安東尼?吉安諾普洛斯
帕金斯威爾建筑設(shè)計(jì)事務(wù)所(Perkins+Will)
為團(tuán)隊(duì)科學(xué)而創(chuàng)造的尖端設(shè)施將會(huì)引領(lǐng)科研、教學(xué)與拓展之路,同時(shí)擁抱自然元素。
2018年12月,華盛頓大學(xué)在其位于美國華盛頓州西雅圖市的主校區(qū)迎來了新建的生命科學(xué)樓項(xiàng)目的竣工。這座總面積19 230m2的建筑及其配套溫室共同組成了華盛頓大學(xué)生物學(xué)系的新家園。
從建筑師的角度出發(fā),這座新建的生命科學(xué)樓展現(xiàn)的是設(shè)計(jì)師、工程師與建造者在可持續(xù)設(shè)計(jì)和實(shí)用性設(shè)計(jì)方面與生態(tài)要素相互融合的可能。
作為西雅圖市最重要的研究機(jī)構(gòu),華盛頓大學(xué)在吸納全球人才方面處于領(lǐng)先地位。這座學(xué)府通過鼓勵(lì)創(chuàng)新學(xué)風(fēng)和結(jié)合豐富理念來支持多元、動(dòng)態(tài)的學(xué)習(xí)領(lǐng)域。生物學(xué)系培養(yǎng)的STEM(科學(xué)、技術(shù)、工程和數(shù)學(xué))學(xué)生總數(shù)超出了華盛頓州全境任何其他課程計(jì)劃培養(yǎng)的學(xué)生人數(shù),該學(xué)院亟需一棟新建筑來容納更多新生,優(yōu)化科研設(shè)施,以便持續(xù)出產(chǎn)高影響力的科學(xué)發(fā)現(xiàn)與先進(jìn)成果。除了這些基本的結(jié)構(gòu)需求和容量需求以外,該校還希望擁有一個(gè)屬于生物學(xué)系的家園,為學(xué)院的持續(xù)發(fā)展發(fā)揮催化作用,使學(xué)院能夠繼續(xù)站在生命科學(xué)研究的發(fā)展前沿。
設(shè)計(jì)伊始,華盛頓大學(xué)便向我們提出一個(gè)具有前瞻性思維的要求,即將通用的科學(xué)教室和實(shí)驗(yàn)室環(huán)境轉(zhuǎn)變?yōu)檎嬲纳缃粎f(xié)作環(huán)境——一個(gè)能夠激發(fā)和優(yōu)化互動(dòng)交流的空間。
為吸納頂級(jí)科研人才和高水準(zhǔn)學(xué)生群體,學(xué)校致力于打造沉浸式學(xué)習(xí)環(huán)境,并將其核心的科研愿景融入到長期發(fā)展目標(biāo)當(dāng)中。同時(shí),學(xué)校對建筑設(shè)計(jì)也非常期待,不僅希望能有更高的功能實(shí)用性,還希望能與其所在的具體環(huán)境形成獨(dú)特的互動(dòng)關(guān)系。我們對此也非常認(rèn)同,建筑發(fā)揮效用的方式應(yīng)當(dāng)有助于社會(huì)利益及全球平等。好的空間設(shè)計(jì)能夠促進(jìn)人與人之間的情感共鳴以及人與自然界之間的溝通聯(lián)系,積極正面地影響人的行為,反映建筑與設(shè)計(jì)在塑造文化體驗(yàn)過程中所扮演的重要角色。
生物學(xué)不僅是華盛頓大學(xué)的熱門專業(yè),也是研究我們所生活的世界的一門學(xué)問。將自然元素融入到建筑設(shè)計(jì)過程中,不是僅靠直覺就能實(shí)現(xiàn)的,關(guān)鍵是要抓住兩者之間的聯(lián)系。同時(shí),建筑概念還需要著眼于未來,協(xié)助引領(lǐng)院系步入生命科學(xué)研究、學(xué)習(xí)與教學(xué)的發(fā)展前沿。為了使自然元素與前瞻性的現(xiàn)代設(shè)計(jì)手法相協(xié)調(diào),我們倡導(dǎo)通過專有的、領(lǐng)先的可持續(xù)建筑設(shè)計(jì)實(shí)踐將一流的生命科學(xué)研究與教育銜接在一起。如今,這座生命科學(xué)樓已經(jīng)成為了華盛頓大學(xué)校園的核心建筑,大學(xué)生與科研人員的活動(dòng)中樞,也成為新一代STEM科研、教學(xué)與公共拓展方面的轉(zhuǎn)型門戶。
如果沒有校方管理層的支持、帕金斯威爾團(tuán)隊(duì)及我們合作方的努力是無法完成這項(xiàng)具有紀(jì)念意義
1 建筑外部
2 一層平面圖
業(yè)主:華盛頓大學(xué)文理學(xué)院生物學(xué)系
建設(shè)地點(diǎn):美國華盛頓州西雅圖市
建筑設(shè)計(jì):帕金斯威爾建筑設(shè)計(jì)事務(wù)所(Perkins+Will)
設(shè)計(jì)主創(chuàng):Andrew Clinch
設(shè)計(jì)團(tuán)隊(duì):Anthony Gianopoulos, Devin Kleiner, Shanni Hanein
總建筑面積:19 230m2
設(shè)計(jì)時(shí)間:2014~2016
建造時(shí)間:2016~2018
攝影:Kevin Scott
3 建筑夜景
4 建筑設(shè)計(jì)示意圖
5 實(shí)驗(yàn)室內(nèi)部
6 社交空間
7 溫室及建筑一側(cè)
其他圖片版權(quán):帕金斯威爾建筑設(shè)計(jì)事務(wù)所的項(xiàng)目的。華盛頓大學(xué)文理學(xué)院副院長史蒂夫·馬耶斯基表示:“這座生命科學(xué)樓的設(shè)計(jì)將會(huì)幫助我們實(shí)現(xiàn)華盛頓大學(xué)生物學(xué)系未來的發(fā)展愿景。它不止是一棟建筑,這個(gè)全新的樞紐將會(huì)為成就創(chuàng)新協(xié)作化的尖端科研工作,帶來配套設(shè)施及結(jié)構(gòu),并成為學(xué)生進(jìn)行探索發(fā)現(xiàn)的窗口,通過為學(xué)生、教師及員工提供相互協(xié)作、交流的空間來轉(zhuǎn)變我們教育新一代科學(xué)人才的方式?!?/p>
從概念層面來說,這座生命科學(xué)樓是對生物學(xué)基本原理的擴(kuò)展。設(shè)計(jì)從生物學(xué)的整體特征汲取靈感,將自然界的多種元素整合到一起,在創(chuàng)新和可持續(xù)設(shè)計(jì)特征的烘托下形成視覺焦點(diǎn),同時(shí)滿足師生當(dāng)前及以后的課程需要。
我們的設(shè)計(jì)實(shí)踐具有智慧化、前瞻性特征,力求打造高端的學(xué)習(xí)與科研文化。在實(shí)體空間層面,這座生命科學(xué)樓的設(shè)計(jì)旨在打造能夠扶持、鼓勵(lì)、創(chuàng)新與發(fā)現(xiàn)的環(huán)境。設(shè)計(jì)中我們舍棄了按教室、實(shí)驗(yàn)室及其他公共空間等既定功能來進(jìn)行建筑分隔的傳統(tǒng)模式,而是以迎合團(tuán)隊(duì)導(dǎo)向性協(xié)作交流活動(dòng)來進(jìn)行設(shè)計(jì)布局。生命科學(xué)樓的辦公、實(shí)驗(yàn)及共用空間的位置彼此緊鄰;科研與教育區(qū)域具有開放化、模塊化和靈活性特點(diǎn),以便適應(yīng)新方法和新儀器的出現(xiàn)。為鼓勵(lì)偶遇交流,室內(nèi)設(shè)有一部懸挑樓梯,并配有大面積休息平臺(tái);室外設(shè)有一個(gè)庭院和層疊樓梯,屋頂平臺(tái)沿路設(shè)置由回收木材制成的座椅,咖啡廳旁也設(shè)有座位休息區(qū)。
這座建筑還緊鄰西雅圖市最大的自行車通勤線路伯克吉爾曼徑道。為支持這條直通城市資源的通道,生命科學(xué)樓提供了一系列公共配套設(shè)施,其中包括培育著3 400種植物的公共溫室,其供教學(xué)使用的物種數(shù)量堪稱全州之首;一條由西雅圖本土藝術(shù)家克勞德·澤瓦斯創(chuàng)作完成的長27m的藝術(shù)墻;若干公共自行車停車位;此外還配有咖啡館及室內(nèi)外座椅休息區(qū)。
8 電梯廳
9 建筑樓層木材飾面安裝示意圖
10 建筑可持續(xù)設(shè)計(jì)示意圖
鑒于項(xiàng)目所在的西雅圖市是太平洋西北部的主要樞紐,我們在生命科學(xué)樓的設(shè)計(jì)上也充分考慮了其獨(dú)特的地域身份與環(huán)境特征。在這座城市信步閑游一番,就會(huì)清晰地感受到人與自然之間的豐富聯(lián)系。在這里,郁郁蔥蔥的綠化空間和公園設(shè)施隨處可見,連綿起伏的山景和廣闊的普吉特海灣觸目可及。華盛頓大學(xué)主校區(qū)就位于兩山交匯處,處在華盛頓湖岸線沿途,這里對所有熱愛戶外活動(dòng)的人來說都稱得上是一片樂土。設(shè)計(jì)力求確保建成后的建筑將會(huì)成為兼具實(shí)用性和可持續(xù)性的現(xiàn)代空間,并在建造過程中融入西北地區(qū)的獨(dú)特風(fēng)情與身份特征。
從技術(shù)層面而言,生命科學(xué)樓是一個(gè)值得深究的案例,它將高度創(chuàng)新與高度可持續(xù)的設(shè)計(jì)實(shí)踐結(jié)合到建筑的方方面面。最獨(dú)特的自然元素的運(yùn)用之一莫過于電梯核心筒,由約60m高的花旗松經(jīng)過量身加工覆面而成。這樣的設(shè)計(jì)著意效仿樹木在森林中的天然狀態(tài),建筑首層的寬大樹樁隨著樓層的上升而逐漸變細(xì)變窄。而作為覆面原材料的九根樹木均來自于奧林匹克半島,由利奧波德·弗里曼林業(yè)公司捐贈(zèng),意在響應(yīng)《拯救塔波溪》一書中談及的斯科特與蘇珊·弗里曼夫婦發(fā)起的流域修復(fù)治理行動(dòng)。類似這種深度的細(xì)節(jié)在生命科學(xué)樓項(xiàng)目當(dāng)中比比皆是,也是帕金斯威爾設(shè)計(jì)團(tuán)隊(duì)開展項(xiàng)目實(shí)踐的一大標(biāo)志性特征。
我們將LEED金級(jí)體系認(rèn)證標(biāo)準(zhǔn)作為建筑設(shè)計(jì)的起點(diǎn),隨后又在設(shè)計(jì)師與推行華盛頓大學(xué)太陽能應(yīng)用計(jì)劃的學(xué)生群體之間建立了合作聯(lián)系,借助學(xué)生群體的力量來協(xié)助分析節(jié)能特征,起草專項(xiàng)補(bǔ)貼、申請報(bào)告并開展匯報(bào)演說等。這座建筑在室外安裝了同類首批共496片豎向玻璃太陽能“肋板”,這些肋板包含建筑一體化光伏太陽能電池,能將太陽能生成電能。所有這些肋板預(yù)計(jì)將能滿足1 150m2以上辦公場所的全年照明需求,與此同時(shí),還能減少日照熱量。由于沒有制冷的需要,建筑內(nèi)并未安裝大型風(fēng)管。建筑還設(shè)有高3.35m的吊頂,能為科研人員提供自然采光與清晰的視野。
其他可持續(xù)特征包括設(shè)置可開啟窗、冷梁與冷流系統(tǒng)、水回收系統(tǒng)、輻射地板及屋面太陽能板等。同時(shí),學(xué)生和訪客能夠通過一層的觸摸顯示屏直觀地了解到建筑內(nèi)開展的研究情況以及建筑能耗和水耗方面的實(shí)時(shí)信息。所有這些特征的融合成就了生命科學(xué)樓的建筑設(shè)計(jì)與工程設(shè)計(jì),也成為新一代教學(xué)與科研工作的新紐帶。
隨著師生們的入駐使用,我們期待看到協(xié)作交流與科研方式會(huì)隨著全新設(shè)計(jì)的空間內(nèi)學(xué)習(xí)環(huán)境的不斷變化而變化。華盛頓大學(xué)生命科學(xué)樓項(xiàng)目使我們有機(jī)會(huì)通過創(chuàng)造可持續(xù)空間來踐行科學(xué)洞察自然的學(xué)術(shù)追求,同時(shí)通過項(xiàng)目團(tuán)隊(duì)的真正合作將外面的世界引入校園。
本項(xiàng)目再次印證了可持續(xù)設(shè)計(jì)以及設(shè)計(jì)扎根于自然等理念的成功。完成后的建筑體現(xiàn)了新一代校園建筑的前瞻性、創(chuàng)新力與可持續(xù)性,也為新一代學(xué)生帶來了與眾不同的學(xué)習(xí)體驗(yàn)與社交氛圍。
Cutting-edge facility created for team science will lead the way in research, teaching and outreach while embracing elements of nature.
In December 2018, the University of Washington(UW) completed construction of its new Life Sciences Building on its main campus in Seattle, Washington. The 207,000-square-foot building and associated greenhouse represent the new home for the UW Department of Biology.
From an architect’s perspective, the new Life Sciences Building reveals what is possible when designers,engineers and builders combine their commitments to sustainable, functional design with ecological inspiration.
As Seattle’s premier research institution, the University of Washington is a leader in attracting global talent to its campus. By fostering climates of innovation and incorporating resourceful ideas to support diverse and dynamic fields of study, the University has set itself apart as a world leader and transformed the way it implements its research and advanced educational philosophies.The Biology curriculum educates more STEM (science,technology, engineering, math) students than any other program in the state of Washington. With demand growing rapidly, the department needed a new building to house more incoming students and enhance research facilities to continue producing high-impact scientific discoveries and field-leading results. Beyond these basic structural and capacity needs, the university also desired a home for Biology that would serve as a catalyst for continued growth, helping to shape the department’s future as a leader at the forefront of life science research.
11 建筑一體化光伏板示意圖
12 建筑日景
1 Two Visions, Full Design Integration
1.1 Creating an Immersive Learning Environment
The University of Washington presented our firm with a forward-thinking request: Turn the common science classroom and lab environment into a truly social and collaborative setting—a space that will ignite and enhance interactive communication.
Aiming to attract top research talent and highcaliber students, academic institutions strive to create immersive learning environments that fuse their core research vision with their long-term goals. Desire is also increasing for building designs that not only promote functionality but also interact uniquely with the specific environments they inhabit. We agree. The way buildings function should contribute to the social good and future equity of our world. Intentional designs and spaces can promote empathy and connection to each other and the natural world, positively impacting human behaviors and illustrating the important role architecture and design can play in shaping cultural experiences.
1.2 Sustainable Design with Ecological Focus
Biology is more than just a popular major at the University of Washington – it’s the study of our living world. Incorporating natural elements into the building’s design process was not only intuitive, it was essential to emphasize that connection. The building’s concept also needed to focus on the future, to help guide the department into the frontiers of life science research, learning and instruction. To reconcile elements of nature with a futureforward, modern approach, we took the lead in bridging state-of-the-art life science research and education with our proprietary cutting-edge sustainable architecture and design practices. Today, the Life Sciences Building is a centerpiece of the home campus, a hub for student and researcher innovation and a transformational gateway to the next generation of STEM research, teaching and public outreach.
My partners and colleagues at Perkins+Will could not have taken on this monumental project without the support of university leadership, including Steve Majeski,Associate Dean within the UW College of Arts and Sciences: “The design of the Life Sciences Building will help us achieve our vision for the future of biology at the UW. It’s so much more than a building,” Majeski says.“This new hub will provide the facilities and structure to enable innovative and collaborative cutting-edge research and act as a portal for student discovery, transforming the way we teach the next generation of scientists with spaces for collaboration among students, faculty and staff.”
2 A Hub for Future-Focused Research & Teaching
Conceptually, Life Sciences Building expands upon biology fundamentals. Inspired by the integrative nature of biology, the design combines elements of the natural world as visual focal points accented by innovative and sustainable design features, while meeting the current and future curriculum needs for students and faculty.
We used intelligent and forward-thinking design practices to enable a culture of high-end learning and research. In terms of physical space, the Life Sciences Building is designed to naturally foster an environment of innovation and discovery. Rather than the traditional model that separates the building into set spaces for classrooms,labs and other common spaces, the project was designed for team-focused collaboration. The Life Sciences Building’s offices, laboratories and common-use spaces are all located in close proximity to one another. Open, as well as modular and flexible research and teaching areas are designed to adapt to emerging research questions that require novel methods and new instruments. To encourage impromptu encounters, the interior features a suspended staircase with oversized landing areas; the exterior features a courtyard with cascading stairs and reclaimed wood benches along with a rooftop deck with seating adjacent to a cafe.
The building is also located in close proximity to the city’s largest bike commuter trail, the Burke Gilman.To compliment this direct link to city resources, the Life Sciences Building offers a range of public amenities,including an eventually public greenhouse with 3,400 species of plants, the largest teaching collection in the state; a 90-foot-long art wall by Seattle artist Claude Zervas; public bike racks; a café, and indoor/outdoor seating.
3 State-of-the-Art Architecture, Natural World Roots
Situated in Seattle, a major hub of the Pacific Northwest, we structured our design for the Life Sciences Building to incorporate the distinct identity and environment of the region. A stroll around the city itself makes the human connection to nature abundantly clear,with plenty of lush green spaces and parks, mountain views and the expansive Puget Sound. Nestled between two mountain ranges and situated along the shore of Lake Washington, the University’s main campus is just as much a haven for anyone with a love-affair of the outdoors. So,we made sure the completed building would be a modern space that was functional, sustainable and constructed to incorporate the unique flare and identity of the Northwest region.
13 交流樓梯
14 室內(nèi)走道
15 科研辦公
16 露臺(tái)和座椅
17 走道和交流休息區(qū)
In technical terms, the Life Sciences Building is a master case study in integrating highly innovative and sustainable design practices into nearly every aspect of a building. One of the most unique natural elements is a donated wood installation within its elevator core,wrapped in custom-milled slabs from 200-foot Douglasfir trees. Designed to mimic the way the trees appear in the woods, the wide base of the trees on the lowest floor progressively narrows and tapers as it rises to the floors above. The nine trees come from a forest in the Olympic Peninsula, and were donated by Leopold-Freeman Forests, LLC, as part of Scott and Susan Freeman’s watershed restoration efforts described in the book Saving Tarboo Creek. This degree of detail is common throughout the Life Sciences Building and is a hallmark of additional projects directed by Perkins+Will.
A natural starting point was mapping the building’s design to the U.S. Green Building Council’s LEED(Leadership in Energy and Environmental Design) Gold standards. We took steps to track to these standards through a unique collaboration between designers and students from UW Solar, who helped analyze features, write grants and give presentations. The Life Sciences Building boasts the first-of-its-kind installation of 496 vertical glass solar“fins” on its exterior. These fins contain solar cells known as building integrated photovoltaics that generate energy from the sun. In total, the fins are anticipated to produce enough electricity to light more than 12,400 square feet of office space within the building throughout the year. They will also minimize solar heat gain, or heat the building captures throughout the day from the sun. Without the need to cool the space, no large air ducts are present. The result is 11-foot high ceilings that allow natural light and clear views for researchers.
Other sustainable features include operable windows for natural ventilation cooling, chilled beams and waves, a water reclamation system for greenhouse irrigation, radiant floors and rooftop solar panels. Students and visitors can learn about the research conducted within the building as well as real-time information about the building’s energy and water usage from a touchscreen dashboard on the first floor. All of these features add up to an exciting design and engineering achievement and a new nexus for the next generation of learning, teaching and research.
4 Conclusion
As students and faculty move into the building our team is looking forward to seeing how collaboration and approaches to research change as the learning environment continues to evolve in the new space. The opportunity to create a sustainable space for academic pursuits that examine the natural world provided an opportunity to bring the outside world in through a true partnership amongst the project team.
This project is another demonstration of the success in sustainable architecture and design by remaining rooted in the natural world. The highly innovative and sustainable facility is truly designed for the next-generation of research, teaching and outreach and is committed to creating a unique learning and social experience for the future students.