)控水稻花粉育性的內(nèi)在分子機(jī)制等仍需進(jìn)一步深入闡明。
雜交水稻的育種及大范圍推廣應(yīng)用,對(duì)世界糧食供給作出了巨大貢獻(xiàn),因此對(duì)水稻雜交育種的研究始終是育種家的一個(gè)重要關(guān)注點(diǎn)。目前以細(xì)胞質(zhì)雄性不育系(CMS)為基礎(chǔ)的三系雜交和以細(xì)胞核雄性不育系為基礎(chǔ)的兩系雜交是雜交水稻的主要2種育種方式,其中雄性不育系的研究是水稻雜交育種的重點(diǎn)所在。在水稻中,miR156通過作用于靶基因SPL來(lái)參與水稻雄配子體的形成過程[68]。以水稻光周期/溫敏性核雄不育系WuxiangS(WXS)為材料,Zhang等研究了其育性轉(zhuǎn)換時(shí)期miRNA的表達(dá)模式,共鑒定出497個(gè)已知miRNA和273個(gè)新miRNA,在可育和不育WXS材料間共發(fā)現(xiàn)26個(gè)表達(dá)量存在顯著差異的miRNA,其中11個(gè)表達(dá)量下調(diào),15個(gè)表達(dá)量上調(diào);進(jìn)一步分析發(fā)現(xiàn),水稻miR156a-j和miR164d等調(diào)控的靶基因多與花粉育性相關(guān),表明miRNA確實(shí)參與了WXS花粉發(fā)育及育性轉(zhuǎn)換進(jìn)程;此外,在水稻不育材料WXS的育性轉(zhuǎn)換期發(fā)現(xiàn),miR5967與其靶基因(一種鈣離子結(jié)合蛋白基因)互作,通過參與調(diào)控鈣離子信號(hào)轉(zhuǎn)導(dǎo)途徑,在WXS育性轉(zhuǎn)換過程發(fā)揮一定的調(diào)控作用[69]。
盡管近年來(lái),人們已陸續(xù)發(fā)掘到一些與水稻花粉育性相關(guān)的miRNA,但在深入揭示其生物學(xué)功能及調(diào)控機(jī)制等方面進(jìn)展十分緩慢。Zhou等發(fā)掘到一個(gè)與調(diào)控水稻光溫敏雄性不育有關(guān)的miRNA——P/TMS12-1,在農(nóng)墾58S和培矮64S中超量表達(dá)該miRNA可顯著恢復(fù)其花粉育性;生物信息學(xué)分析顯示,P/TMS12-1擁有10個(gè)潛在靶基因[70],但它到底與哪個(gè)(些)靶基因互作進(jìn)而調(diào)控水稻花粉育性尚不清楚。總之,水稻育性是一個(gè)復(fù)雜的基因網(wǎng)絡(luò)調(diào)控過程,其間參與的基因遠(yuǎn)遠(yuǎn)不止目前所發(fā)掘的。因此,要想充分理解水稻花粉育性的分子機(jī)制,仍需要在原有基礎(chǔ)上進(jìn)一步發(fā)掘新基因,并通過轉(zhuǎn)基因技術(shù)等探明其生物學(xué)功能。
3 總結(jié)與展望
水稻花粉發(fā)育是一個(gè)連續(xù)的、復(fù)雜的生物學(xué)過程,該過程受一系列基因精細(xì)調(diào)控,涉及此過程的任何基因發(fā)生突變都將影響花粉的正常發(fā)育。近年來(lái),研究者已陸續(xù)克隆了許多相關(guān)基因,并且對(duì)其相應(yīng)功能進(jìn)行了研究,其中包括花粉發(fā)育調(diào)控基因Wda1[30]、花粉半不育基因pss1[31,71]、花粉缺失基因Osnop[55]、花粉管堵塞基因PTB1[13]以及絨氈層相關(guān)基因OsTDL1A[56]、絨氈層發(fā)育調(diào)控基因Udt1[72]和TDR[40]等。盡管如此,人們對(duì)于花粉發(fā)育分子機(jī)制的認(rèn)識(shí)仍很有限。例如,Deveshwar等以水稻花粉發(fā)育的4個(gè)不同時(shí)期(包括減數(shù)分裂前期、減數(shù)分裂期、單核細(xì)胞期和三核細(xì)胞期)為研對(duì)象,利用基因芯片和測(cè)序技術(shù)對(duì)其轉(zhuǎn)錄組進(jìn)行分析,結(jié)果發(fā)現(xiàn),至少22 000個(gè)基因在花粉發(fā)育不同時(shí)期有所表達(dá),其中減數(shù)分裂期最多(18 090個(gè)),三核細(xì)胞期最少(15 465個(gè));此外,通過比較水稻營(yíng)養(yǎng)生長(zhǎng)期和生殖生長(zhǎng)期的基因表達(dá)情況發(fā)現(xiàn),在花粉發(fā)育期特異表達(dá)的基因約有1 000個(gè),但在上述發(fā)現(xiàn)的基因中約1/2的生物學(xué)功能未知[73]。表明對(duì)于水稻花粉發(fā)育的網(wǎng)絡(luò)機(jī)制,仍有太多未知領(lǐng)域需進(jìn)一步探索。此外,與水稻花粉發(fā)育相關(guān)miRNA的發(fā)掘及功能研究才起步不久,在花粉發(fā)育過程中miRNA自身的表達(dá)調(diào)控機(jī)制尚不清楚,其如何與靶基因互作以及如何影響其他miRNA和蛋白編碼基因的表達(dá)等是充分理解花粉育性迫切需要解決的問題。隨著高通量測(cè)序技術(shù)的發(fā)展以及基因編輯等技術(shù)的應(yīng)用,越來(lái)越多的miRNA和蛋白編碼基因的生物學(xué)功能將被逐步闡明,這必將為人們充分理解水稻花粉育性的調(diào)控機(jī)制奠定堅(jiān)實(shí)基礎(chǔ)。
參考文獻(xiàn):
[1]Itoh J,Nonomura K,Ikeda K,et al. Rice plant development:from zygote to spikelet[J]. Plant & Cell Physiology,2005,46(1):23-47.
[2]Lombardo L,Coppola G,Zelasco S. New technologies for insect-resistant and herbicice-tolerant plants[J]. Trends in Biotechnology,2016,34(1):49-57.
[3]Takeda S,Matsuoka M. Genetic approaches to crop improvement:responding to environmental and population changes[J]. Nature Reviews Genetics,2008,9(6):444-457.
[4]Varshney R K,Hoisington D A,Tyagi A K. Advances in cereal genomics and applications in crop breeding[J]. Trends in Biotechnology,2006,24(11):490-499.
[5]Zhang Q F. Strategies for developing green super rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(42):16402-16409.
[6]Zhang K,Song Q,Wei Q,et al. Down-regulation of OsSPX1 caused semi-male sterility,resulting in reduction of grain yield in rice[J]. Plant Biotechnology Journal,2016,14(8):1661-1672.
[7]Ashikari M,Sakakibara H,Lin S,et al. Cytokinin oxidase regulates rice grain production[J]. Science,2005,309(5735):741-745.
[8]Wang Y X,Xiong G S,Hu J,et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics,2015,47(8):944-948.
[9]Si L Z,Chen J Y,Huang X E,et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics,2016,48(4):447-456.
[10]Wang S K,Li S,Liu Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015,47(3):949-954.
[11]Huang X Z,Qian Q,Liu Z B,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics,2009,41(4):494-497.
[12]Jiao Y Q,Wang Y H,Xue D W,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics,2010,42(6):541-544.
[13]Li S C,Li W B,Huang B,et al. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth[J]. Nature Communications,2013,4:2793.
[14]Kwon C T,Kim S H,Kim D,et al. The rice floral repressor Early Flowering 1 affects spikelet fertility by modulating gibberellin signaling[J]. Rice,2015,8(1):58.
[15]Lu G W,Coneva V,Casaretto J A,et al. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis,transport and distribution[J]. Plant Journal,2015,83(5):913-925.
[16]Xu Y,Yang J,Wang Y H,et al. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues[J]. PLoS Genetics,2017,13(7):e1006906.
[17]胡 駿,黃文超,朱仁山,等. 水稻雄性不育與雜種優(yōu)勢(shì)的利用[J]. 武漢大學(xué)學(xué)報(bào)(理學(xué)版),2013,59(1):1-9.
[18]Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants[J]. Annual Review of Plant Biology,2005,56:393-434.
[19]馮九煥,盧永根,劉向東,等. 水稻花粉發(fā)育過程及其分期[J]. 中國(guó)水稻科學(xué),2001,15(1):21-28.
[20]盧永根,馮九煥,劉向東,等. 水稻(Oryza sativa L.)花粉及花藥壁發(fā)育的超微結(jié)構(gòu)研究[J]. 中國(guó)水稻科學(xué),2002,16(1):30-38.
[21]譚何新,文鐵橋,張大兵. 水稻花粉發(fā)育的分子機(jī)理[J]. 植物學(xué)通報(bào),2007,24(3):330-339.
[22]Zhang D B,Luo X E,Zhu L. Cytological analysis and genetic control of rice anther development[J]. Journal of Genetics and Genomics,2011,38(9):379-390.
[23]Zhang D B,Wilson Z A. Stamen specification and anther development in rice[J]. Chinese Science Bulletin,2009,54(14):2342-2353.
[24]王 洋. 水稻育性突變體的篩選和育性相關(guān)基因OsMSH4及PSS1的克隆與功能研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2013.
[25]Glover J,Grelon M,Craig S,et al. Cloning and characterization of MS5 from Arabidopsis:a gene critical in male meiosis[J]. Plant Journal,1998,15(3):345-356.
[26]Han M J,Jung K H,Yi G,et al. Rice immature pollen 1 (RIP1) is a regulator of late pollen development[J]. Plant & Cell Physiology,2006,47(11):1457-1472.
[27]Jung K H,Han M J,Lee D Y,et al. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development[J]. The Plant Cell,2006,18(11):3015-3032.
[28]Yamagata Y,Yamamoto E,Aya K,et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(4):1494-1499.
[29]Ueda K,Yoshimura F,Miyao A,et al. COLLAPSED ABNORMAL POLLEN1 gene encoding the arabinokinase-like protein is involved in pollen development in rice[J]. Plant Physiology,2013,162(2):858-871.
[30]Jiang S Y,Cai M N,Ramachandran S. The Oryza sativa no pollen (Osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein[J]. Plant Molecular Biology,2005,57(6):835-853.
[31]Zhou S R,Wang Y,Li W C,et al. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis,anther dehiscence,and fertility in rice[J]. The Plant Cell,2011,23(1):111-129.
[32]Wu L A,Guan Y S,Wu Z G,et al. OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice[J]. Plant Cell Reports,2014,33(11):1881-1899.
[33]Niu B X,,F(xiàn)u F R,He M,et al. The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice[J]. Journal of Integrative Plant Biology,2013,55(8):710-720.
[34]Zhao G C,Shi J X,Liang W Q,et al. Two ATP binding cassette G transporters,rice ATP binding cassette G26 and ATP binding cassette G15,collaboratively regulate rice male reproduction[J]. Plant Physiology,2015,169(3):2064-2079.
[35]Hong L L,Tang D,Shen Y,et al. MIL2(MICROSPORELESS2) regulates early cell differentiation in the rice anther[J]. New Phytologist,2012,196(2):402-413.
[36]Yi J,Kim S R,Lee D Y,et al. The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis[J]. Plant Journal,2012,70(2):256-270.
[37]Jung K H,Han M J,Lee Y S,et al. Rice undeveloped tapetum1 is a major regulator of early tapetum development[J]. The Plant Cell,2005,17(10):2705-2722.
[38]Yi J,Moon S,Lee Y S,et al. Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration[J]. Plant Physiology,2016,170(3):1611-1623.
[39]Niu N N,Liang W Q,Yang X J,et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice[J]. Nature Communications,2013,4:1445.
[40]Li N,Zhang D S,Liu H S,et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. The Plant Cell,2006,18(11):2999-3014.
[41]Shi X,Sun X H,Zhang Z G,et al. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice[J]. Plant and Cell Physiology,2015,56(3):497-509.
[42]Moon S,Kim S R,Zhao G C,et al. Rice GLYCOSYLTRANSFERASE1 encodes a glycosyltransferase essential for pollen wall formation[J]. Plant Physiology,2013,161(2):663-675.
[43]Tsuchiya T,Toriyama K,Ejiri S,et al. Molecular characterization of rice genes specifically expressed in the anther tapetum[J]. Plant Molecular Biology,1994,26(6):1737-1746.
[44]Kaneko M,Inukai Y,Ueguchi-Tanaka M,et al. Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development[J]. The Plant Cell,2004,16(1):33-44.
[45]Tang J Y,Chu C C. MicroRNAs in crop improvement:fine-tuners for complex traits[J]. Nature Plants,2017,3(7):17077.
[46]Ma X X,Shao C G,Wang H Z,et al. Construction of small RNA-mediated gene regulatory networks in the Roots of rice(Oryza sativa)[J]. BMC Genomics,2013,14:510.
[47]Meng Y J,Shao C G,Wang H Z,et al. Construction of gene regulatory networks mediated by vegetative and reproductive stage-specific small RNAs in rice (Oryza sativa)[J]. New Phytologist,2013,197(2):441-453.
[48]李興旺. 水稻絨氈層細(xì)胞程序性死亡調(diào)控育性的分子機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2011.
[49]Bedinger P. The remarkable biology of pollen[J]. The Plant Cell,1992,4:879-887.
[50]Aya K,Ueguchi-Tanaka M,Kondo M,et al. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB[J]. The Plant Cell,2009,21(5):1453-1472.
[51]Lee S,Jung K H,An G H,et al. Isolation and characterization of a rice cysteine protease gene,OSCP1,using T-DNA gene-trap system[J]. Plant Molecular Biology,2004,54(5):755-765.
[52]Zhang D S,Liang W Q,Yin C S,et al. OsC6,encoding a lipid transfer protein,is required for postmeiotic anther development in rice[J]. Plant Physiology,2010,154(1):149-162.
[53]Zhang D S,Liang W Q,Yuan Z,et al. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development[J]. Molecular Plant,2008,1(4):599-610.
[54]Li L,Li Y,Song S,et al. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development[J]. Planta,2015,241(1):157-166.
[55]Cai C F,Zhu J,Lou Y,et al. The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis[J]. Science Bulletin,2015,60(12):1073-1082.
[56]Zhao X A,de Palma J,Oane R,et al. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1,and is required to limit sporocyte numbers[J]. Plant Journal,2008,54(3):375-387.
[57]Yang X J,Liang W Q,Chen M J,et al. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility[J]. Planta,2017,246(1):105-122.
[58]Li Y L,Li D D,Guo Z L,et al. OsACOS12,an orthologue of Arabidopsis acyl-CoA synthetase5,plays an important role in pollen exine formation and anther development in rice[J]. BMC Plant Biology,2016,16(1):256.
[59]Lee S K,Eom J S,Hwang S K,et al. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility[J]. Journal of Experimental Botany,2016,67(18):5557-5569.
[60]Xu X B,Bai H Q,Liu C P,et al. Genome-Wide analysis of MicroRNAs and their target genes related to leaf senescence of rice[J]. PLoS One,2014,9(12):e114313.
[61]Kozomara A,Griffiths-Jones S. miRBase:annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Research,2014,42:D68-D73.
[62]Singh S,Parihar P,Singh R,et al. Heavy metal tolerance in plants:role of transcriptomics,proteomics,metabolomics and ionomics[J]. Frontiers in Plant Science,2015,6:1143.
[63]Li S X,Liu J X,Liu Z Y,et al. HEAT-INDUCED TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor a1a-directed pathways in Arabidopsis[J]. The Plant Cell,2014,26(4):1764-1780.
[64]Shriram V,Kumar V,Devarumath R M,et al. MicroRNAs as potential targets for abiotic stress tolerance in plants[J]. Frontiers in Plant Science,2016,7:817.
[65]Wei L Q,Yan L F,Wang T. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa[J]. Genome Biology,2011,12(6):R53.
[66]Li X,Shahid M Q,Wu J W,et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice[J]. International Journal of Molecular Sciences,2016,17(4):499.
[67]Li X,Shahid M Q,Xia J,et al. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice[J]. BMC Genomics,2017,18:129.
[68]Yamaguchi A,Wu M F,Yang L,et al. The MicroRNA-Regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY,F(xiàn)RUITFULL,and APETALA1[J]. Developmental Cell,2009,17(2):268-278.
[69]Zhang H Y,Hu J H,Qian Q,et al. Small RNA profiles of the rice PTGMS line wuxiang S reveal miRNAs involved in fertility transition[J]. Frontiers in Plant Science,2016,7:514.
[70]Zhou H,Liu Q J,Li J,et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research,2012,22(4):649-660.
[71]Li W,Jiang L,Zhou S,et al. Fine mapping of pss1,a pollen semi-sterile gene in rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics,2007,114(5):939-946.
[72]Liu Z H,Bao W J,Liang W Q,et al. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development[J]. Journal of Integrative Plant Biology,2010,52(7):670-678.
[73]Deveshwar P,Bovill W D,Sharma R,et al. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice[J]. BMC Plant Biology,2011,11:78.