亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于DSP控制的交流電子負載的性能研究

        2019-07-08 01:14:04安金龍劉祥洋宋桂英
        燕山大學(xué)學(xué)報 2019年3期
        關(guān)鍵詞:電子負載指令控制策略

        安金龍,辛 斌,遲 頌,劉祥洋,宋桂英

        (1.河北工業(yè)大學(xué) 省部共建電工裝備可靠性與智能化國家重點實驗室,天津 300130;2.河北工業(yè)大學(xué) 河北省電磁場與電器可靠性重點實驗室,天津 300130)

        0 引言

        各類電力電子裝置在研發(fā)試驗中及出廠前需要進行嚴格的測試,來檢測電源的性能和指標[1]。傳統(tǒng)的負載測試存在著精度不足、成本昂貴和能量消耗大等許多缺點,與能源發(fā)展原則相悖,很難滿足如今的測試需求[2-4]。交流電子負載是一種能夠模擬真實負載的電力電子裝置[5],能夠控制被測試電源的相位和幅值[6],滿足各種測試場合的需求[7-8]。能饋型交流電子負載除了能實現(xiàn)對任意負載進行模擬的功能之外,還能實現(xiàn)功率因數(shù)為1的逆變并網(wǎng)[9]。本文主要研究前級負載模擬部分的控制策略并進行性能分析。

        本文以指令電流的控制方法為基礎(chǔ),針對負載模擬部分提出了一種指令阻抗控制結(jié)合SVPWM的單電流環(huán)控制策略,然后采用PWM變換器設(shè)計了一種交流電子負載,并給出了仿真結(jié)果以及實驗結(jié)果,證明了該控制策略的可行性,能夠精確地模擬線性負載和任意功率因數(shù)的感性負載和容性負載。通過實驗數(shù)據(jù)還分析了不同開關(guān)頻率下的負載模擬側(cè)電流的諧波變化情況,當電子負載硬件參數(shù)已經(jīng)固定的情況下,對電子負載開關(guān)頻率的選擇具有一定的指導(dǎo)意義。

        1 交流電子負載主電路拓撲結(jié)構(gòu)

        交流電子負載的基本結(jié)構(gòu)是PWM整流器,根據(jù)直流側(cè)儲能形式的不同,PWM整流器可以分為電流型PWM整流器和電壓型PWM整流器[12],本文采用的是應(yīng)用范圍更廣的電壓型PWM整流器。電壓型PWM整流器的動態(tài)響應(yīng)很快,網(wǎng)側(cè)的功率因數(shù)很高,直流側(cè)的電壓可以控制還能實現(xiàn)能量的雙向流動[13]。交流電子負載的主電路拓撲結(jié)構(gòu)如圖1所示。

        圖1 交流電子負載主電路拓撲
        Fig.1 Main circuit topological structure of AC electronic load

        主電路包括開關(guān)管IGBT T1~T6構(gòu)成的三相電壓型PWM整流橋和LCL濾波器。直流側(cè)接有中間電容器作為電能儲存單元,能饋型交流電子負載前級變換器實現(xiàn)電子負載模擬,后級變換器實現(xiàn)功率因數(shù)為1的逆變并網(wǎng)。本文主要研究前級負載模擬部分,所以后級的功率因數(shù)為1的逆變部分由直流側(cè)電阻來代替。

        2 系統(tǒng)的控制方案

        2.1 負載模擬側(cè)指令阻抗到指令電流的變換方法

        負載模擬側(cè)主要通過對交流輸入端的電流的精確控制,模擬所需類型的負載[14]。三相交流電子負載在模擬不同類型負載時,需要將負載阻抗指令實時地轉(zhuǎn)化為電流指令。電子負載模擬各種負載的精度直接由指令電流的精確性來決定。

        若令

        u=Ucos(θ+φu),θ=ωt,

        則指令電流的瞬時值為

        當前時刻的參考電流值i可以根據(jù)檢測實時電壓值U來得到,對單相交流電子負載來說,要實現(xiàn)上述算法,必須利用鎖相環(huán)來產(chǎn)生所需要的同步信號。但是三相交流電子負載可以由三相電源電壓相量的計算來產(chǎn)生所需要的同步信號。計算方法如下:

        那么

        同理,可以得到b、c兩相的指令電流為

        將上述推導(dǎo)寫成矩陣為

        (1)

        因此當模擬阻抗負載時,通過給定需要的阻抗模值和阻抗角兩個參數(shù),便可以根據(jù)式(1)計算出所需要的電流指令。負載模擬部分的主要功能是精確控制其交流輸入側(cè)的電流,所以本文的控制策略不采用傳統(tǒng)的雙環(huán)控制,只對交流電源輸入端電流進行控制,通過后級饋能部分完成能量回饋功能和直流側(cè)電壓穩(wěn)定的功能[15]。所以負載模擬部分不考慮對直流側(cè)電容電壓的影響。

        2.2 dq坐標系下基于指令阻抗的控制策略

        負載模擬部分的控制方法大多是在abc三相靜止坐標系下的,因為這種方法的諧波總含量相比于dq坐標系下的略小。但是,以電流的控制精度來說,靜止坐標系下的精度相較于dq旋轉(zhuǎn)坐標系要低。以電流的調(diào)節(jié)速度來說,在dq坐標系下的調(diào)節(jié)速度更快[16]?;谏鲜鲈颍疚奶岢隽艘环N在dq坐標系下的指令阻抗的PI控制。常見的直接電流控制方法有三角波比較法、滯環(huán)PWM電流控制和空間矢量電流控制等[17]。滯環(huán)電流控制因開關(guān)頻率不固定,不能滿足本實驗的需求。相比較于三角波比較法來說,SVPWM的電壓利用率高出15%,除此之外SVPWM還具有開關(guān)損耗小、計算簡單、適用于實時控制等優(yōu)點,所以采用SVPWM更有優(yōu)勢。負載特性模擬部分的控制策略框圖如圖2所示。

        圖2中的ia*、ib*、ic*是通過本文所提方法變換后的指令電流,將指令電流和采集的電子負載交流輸入側(cè)的交流實際電流iabc進行3/2變換和dq變換,分別將變換后的指令電流的id*、iq*和實際電流的id、iq進行差值運算,將差值送到電流PI調(diào)節(jié)器中進行調(diào)節(jié),調(diào)節(jié)器的輸出值進行dq逆變換,最終通過SVPWM調(diào)制得到6路開關(guān)信號來控制IGBT模塊工作。這樣就對前級交流輸入的電流進行了閉環(huán)控制,從而實現(xiàn)了對任意負載的電子模擬。相比較于傳統(tǒng)的控制策略,本文所采用的控制策略具有以下特點:能夠?qū)ω撦d模擬側(cè)的交流輸入端電流的電壓和相位進行精確控制,開關(guān)頻率固定,開關(guān)的損耗更小,電流的調(diào)節(jié)速度快,計算簡單,電壓利用率高等。

        圖2 負載模擬側(cè)控制策略框圖
        Fig.2 Control strategy block diagram of electronicload simulation side

        3 控制策略的仿真驗證

        利用MATLAB/Simulink工具箱,搭建了交流電子負載的仿真模型,系統(tǒng)參數(shù)如下:三相輸入電壓36 V,電壓頻率50 Hz,交流側(cè)LCL濾波器輸入電感分別為0.05 mH和1.9 mH,電容為6.5 μF,直流側(cè)電容為2 000 μF,電阻為50 Ω,如圖3所示。通過設(shè)置不同的阻抗指令,模擬了不同電阻、電感、電容值的組合負載。

        圖3 交流電子負載simulink仿真模型
        Fig.3 Simlink simulation model of AC electronic load

        在模擬純阻性負載(|Z|=10,φZ=0°)、阻感性負載(|Z|=10,φZ=45°)及阻容性負載(|Z|=10,φZ=-45°)時交流側(cè)A相輸出電壓u和電流i仿真波形如圖4~6所示。

        圖4 模擬純阻負載時交流輸入端電流電壓波形
        Fig.4 Current and voltage waveform of AC input whensimulating pure resistance

        由圖4~6可知,交流電子負載交流輸入端的電流都跟隨了阻抗指令值,證明了該控制算法可以實現(xiàn)對交流電子負載阻抗的精確模擬。

        圖5 模擬阻感負載時交流輸入端電流電壓波形
        Fig.5 Current and voltage waveforms at the AC input whensimulating resistance inductance

        圖6 模擬阻容負載時交流輸入端電流電壓波形
        Fig.6 Current and voltage waveforms at the AC input whensimulating resistance capacitor

        4 實驗研究

        為了驗證本文所研究的交流電子負載模擬負載部分的拓撲結(jié)構(gòu)和控制策略,搭建了基于DSP控制的負載模擬部分小功率實驗平臺,其開關(guān)器件采用IGBT模塊,主控制器采用TI公司的TMS320F28335芯片,來實現(xiàn)本文所設(shè)計的控制算法。系統(tǒng)硬件參數(shù)如下:三相輸入電壓36 V,電壓頻率50 Hz,輸出功率800 W,交流側(cè)LCL濾波器輸入電感分別為0.05 mH和1.9 mH,電容為6.5 μF,直流側(cè)電容為2 000 μF。實驗平臺的硬件系統(tǒng)如圖7所示,橋臂和測量點接線圖如圖8所示。

        模擬純阻性負載(|Z|=10,φZ= 0°),開關(guān)頻率為10 kHz。圖9為交流輸入端A相的實驗結(jié)果,圖10為電流波形的FFT分析,電流諧波總含量為3.38%。

        模擬阻感型負載(|Z|=10,φZ= 45°),開關(guān)頻率為10 kHz。圖11為交流輸入端A相的實驗結(jié)果,圖12為電流波形的FFT分析,電流諧波總含量為4.03%。

        模擬阻容型負載(|Z|=10,φZ=-45°),開關(guān)頻率為10 kHz。圖13為交流輸入端A相的實驗結(jié)果,圖14為電流波形的FFT分析,電流諧波總含量為3.62%。

        將上述幾個實驗結(jié)果與仿真結(jié)果對比分析后,在相同的指令阻抗下負載的電子模擬實驗結(jié)果與上節(jié)當中的仿真結(jié)果相符合,證明了所設(shè)計的主電路和控制電路能夠正常工作,從硬件上實現(xiàn)了對負載的電子模擬功能。該控制策略可以實現(xiàn)對負載模擬側(cè)交流端輸入電流的精確控制,證明了該控制策略的正確性。

        圖7 實驗平臺
        Fig.7 Experimental platform

        圖8 橋臂及測量點接線圖
        Fig.8 Connection diagram of bridge arm and measuring point

        圖9 交流輸入端模擬純阻時實驗波形
        Fig.9 Experimental waveform of pure resistancesimulation in AC input

        圖10 交流輸入端模擬純阻時電流波形FFT分析
        Fig.10 FFT analysis on current waveforms in AC input whilesimulating pure resistance

        圖11 交流輸入端模擬阻感實驗波形
        Fig.11 Experimental waveform of resistance inductancesimulation in AC input

        圖12 交流輸入端模擬阻感時電流波形FFT分析
        Fig.12 FFT analysis on current waveforms in AC input whilesimulating resistance inductance

        圖13 交流輸入端模擬阻容實驗波形
        Fig.13 Experimental waveform of resistance capacitorsimulation in AC input

        圖14 交流輸入端模擬阻容時電流波形FFT分析
        Fig.14 FFT analysis on current waveforms in AC input whilesimulating resistance capacitor

        針對本文的實驗裝置,在硬件參數(shù)確定的情況下,為了進一步提高電子負載的性能,本文針對開關(guān)頻率對電子負載性能的影響進行了實驗研究。通過在模擬不同負載時,改變開關(guān)頻率,測得不同的電流波形,并對不同的電流實驗數(shù)據(jù)進行頻譜分析。本實驗在8.5~15 kHz的開關(guān)頻率下,對純阻負載、阻感負載(電流相位滯后30°、45°、60°)及阻容負載(電流相位超前電壓30°、45°、60°)分別進行模擬實驗。對實驗所測得的電流逐個進行了分析,電流的總諧波畸變(Total Harmonic Distortion, THD)如表1所示。

        表1加粗字體是在模擬不同類型的負載時,隨著器件開關(guān)頻率的變化,電流THD在該相位下的最低值。為了更直觀分析在模擬不同類型的負載時開關(guān)頻率的變化對諧波總含量的影響,根據(jù)表格的數(shù)據(jù)列出了在模擬不同類型負載電流THD最低時所對應(yīng)的開關(guān)頻率,如表2所示。

        通過分析可以發(fā)現(xiàn)如下規(guī)律:在本實驗硬件設(shè)備的條件下,隨著開關(guān)頻率的升高,交流輸入端電流的高次諧波逐漸減少,影響THD變化的主要因素是低次諧波的含量。當實驗設(shè)備參數(shù)確定后,對于模擬不同類型的負載來說,有相對應(yīng)的開關(guān)頻率能使電流THD相對較低。當在模擬純阻負載時,整個系統(tǒng)開關(guān)頻率在10 kHz附近時輸入端電流的THD最低。當模擬阻感性負載時,隨著角度的逐漸增大,電流的THD相對較低時對應(yīng)的開關(guān)頻率也逐漸增大。如阻感性負載(電流相位滯后60°)的電流的THD相對較低的開關(guān)頻率范圍在12 kHz附近。當模擬阻容性負載時,隨著角度的逐漸增大,電流的THD較低時對應(yīng)的開關(guān)頻率逐漸增小。如阻容性負載(電流相位超前45°~60°)的電流的THD相對較低的開關(guān)頻率范圍在9 kHz附近。

        表1 不同條件下的電流總諧波畸變Tab.1 Total harmonic distortion of current under different conditions %

        表2 模擬不同類型負載電流THD最低時對應(yīng)的開關(guān)頻率Tab.2 Switching frequency for simulating load current of different types at the lowest THD

        因此,本實驗分析可以提供一種在實驗設(shè)備硬件參數(shù)確定的情況下提高交流電子負載性能的方法:在模擬不同類型的負載時,可以選擇不同的開關(guān)頻率,使電流的THD最低,從而進一步提高交流電子負載的性能。

        5 結(jié)論

        為了實現(xiàn)交流電子負載對交流輸入端電流的精確控制,達到模擬任意負載的效果。本文通過對比分析幾種交流電子負載的控制策略,針對負載模擬側(cè)的傳統(tǒng)控制策略存在的不能精確模擬各種類型負載的問題,提出了一種指令阻抗結(jié)合SVPWM的控制策略,并給出了指令阻抗轉(zhuǎn)化為指令電流的計算方法。通過MATLAB的仿真驗證了該電路拓撲和控制策略的可行性。基于TMS320F28335 DSP控制器來設(shè)計控制系統(tǒng),搭建了小功率實驗平臺,實現(xiàn)了上述方案,實驗結(jié)果與仿真結(jié)果相符,證明了該控制算法能夠精確實現(xiàn)對不同性質(zhì)負載的電子模擬。在此基礎(chǔ)上,針對器件開關(guān)頻率對電子負載的電流THD的影響進行了實驗分析,并總結(jié)了其變化規(guī)律。當電子負載硬件參數(shù)已經(jīng)固定的情況下,在模擬不同類型負載時,為了提高交流電子負載的性能,可根據(jù)變化規(guī)律選擇不同的開關(guān)頻率,從而使電流的諧波總含量更低。

        猜你喜歡
        電子負載指令控制策略
        聽我指令:大催眠術(shù)
        考慮虛擬慣性的VSC-MTDC改進下垂控制策略
        能源工程(2020年6期)2021-01-26 00:55:22
        工程造價控制策略
        山東冶金(2019年3期)2019-07-10 00:54:04
        ARINC661顯控指令快速驗證方法
        電子負載在電源測試中的有效應(yīng)用
        電子測試(2018年18期)2018-11-14 02:30:38
        LED照明產(chǎn)品歐盟ErP指令要求解讀
        電子測試(2018年18期)2018-11-14 02:30:34
        現(xiàn)代企業(yè)會計的內(nèi)部控制策略探討
        一種用于電磁爐老化的能饋型電子負載
        電子測試(2017年11期)2017-12-15 08:57:10
        容錯逆變器直接轉(zhuǎn)矩控制策略
        單相能饋型交流電子負載的并網(wǎng)控制研究
        亚洲日韩成人无码| 一区二区特别黄色大片| 亚洲国产大胸一区二区三区| 色偷偷久久久精品亚洲| 国产精品无码午夜福利| 97国产免费全部免费观看| 性视频毛茸茸女性一区二区| 国产色视频一区二区三区不卡| 人与禽性视频77777| 亚洲免费黄色| 日本大胆人体亚裔一区二区 | 国内精品久久久久影院一蜜桃 | 亚洲国产精品无码专区影院| 国产偷窥熟女精品视频| 中国免费一级毛片| 国产精品一区二区熟女不卡| 久久狠狠色噜噜狠狠狠狠97| 国产精品麻花传媒二三区别| 国产午夜亚洲精品不卡免下载| 国产精品国产三级国产剧情 | 色欲av一区二区久久精品| 国内精品嫩模av私拍在线观看| 久久精品熟女亚洲av麻| 99精品国产一区二区三区a片| 无码天堂亚洲国产av麻豆| 亚洲不卡高清av在线| 日本动漫瀑乳h动漫啪啪免费| 欧美成人一区二区三区在线观看| 99久久久久久亚洲精品| 青草久久婷婷亚洲精品| 女人喷潮完整视频| 欧洲亚洲第一区久久久| 国产av麻豆精品第一页| 亚洲av无码电影在线播放| 欧美色aⅴ欧美综合色| 精品日产一区2区三区 | 日韩精品自拍一区二区| 亚洲av成人无码一区二区三区在线观看 | 亚洲美女毛片在线视频| 久久久久人妻精品一区蜜桃 | 一区二区三区在线蜜桃|