亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        PVD導(dǎo)熱涂層的研究綜述

        2019-06-26 10:22:16余斌孫德恩1bYongdaZhen
        表面技術(shù) 2019年6期
        關(guān)鍵詞:導(dǎo)熱性聲子熱導(dǎo)率

        余斌,孫德恩,1b,Yongda Zhen

        ?

        PVD導(dǎo)熱涂層的研究綜述

        余斌1a,孫德恩1a,1b,Yongda Zhen2

        (1.重慶大學(xué) a. 材料科學(xué)與工程學(xué)院 b. 機(jī)械傳動(dòng)國家重點(diǎn)實(shí)驗(yàn)室, 重慶 400030;2. Singapore Polytechnic, Singapore 139651)

        首先從導(dǎo)熱涂層的應(yīng)用背景出發(fā),分析了導(dǎo)熱涂層研究的必要性,其次探討了導(dǎo)熱涂層的導(dǎo)熱機(jī)理和影響涂層導(dǎo)熱的宏觀和微觀因素。在此基礎(chǔ)上,闡述了PVD導(dǎo)熱涂層的研究現(xiàn)狀,重點(diǎn)分析了SiC、AlN、DLC三種常見的具有較大應(yīng)用潛力的PVD導(dǎo)熱涂層。聲子散射是影響涂層熱導(dǎo)率的直接原因,涂層內(nèi)部同位素、雜質(zhì)、缺陷及晶界等均會(huì)引起聲子發(fā)生散射,而界面聲子散射引起的界面熱阻對(duì)涂層導(dǎo)熱性能影響巨大,通過合理選擇制備技術(shù)和精確控制工藝參數(shù),在一定程度上能改善涂層的導(dǎo)熱性能,提高熱導(dǎo)率。在此基礎(chǔ)上,筆者提出了離子源輔助高功率脈沖磁控濺射(HiPIMS)的工藝配合,提高涂層質(zhì)量和致密度,優(yōu)化界面結(jié)構(gòu),降低界面熱阻,以期實(shí)現(xiàn)涂層的高導(dǎo)熱性能。

        導(dǎo)熱涂層;熱導(dǎo)率;熱阻;聲子散射;界面結(jié)構(gòu)

        隨著科技的迅速發(fā)展,輕量化和集成化成為現(xiàn)代及未來電子設(shè)備及電子電路的發(fā)展潮流。越來越復(fù)雜的電路,越來越小的電路板面積要求,導(dǎo)致微電子設(shè)備及集成電路的縮小化,元器件密度和功率不斷增加,熱擁擠現(xiàn)象越來越嚴(yán)重,大量材料界面的熱電阻成為限制電路或電子設(shè)備高效散熱的重要因素[1]。統(tǒng)計(jì)數(shù)據(jù)表明,電子元器件的溫度每升高2 ℃,可靠性下降10%,溫度為50 ℃時(shí),電子設(shè)備的壽命只有25 ℃時(shí)的1/6[2]。高功率發(fā)光二極管LED,因其高的發(fā)光效率、較長(zhǎng)的使用壽命及節(jié)能等優(yōu)點(diǎn),在汽車照明、家用照明等領(lǐng)域應(yīng)用廣泛[3]。LED燈的發(fā)光效率為20%左右,剩余70%~80%的能量轉(zhuǎn)化為熱量,熱量使得大功率LED燈具的溫度升高。如果不及時(shí)高效散熱,將降低元器件的可靠性,甚至損壞電路及電子設(shè)備。LED燈具產(chǎn)生故障大約有70%來由散熱不及時(shí)導(dǎo)致的芯片溫度過高[4-5]。散熱問題成為提高產(chǎn)品功率,發(fā)展先進(jìn)LED產(chǎn)品的最大障礙,解決LED散熱問題的途徑之一是應(yīng)用高導(dǎo)熱、絕緣和透過率的基板材料,將熱量有效地傳出去,但基板上的熱量往往不能有效地傳導(dǎo)至外殼表面[6-7]。因此,導(dǎo)熱涂層在芯片封裝設(shè)計(jì)及散熱方面極為重要[8]。

        導(dǎo)熱涂層的研發(fā)和應(yīng)用對(duì)于提高大功率集成化電子設(shè)備外殼及封裝的有效導(dǎo)熱率起著重要的貢獻(xiàn)。PVD導(dǎo)熱涂層由于PVD技術(shù)的優(yōu)勢(shì),能在低沉積溫度下實(shí)現(xiàn)高沉積效率,得到表面形態(tài)較好、內(nèi)應(yīng)力低的厚膜,實(shí)現(xiàn)涂層的高熱導(dǎo)性能[9-10]。在集成電路系統(tǒng)中加入導(dǎo)熱涂層,能顯著提高其散熱效率,并且高熱導(dǎo)率涂層的散熱效果遠(yuǎn)遠(yuǎn)優(yōu)于低熱導(dǎo)率涂層[11-12]。目前,研究較多較為成熟的PVD導(dǎo)熱涂層主要有SiC[13-15]、AlN[16-18]、DLC[19-21]等。這些涂層都在一定程度上緩解了元器件的熱擁擠問題,即便隨著元器件功率的提高,產(chǎn)熱過多,高熱導(dǎo)率涂層也能將熱能及時(shí)高效地傳導(dǎo)出去,保證器件或電路在額定溫度下使用,提高了大功率微電子設(shè)備的使用性能和壽命。Horng[22-23]等人在LED封裝基板表面沉積DLC涂層,在1400 mA注入電流下的熱阻比無涂層的要低34%,并且能在2000 mA的注入電流及620 mW的輸出功率下正常工作,極大地提高了LED的光性能和壽命。PVD導(dǎo)熱涂層的發(fā)展,對(duì)于大功率微電子器件的發(fā)展有著重要的意義,并且在高導(dǎo)熱的同時(shí),一定程度上也提高了設(shè)備的耐蝕抗磨等性能。

        1 PVD涂層導(dǎo)熱的機(jī)理及影響因素

        導(dǎo)熱涂層實(shí)現(xiàn)熱量的快速傳導(dǎo),保證電路設(shè)備安全可靠的基礎(chǔ)是涂層材料具有較高的熱導(dǎo)率。與塊狀材料不同,薄膜材料表現(xiàn)出來的熱導(dǎo)率往往比同種的塊狀材料要低得多。目前已經(jīng)有研究表明,同種材料塊狀和薄膜形式的熱導(dǎo)率不同,是由于導(dǎo)熱機(jī)理的差異和影響熱導(dǎo)率的因素差異導(dǎo)致的。高的熱導(dǎo)率往往得益于材料的高導(dǎo)熱及傳輸過程的低損耗,因此需要對(duì)涂層導(dǎo)熱的機(jī)理和影響因素有清晰的認(rèn)識(shí),以便能夠?qū)ν繉拥膶?dǎo)熱進(jìn)行調(diào)控,降低傳輸過程中的熱量損耗,實(shí)現(xiàn)熱量地高效傳導(dǎo)。

        1.1 導(dǎo)熱機(jī)理

        根據(jù)固體傳熱理論,材料熱導(dǎo)率主要由兩部分組成,即熱傳導(dǎo)是由自由電子和聲子兩種載體傳遞熱量的綜合(=p+e)[24]。對(duì)于金屬而言,主要依靠材料內(nèi)部的自由電子傳輸能量;非金屬主要是通過晶格振動(dòng)(聲子導(dǎo)熱)來傳遞能量,實(shí)現(xiàn)熱傳導(dǎo)。涂層與塊狀材料導(dǎo)熱的基本原理大致相同,不同的是涂層本身是一個(gè)微尺度量,不像塊狀材料尺度很大。涂層厚度一般在幾納米到幾百納米之間,尺度與聲子或電子平均自由程量級(jí)相當(dāng),涂層與襯底間的界面熱阻會(huì)超過涂層本身固有熱阻,大大降低熱導(dǎo)率。常見的PVD導(dǎo)熱涂層多為陶瓷非金屬(SiC、AlN等),廣大學(xué)者研究了從基體金屬到非金屬涂層的傳熱途徑。Shukla[25-27]等人在文獻(xiàn)中提出了金屬-非金屬熱流傳導(dǎo)模型,有兩種方式:熱量直接從金屬中的自由電子轉(zhuǎn)移到非金屬的晶格振動(dòng);可以首先從金屬中的自由電子轉(zhuǎn)移為金屬晶格振動(dòng),然后通過界面上聲子-聲子的耦合實(shí)現(xiàn)金屬-非金屬之間的熱流傳導(dǎo)。

        1.2 影響因素

        涂層的熱導(dǎo)率是實(shí)現(xiàn)高效導(dǎo)熱的基礎(chǔ),在傳導(dǎo)熱量的過程中,任何能使聲子產(chǎn)生散射,降低平均自由程的因素都會(huì)直接或間接地對(duì)涂層的熱導(dǎo)率產(chǎn)生影響,降低導(dǎo)熱性能。在涂層結(jié)構(gòu)內(nèi)部,主要存在散射機(jī)制有[28]:聲子-聲子、聲子-同位素、聲子-雜質(zhì)或缺陷及聲子-晶界散射[29]等,膜基界面與聲子間的散射機(jī)制對(duì)涂層熱導(dǎo)率也有顯著影響。完美單晶結(jié)構(gòu)中只有聲子-聲子散射,隨溫度的下降,其熱導(dǎo)率升高。源于晶格中聲子數(shù)量減少,散射概率降低,聲子的平均自由程增加[30],而實(shí)際涂層會(huì)存在各種各樣的散射阻礙。因此,要提高PVD涂層的熱導(dǎo)率,必須從制備工藝和涂層結(jié)構(gòu)入手,優(yōu)化工藝參數(shù),減少引起聲子散射的因素。經(jīng)過眾多學(xué)者的深入研究,發(fā)現(xiàn)諸如沉積溫度[13, 31-32]、涂層厚度[33-38]、缺陷[39-40]及界面結(jié)構(gòu)[41-45]等對(duì)涂層熱導(dǎo)率影響很大,需要對(duì)工藝和參數(shù)進(jìn)行精確控制[46]。

        涂層的沉積溫度對(duì)于涂層組織結(jié)構(gòu)及熱導(dǎo)率是一個(gè)關(guān)鍵因素。沉積溫度表示涂層制備過程中能量的多少,對(duì)于涂層結(jié)構(gòu)產(chǎn)生重要的影響,比如提高涂層的致密度,對(duì)聲子散射會(huì)有一定的減小。對(duì)界面結(jié)構(gòu)而言,提高濺射溫度可以增強(qiáng)涂層與基底的結(jié)合,減小界面無定形層的熱阻影響[47]。對(duì)于晶體和非晶涂層,二者的熱導(dǎo)率具有不同的溫度依賴性。非晶涂層對(duì)溫度的依賴性類似于塊狀材料;而晶體涂層厚度與平均自由程相近時(shí),熱導(dǎo)率峰值隨溫度變化,較厚涂層的熱導(dǎo)率在低溫下達(dá)到峰值[48]。

        研究發(fā)現(xiàn),涂層厚度對(duì)熱導(dǎo)率的影響很大。隨著涂層厚度的增加,熱阻下降,熱導(dǎo)率升高。DLC涂層的熱導(dǎo)率及熱阻隨溫度的變化曲線如圖1所示,實(shí)線源于熱導(dǎo)率及熱阻與涂層厚度之間的函數(shù)公式[45,49]:f=i/(1+ik/f)及f/f=f/i+k。式中:f為涂層的有效熱導(dǎo)率;i為涂層材料的體熱導(dǎo)率;ik/f表示涂層的邊界效應(yīng)。隨著涂層厚度的增加,邊界效應(yīng)減小,有效熱導(dǎo)率f逐漸趨于材料的體熱導(dǎo)率i,微尺度效應(yīng)減小。對(duì)于較薄涂層,厚度因素對(duì)涂層的熱邊界阻礙更大,這就是圖1剛開始變化趨勢(shì)較大的原因。當(dāng)涂層厚度的增量遠(yuǎn)大于聲子波長(zhǎng)及聲子平均自由程時(shí),涂層熱導(dǎo)率逐漸接近于材料體熱導(dǎo)率,涂層散熱高效。

        圖1 DLC涂層熱導(dǎo)率及熱阻隨厚度變化[43]

        由于空氣的熱導(dǎo)率很低,涂層內(nèi)部的孔隙不僅增加了界面,而且孔隙中的空氣也阻礙了熱傳導(dǎo),嚴(yán)重影響了涂層的導(dǎo)熱性能及綜合性能[50],較大的致密度對(duì)于實(shí)現(xiàn)高導(dǎo)熱涂層也有一定的積極影響。除此之外,多層膜結(jié)構(gòu)由于界面增加,界面阻礙效應(yīng)嚴(yán)重,聲子散射增強(qiáng),對(duì)熱導(dǎo)率產(chǎn)生不利影響。Samani等人[51]通過對(duì)多層膜導(dǎo)熱性能的研究,發(fā)現(xiàn)隨著層數(shù)的增加,涂層系統(tǒng)的熱導(dǎo)率顯著下降。認(rèn)為其原因是多層膜會(huì)打斷柱狀結(jié)構(gòu),柱狀結(jié)構(gòu)的分裂導(dǎo)致聲子散射增加,擇優(yōu)取向降低,涂層尺寸減小,產(chǎn)生嚴(yán)重的微尺度效應(yīng),以及界面的位錯(cuò)等缺陷增多。這些均會(huì)使聲子散射強(qiáng)烈增加,平均自由程大大縮短,涂層熱導(dǎo)率下降。

        2 PVD導(dǎo)熱涂層的研究現(xiàn)狀

        國內(nèi)外研究學(xué)者對(duì)PVD導(dǎo)熱涂層已經(jīng)進(jìn)行了很多研究,由于PVD制備工藝的優(yōu)越性,PVD導(dǎo)熱涂層的潛能也逐漸被進(jìn)一步挖掘,實(shí)現(xiàn)了涂層的高熱導(dǎo)率及各種防護(hù)性能。導(dǎo)熱涂層要求具有較高的熱導(dǎo)率和低的熱膨脹系數(shù),高熱導(dǎo)率能保證熱量高效傳導(dǎo),低熱膨脹系數(shù)可以使得涂層和基底之間實(shí)現(xiàn)良好的結(jié)合,常見的幾種高熱導(dǎo)低熱膨脹涂層材料如圖2所示。左上角DLC材料具有極高的熱導(dǎo)率和低的熱膨脹系數(shù),熱導(dǎo)率是銅的1.5倍,而熱膨脹系數(shù)與Mo相當(dāng),展現(xiàn)出巨大的導(dǎo)熱潛能。此外,發(fā)明專利(ZL201420603314.6)[52]提出了一種電子元件導(dǎo)熱涂層結(jié)構(gòu),是以連接層結(jié)合于電子元件的表層,接觸層與外部接觸,可以提高位于其二端面間的導(dǎo)熱性,快速地協(xié)助電子元件散熱。

        圖2 不同材料的熱導(dǎo)率及熱膨脹系數(shù)[23]

        目前,該領(lǐng)域?qū)Ω邿釋?dǎo)率及低熱膨脹系數(shù)的DLC、AlN、SiC三種材料用作導(dǎo)熱涂層展開了廣泛的研究,研究對(duì)象主要針對(duì)涂層沉積技術(shù)、沉積溫度、涂層厚度及界面結(jié)構(gòu)優(yōu)化等。制備方法常采用磁控濺射[53]及高功率脈沖磁控濺射[54]等PVD技術(shù),也有人通過等離子噴涂制備導(dǎo)熱涂層[55-56]。研究結(jié)果表明,在不同制備方法和工藝參數(shù)下獲得的涂層,實(shí)現(xiàn)了較高的熱導(dǎo)率,提高了襯底的散熱效率,保證了密集電路和設(shè)備正常運(yùn)行。

        2.1 SiC涂層

        目前對(duì)于SiC涂層的導(dǎo)熱性能研究,發(fā)現(xiàn)SiC涂層的熱導(dǎo)率遠(yuǎn)小于SiC塊狀材料。文獻(xiàn)[57] 對(duì)比了SiC塊狀和薄膜形式的組織結(jié)構(gòu)和導(dǎo)熱性能,通過不同方法制備得到的SiC塊狀材料結(jié)構(gòu)為晶體,而厚度在幾百個(gè)納米的SiC涂層表現(xiàn)為非晶結(jié)構(gòu)。相比于SiC塊狀晶體材料,薄膜內(nèi)部非晶結(jié)構(gòu)的紊亂是導(dǎo)致SiC涂層熱導(dǎo)率較低的原因。劉霞等人[14]的研究結(jié)果也得到了相同的結(jié)論。Wang等人[58]通過射頻磁控濺射PVD技術(shù)在鎂合金表面沉積了單層及復(fù)合SiC涂層,結(jié)果顯示,復(fù)合SiC涂層的熱導(dǎo)率隨溫度不同而改變。經(jīng)過腐蝕后,復(fù)合涂層在25 ℃和100 ℃下的熱導(dǎo)率分別為90.1 W/(m·K)和108.4 W/(m·K),表明SiC涂層能在腐蝕環(huán)境下保持高熱導(dǎo)性能。

        2.2 AlN涂層

        單晶AlN在室溫下的熱導(dǎo)率為320W/(m·K),平均自由程為100 nm,使得AlN涂層在高功率高溫電子設(shè)備和集成電路中有巨大的應(yīng)用潛力[59-60]。大量的報(bào)道[16,61-63]表明,在幾百納米或幾個(gè)微米范圍厚的AlN涂層仍保持晶體結(jié)構(gòu),有(002)的擇優(yōu)取向,并且隨著晶粒尺寸的增加,涂層的成形性越好,熱導(dǎo)率越高。Duquenne等人[64]通過平衡磁控濺射和非平衡磁控濺射技術(shù)在Si基體表面沉積了AlN涂層,同時(shí)比較了涂層厚度、氣體含量等參數(shù)對(duì)熱導(dǎo)率的影響。結(jié)果表明,熱導(dǎo)率取決于涂層晶型質(zhì)量、致密度等微觀結(jié)構(gòu),相比平衡磁控濺射,非平衡磁控濺射沉積的涂層的晶型更完整、組織更致密、厚度更大、界面結(jié)合更好(見圖3),獲得了更大的熱導(dǎo)率。此外,元素C[65]、Si[66]、B[67]等的摻雜,在某一方面可以降低邊界熱阻,提高導(dǎo)熱性能。

        2.3 DLC涂層

        與SiC涂層相似,DLC涂層也是一種非晶結(jié)構(gòu)。DLC涂層是一種由sp3和sp2雜化碳鍵組成的性質(zhì)介于金剛石和石墨之間的碳膜。金剛石具有最高的熱導(dǎo)率2000 W/(m·K),石墨由于具有與金屬相似的性質(zhì),體內(nèi)含有大量的自由電子,導(dǎo)熱性能也很好。因此,DLC也具有優(yōu)異的導(dǎo)熱性能,熱導(dǎo)率高達(dá)600 W/(m·K),是一種非常具有潛力的導(dǎo)熱涂層。與其他涂層略有差異的是,結(jié)構(gòu)獨(dú)特的DLC涂層的導(dǎo)熱兼顧金屬的自由電子導(dǎo)熱和非金屬的聲子導(dǎo)熱(晶格振動(dòng)),以及可以將表面熱能轉(zhuǎn)換為紅外線的電磁波(原子振動(dòng)),以黑體輻射的形式加速散熱[68],而熱輻射散熱效率主要取決于紅外發(fā)射率[69]。大量的研究[70-72]表明,DLC涂層的熱導(dǎo)率與sp3雜化鍵的數(shù)量和結(jié)構(gòu)有序度有關(guān),取決于涂層密度、楊氏模量及sp3的含量。涂層熱導(dǎo)率隨厚度及溫度等的變化歸因于這些因素對(duì)涂層密度、楊氏模量及sp3的含量的影響,并且影響涂層與基體界面結(jié)構(gòu),引起界面熱阻的變化。在高注入電流下,LED封裝基底上沉積有DLC涂層的光輸出功率和EQE都優(yōu)于無DLC涂層[73]。此外,研究顯示,旌宇顯卡散熱器在沉積DLC涂層后,熱阻能降低到大約0.05,溫度下降5 ℃左右。表明DLC涂層在提高各種器件散熱性能上有較大的應(yīng)用潛力[74]。

        圖3 不同方法制備的AlN涂層截面SEM圖[64]

        2.4 涂層熱導(dǎo)率的測(cè)量及界面結(jié)構(gòu)的優(yōu)化

        與結(jié)構(gòu)材料不同,涂層尺度在納米或微米量級(jí),由于涂層的厚度與界面層厚度相當(dāng),納米尺度上測(cè)量的涂層導(dǎo)熱性可能受到界面層熱阻的影響[75]。因此,常規(guī)熱導(dǎo)率測(cè)量方法并不適用與涂層材料。目前用于薄膜熱導(dǎo)率的測(cè)試技術(shù)主要有3ω技術(shù)[76-79]、Raman光譜法[80]、瞬態(tài)熱帶技術(shù)[62-64]、TDTR法[37,81]等,各種測(cè)試技術(shù)都有各自的優(yōu)勢(shì)和應(yīng)用。3ω技術(shù)是目前薄膜熱導(dǎo)率最常用的測(cè)試技術(shù)之一,因?yàn)槠鋵?duì)輻射不敏感,測(cè)量條件簡(jiǎn)單方便,非常適用于薄膜縱向熱導(dǎo)率的測(cè)量[82]。3ω技術(shù)的熱穿透深度大于薄膜的厚度,所測(cè)得的熱導(dǎo)率受界面熱阻的影響,TDTR法則沒有(見圖4)[81]。

        圖4 3ω技術(shù)和TDTR法的熱流傳輸[81]

        界面散射造成的界面熱阻對(duì)熱導(dǎo)率的影響很大,甚至阻隔大量熱傳輸,大大降低涂層的導(dǎo)熱性能。優(yōu)化界面結(jié)構(gòu),減小界面散射是提高涂層導(dǎo)熱性能的關(guān)鍵。研究[47,83-84]發(fā)現(xiàn),在界面處生成的無定形結(jié)構(gòu)擴(kuò)散層大大增強(qiáng)了對(duì)聲子的散射,并隨著擴(kuò)散層厚度的增加,散射增強(qiáng),熱導(dǎo)率下降。界面無定形擴(kuò)散層與涂層有效熱導(dǎo)率的關(guān)系為:tot/eff=p/p+a/a,其中eff、p、a分別為有效熱導(dǎo)率、薄膜熱導(dǎo)率及界面擴(kuò)散層熱導(dǎo)率;tot、p及a分別為薄膜厚度、薄膜頂層厚度及界面擴(kuò)散層厚度。同時(shí)研究發(fā)現(xiàn),隨著沉積溫度的升高,界面擴(kuò)散層的厚度會(huì)減小,涂層熱導(dǎo)率增加(見圖5),界面擴(kuò)散層厚度的降低可能與溫度升高致使能量增加有關(guān)。與此同時(shí),Aissa等人[85]通過直流磁控濺射(dcMS)和高功率脈沖磁控濺射(HiPIMS)沉積AlN涂層(如圖6所示),dcMS沉積涂層有明顯的界面無定形擴(kuò)散層,而HiPIMS制備的涂層沒有或不明顯,這可能與HiPIMS技術(shù)的高離化率有關(guān)。

        在此對(duì)導(dǎo)熱涂層的分析基礎(chǔ)上,筆者提出用離子源輔助HiPIMS技術(shù)制備DLC涂層。DLC涂層的熱導(dǎo)率和熱膨脹系數(shù)對(duì)于作為導(dǎo)熱材料來說是非常有導(dǎo)熱潛力的一方面,但是由于現(xiàn)有的制備技術(shù)和工藝未能發(fā)揮DLC更大的導(dǎo)熱潛能,進(jìn)一步研究和提高現(xiàn)有DLC涂層的熱導(dǎo)率具有重要意義。其次,離子源輔助HiPIMS技術(shù)能夠在沉積過程中實(shí)現(xiàn)高的離化率,在高沉積能量下獲得光滑致密的涂層,有利于減小涂層的內(nèi)部缺陷,提高致密度,實(shí)現(xiàn)高的熱導(dǎo)率。再者,用離子源轟擊過渡層和基材,去除表面缺陷或不穩(wěn)定結(jié)構(gòu),預(yù)期實(shí)現(xiàn)優(yōu)化界面結(jié)構(gòu),達(dá)到界面良好結(jié)合,減小界面無定形擴(kuò)散層厚度,提高導(dǎo)熱性能的效果。

        圖5 不同沉積溫度下界面的HRTEM圖[47]

        圖6 不同制備技術(shù)的界面HRTEM圖[85]

        3 結(jié)語

        PVD導(dǎo)熱涂層對(duì)于提高微電子元器件及集成電路散熱性能、緩解熱擁擠具有重要的意義??梢酝ㄟ^合理選擇制備技術(shù)和精確控制工藝參數(shù)提高涂層質(zhì)量,優(yōu)化界面結(jié)構(gòu),減小聲子散射,實(shí)現(xiàn)涂層導(dǎo)熱性能的進(jìn)一步提升。

        目前對(duì)于導(dǎo)熱涂層的研究不足,很多理論和機(jī)制尚不清楚,比如晶體涂層和非晶涂層導(dǎo)熱機(jī)理的差異。如何進(jìn)一步降低界面熱阻等都大大限制了導(dǎo)熱涂層的實(shí)際應(yīng)用,這將是接下來重要的研究方向。此外,導(dǎo)熱涂層的發(fā)展也需要更科學(xué)精確的測(cè)量技術(shù)來支撐。在此基礎(chǔ)上,筆者認(rèn)為影響聲子散射及熱導(dǎo)率的因素,反過來也可以作為提高涂層導(dǎo)熱性能研究的切入點(diǎn),進(jìn)一步挖掘,實(shí)現(xiàn)導(dǎo)熱涂層研究現(xiàn)狀的突破。這需要廣大科學(xué)研究者的不懈努力,未來定可以突破導(dǎo)熱涂層的現(xiàn)有研究局限,實(shí)現(xiàn)PVD導(dǎo)熱涂層的大發(fā)展。

        [1] SHAO Chen, BAO Hua. A molecular dynamics investiga-tion of heat transfer across a disordered thin film[J]. Intern-ational journal of heat & mass transfer, 2015, 85: 33-40.

        [2] 王靜, 劉貴昌, 李紅玲, 等. 銅基類金剛石膜功能梯度材料作為散熱材料的研究[J]. 物理學(xué)報(bào), 2012, 61(5): 472-478. WANG Jing, LIU Gui-chang, LI Hong-ling, et al. Study on the thermal conductivity of diamond-like carbon functionally graded material on copper substrate[J]. Acta physica sinica, 2012, 61(5): 472-478.

        [3] SHEN Kun-ching, LIN Wen-yu, WUU Dong-sing, et al. An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask[J]. IEEE electron device letters, 2013, 34(2): 274-276.

        [4] 陳彪彪. LED燈具的散熱及可靠性分析[J]. 建材與裝飾, 2018(16): 209-210. CHEN Biao-biao. Analysis of heat dissipation and reliability of LED lamps[J]. Construction materials & decoration, 2018(16): 209-210.

        [5] 曾傳銳, 陳繼榕, 吳趙平. 大功率LED燈散熱設(shè)計(jì)技術(shù)[J]. 中國新技術(shù)新產(chǎn)品, 2018(9): 66-67. ZENG Chuan-rui, CHEN Ji-rong, WU Zhao-ping. High power LED lamp heat dissipation design technology[J]. China new technologies and new products, 2018(9): 66-67.

        [6] 陳勇. 高導(dǎo)熱絕緣氮化鋁薄膜的制備?性能及在LED上的應(yīng)用研究[D]. 重慶: 重慶大學(xué), 2008. CHEN Yong. Study on of preparation?properties and application on LED of AlN thin films[D]. Chongqing: Chongqing University, 2008.

        [7] 張淑芳, 方亮, 付光宗, 等. 硅脂導(dǎo)熱涂層改善LED散熱性能的研究[J]. 材料導(dǎo)報(bào), 2007, 21(z2): 145-146. ZHANG Shu-fang, FANG Liang, FU Guang-zong, et al. Study on effect of thermal conductive silicon grease coating on thermolysis property of LED[J]. Materials review, 2007, 21(z2): 145-146.

        [8] WENG Chun-jen. Advanced thermal enhancement and management of LED packages[J]. International communi-cations in heat & mass transfer, 2009, 36(3): 245-248.

        [9] KHANNA A, BHAT D G. Effects of deposition parameters on the structure of AlN coatings grown byreactive magnetron sputtering[J]. Journal of vacuum science & technology A vacuum surfaces & films, 2007, 25(3): 557-565.

        [10] PELEGRINI M V, PEREYRA I. Characterization of AlN films deposited by R. F. reactive sputtering aiming MEMS applications[J]. Physica status solidi, 2010, 7(3-4): 840- 843.

        [11] 張淑芳, 方亮, 付光宗, 等. 導(dǎo)熱涂層對(duì)LED散熱性能的影響[J]. 半導(dǎo)體光電, 2007, 28(6): 793-796. ZHANG Shu-fang, FANG Liang, FU Guang-zong, et al. Effect of thermal conductive coating on thermolysis property of LED[J]. Semiconductor optoelectronics, 2007, 28(6): 793-796.

        [12] 萬紅兵, 任岳. h-BN和石墨烯薄膜在AlN襯底的導(dǎo)熱增強(qiáng)效應(yīng)[J]. 山東工業(yè)技術(shù), 2016(7): 27-28. WAN Hong-bing, REN Yue. Thermal enhancement effect of h-BN and graphene films on AlN substrate[J]. Shandong industrial technology, 2016(7): 27-28.

        [13] MAZUMDER M, BORCATASCIUC T, TEEHAN S C, et al. Temperature dependent thermal conductivity of Si/SiC amorphous multilayer films[J]. Applied physics letters, 2010, 96(9): 093103.

        [14] 劉霞, 陳云貴, 肖素芬, 等. Mg-3Sn合金表面高導(dǎo)熱耐腐蝕SiC涂層研究[J]. 功能材料, 2013, 44(10): 1480-1483. LIU Xia, CHEN Yun-gui, XIAO Su-fen, et al. High thermal conductivity and corrosion resistant SiCcoating on Mg-3Sn alloy[J]. Functional materials, 2013, 44(10): 1480-1483.

        [15] CHOI S R, KIM D, CHOA S H, et al. Thermal conductivity of AlN and SiC thin films[J]. International journal of thermo physics, 2006, 27(3): 896-905.

        [16] 楊力. 大功率LED散熱封裝用鋁基氮化鋁薄膜基板研究[D]. 杭州: 浙江大學(xué), 2013. YANG Li. Study on aluminum nitride film substrate for high power LED heat dissipation package[D]. Hangzhou: Zhejiang University, 2013.

        [17] PARK M H, KIM S H. Thermal conductivity of AlN thin films deposited by RF magnetron sputtering[J]. Materials science in semiconductor processing, 2012, 15(1): 6-10.

        [18] SHANMUGAN S, NORAZLINA M S, MUTHARASU D. Thermal transient analysis of LED using carbon doped AlN film deposited on metal substrate as heat sink[J]. Optical & quantum electronics, 2015, 47(5): 1245-1253.

        [19] TSAI P Y, HUANG H K, SUNG C M, et al. Reducing heat crowding in InGaN/GaN flip-chip light-emitting diodes with diamond-like carbon heat-spreading layers[J]. IEEE transactions on components packaging & manufacturing technology, 2017, 6(11): 1615-1619.

        [20] TSAI P Y, HUANG H K, SUNG C M, et al. High-power LED chip-on-board packages with diamond-like carbon heat-spreading layers[J]. Journal of display technology, 2016, 12(4): 357-361.

        [21] 艾立強(qiáng), 張相雄, 陳民, 等. 類金剛石薄膜在硅基底上的沉積及其熱導(dǎo)率[J]. 物理學(xué)報(bào), 2016, 65(9): 257-263. AI Li-qiang, ZHANG Xiang-xiong, CHEN Min, et al. Deposition and thermal conductivity of diamond-like carbon film on a silicon substrate[J]. Acta physica sinica, 2016, 65(9): 257-263.

        [22] HORNG R H, SHEN K C, TIEN C H, et al. Performance of Cu-plating vertical LEDs in heat dissipation using diamond-like carbon[J]. IEEE electron device letters, 2014, 35(2): 169-171.

        [23] TSAI P Y, HUANG H K, SUNG C M, et al. InGaN/GaN vertical light-emitting diodes with diamondlike carbon/titanium heat-spreading layers[J]. IEEE electron device letters, 2013, 34(8): 1029-1031.

        [24] ZHANG Xiang-xiong, AI Li-qiang, CHEN Min, et al. Thermal conductive performance of deposited amorphous carbon materials by molecular dynamics simulation[J]. Molecular physics, 2017, 115(7): 831-838.

        [25] SHUKLA N C, LIAO H H, ABIADE J T, et al. Thermal conductivity and interface thermal conductance of amorphous and crystalline Zr47Cu31Al13Ni9alloys with a Y2O3coating[J]. Applied physics letters, 2009, 94(8): 081912.

        [26] MAJUMDAR A, REDDY P. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces[J]. Applied physics letters, 2004, 84(23): 4768-4770.

        [27] ORDONEZ-MIRANDA J, ALVARADO-GIL J J, YANG R G. The effect of the electron-phonon coupling on the effective thermal conductivity of metal-nonmetal multilayers[J]. Journal of applied physics, 2011, 109(9): 094310.

        [28] 顧長(zhǎng)志, 金曾孫, 呂憲義, 等. 高導(dǎo)熱金剛石薄膜的研究[J]. 物理學(xué)報(bào), 1997, 46(10): 1984-1989. GU Chang-zhi, JIN Zeng-sun, LYU Xian-yi, et al. Study on high thermal conductive diamond films[J]. Acta physica sinica, 1997, 46(10): 1984-1989.

        [29] ZHANG Q G, CAO B Y, ZHANG X, et al. In?uence of grain boundary scattering on the electrical and thermal conductivities of polycrystalline gold nanofilms[J]. Physi- cal review B condensed matter, 2006, 74(13): 134109.

        [30] JACQUOT A, LENOIR B, DAUSCHER A, et al. Optical and thermal characterization of AlN thin films deposited by pulsed laser deposition[J]. Applied surface science, 2002, 186(1): 507-512.

        [31] LI Man, YUE Ya-nan. Molecular dynamics study of thermal transport in amorphous silicon carbide thin film[J]. RSC advances, 2014, 4(44): 23010-23016.

        [32] ZHAN Tian-zhuo, XU Yi-bin, GOTO M, et al. Thermal conductivity of sputtered amorphous Ge films[J]. AIP advances, 2014, 4(2): 027126.

        [33] 張博, 蔡輝, 張陽, 等. 鋁基板表面微弧氧化膜厚度對(duì)其導(dǎo)電導(dǎo)熱性的影響[J]. 表面技術(shù), 2017, 46(5): 23-27. ZHANG Bo, CAI Hui, ZHANG Yang, et al. Effect of oxide film thickness on electrical and thermal conductivity of micro-arc oxidize aluminium substrates[J]. Surface tech- nology, 2017, 46(5): 23-27.

        [34] AISSA K A, SEMMAR N, MENESESD D S, et al. Thermal conductivity measurement of AlN films by fast photothermal method[J]. Journal of physics conference series, 2012, 395(1): 12089-12096.

        [35] BJORLING M, LARSSON R, MARKLUND P. The effect of DLC coating thickness on elstohydrodynamic friction[J]. Tribology letters, 2014, 55(2): 353-362.

        [36] UZGUR S, HUTSON D, KIRK K. Thickness optimization of AlN thin films deposited by RF magnetron sputtering[C]// Applications of ferroelectrics held jointly with european conference on the applications of polar dielectrics & international symp piezoresponse force microscopy & nanoscale phenomena in polar materials. [s. l.]: IEEE, 2012.

        [37] KANG Jun-gu, HONG K S, YANG H S. Investigation of film-thickness dependent thermal conductivity of Gd2Zr2O7thin films[J]. Current applied physics, 2013, 13(9): 1967- 1970.

        [38] ZHAO H F, TANG W Z, LI C M, et al. Thermal conductive properties of Ni-P electroless plated SiCp/Al composite electronic packaging material[J]. Surface & coatings technology, 2008, 202(12): 2540-2544.

        [39] YAGI T, OKA N, OKABE T, et al. Effect of oxygen impurities on thermal diffusivity of AlN thin films deposited by reactive RF magnetron sputtering[J]. Japanese journal of applied physics, 2013, 50(11): 1-5.

        [40] BEBEK M B, STANLEY C M, GIBBONS T M, et al. Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping[J]. Scientific reports, 2016(6): 32150.

        [41] JAGANNADHAM K. Thermal conductivity and interface thermal conductance of titanium silicide films on Si[J]. IEEE transactions on electron devices, 2015, 63(1): 432-438.

        [42] JAGANNADHAM K. Thermal conductivity and interface thermal conductance in films of tungsten-tungsten silicide on Si[J]. IEEE transactions on electron devices, 2014, 61(6): 1950-1955.

        [43] KIM J W, YANG H S, JUN Y H, et al. Interfacial effect on thermal conductivity of diamond-like carbon films[J]. Journal of mechanical science & technology, 2010, 24(7): 1511-1514.

        [44] TIAN Wei-xue, YANG Rong-gui. Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites[J]. Applied physics letters, 2007, 90(26): 263105.

        [45] YANG H S, KIM J W, PARK G H, et al. Interfacial effect on thermal conductivity of Y2O3thin films deposited on Al2O3[J]. Thermochimica acta, 2007, 455(1): 50-54.

        [46] 趙齊, 代明江, 韋春貝, 等. 金剛石薄膜熱導(dǎo)率的研究現(xiàn)狀(英文)[J]. 材料導(dǎo)報(bào), 2013, 27(s1): 201-206. ZHAO Qi, DAI Ming-jiang, WEI Chun-bei, et al. Research status of thermal conductivity of diamond films[J]. Materials review, 2013, 27(s1): 201-206.

        [47] PAN T S, ZHANG Y, HUANG J, et al. Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure[J]. Journal of applied physics, 2012, 112(4): 044905.

        [48] HUANG Zheng-xing, TANG Zhen-an, YU Jun, et al. Thermal conductivity of amorphous and crystalline thin films by molecular dynamics simulation[J]. Physica B condensed matter, 2009, 404(12): 1790-1793.

        [49] YANG H S, BAI G R, THOMPSON L J, et al. Interfacial thermal resistance in nanocrystalline yttriastabilized zirconia[J]. Acta materialia, 2002, 50(9): 2309-2317.

        [50] 賈涵, 高培虎, 郭永春, 等. 熱噴涂熱障涂層孔隙與涂層性能關(guān)系研究進(jìn)展[J]. 表面技術(shù), 2018, 47(6): 151-160. JIA Han, GAO Pei-hu, GUO Yong-chun, et al. Relationship between pores on thermal sprayed thermal barrier coatings and coating properties[J]. Surface technology, 2018, 47(6): 151-160.

        [51] SAMANI M K, DING X Z, KHOSRAVIAN N, et al. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotat-ing cathode arc[J]. Thin solid films, 2015, 578(16): 133-138.

        [52] 宮非, 吳定宇. 導(dǎo)熱涂層結(jié)構(gòu)及應(yīng)用該導(dǎo)熱涂層結(jié)構(gòu)的電子元件: 中國, CN204206704U[P]. 2015-03-11. GONG Fei, WU Ding-yu. Structure of thermal conductive coatings and electronic components applying the structure: China, CN204206704U[P]. 2015-03-11.

        [53] KALE A, BRUSA R S, MIOTELLO A. Structural and electrical properties of AlN films deposited using reactive RF magnetron sputtering for solar concentrator application[J]. Applied surface science, 2012, 258(8): 3450-3454.

        [54] AISSA K A, SEMMAR N, ACHOUR A, et al. Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputtering[J]. Journal of physics D: Applied physics, 2014, 47(35): 355303.

        [55] SHAHIEN M, YAMADA M, FUKUMOTO M, et al. Reactive plasma-sprayed aluminum nitride-based coating thermal conductivity[J]. Journal of thermal spray technology, 2015, 24(8): 1385-1398.

        [56] YU Jian-hua, ZHAO Hua-yu, TAO Shun-yan, et al. Thermal conductivity of plasma sprayed SmZrO coatings[J]. Journal of the european ceramic society, 2010, 30(3): 799-804.

        [57] JEONG T, ZHU Jian-gang, MAO Si-ning, et al. Thermal characterization of SiCamorphous thin films[J]. International journal of thermophysics, 2012, 33(6): 1000-1012.

        [58] WANG Chun-ming, XIAO Su-fen, CHEN Yun-gui, et al. Effect of single Si1?xC, coating and compound coatings on the thermal conductivity and corrosion resistance of Mg-3Sn alloy[J]. Journal of magnesium & alloys, 2015, 3(1): 10-15.

        [59] SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN[J]. Journal of physics & chemistry of solids, 1987, 48(7): 641-647.

        [60] SPINA L L, IBORRA E, SCHELLEVIS H, et al. Aluminum nitride for heatspreading in RF IC's[J]. Solid state electronics, 2008, 52(9): 1359-1363.

        [61] SUBRAMANIAN B, ASHOK K, JAYACHANDRAN M. Structure, mechanical and corrosion properties of DC reactive magnetron sputtered aluminum nitride(AlN)hard coatings on mild steel substrates[J]. Journal of applied electrochemistry, 2008, 38(5): 619-625.

        [62] BELKERK B E, SOUSSOU A, CARETTE M, et al. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron spu-ttering[J]. Applied physics letters, 2012, 101(15): 151908.

        [63] BELKERK B E, BENSALEM S, SOUSSOU A, et al. Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature[J]. Applied physics letters, 2014, 105(22): 221905.

        [64] DUQUENNE C, BESLAND M, TESSIER P Y, et al. Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering[J]. Journal of physics D: Applied physics, 2012, 45(1): 218-224.

        [65] SHANMUGAN S, NORAZLINA M S, MUTHARASU D. Thermal transient analysis of LED using carbon doped AlN film deposited on metal substrate as heat sink[J]. Optical and quantum electronics, 2015, 47(5): 1245-1253.

        [66] PANTHA B N, SEDHAIN A, LI J. Probing the relationship between structural and optical properties of Si-doped AlN[J]. Applied physics letters, 2010, 96(13): 173504.

        [67] SHANMUGAN S, MUTHARASU D. Performance of chemical vapor deposited boron-doped AlNthin film as thermal interface materials for 3-W LED: Thermal and optical analysis[J]. Acta metallurgica sinica, 2018, 31(1): 97-104.

        [68] 宋建民, 甘明吉, 胡紹中, 等. 無晶鉆石的機(jī)電與光熱應(yīng)用[J]. 機(jī)械工業(yè), 2006, 278: 147-157. SONG Jian-min, GAN Ming-ji, HU Shao-zhong, et al. Electromechanical and photothermal applications of amorphous diamonds[J]. Mechanical industry, 2006, 278: 147- 157.

        [69] 郭嘉成, 徐文彬, 章志鋮, 等. 鎂合金表面制備高紅外發(fā)射率和高導(dǎo)電率熱控膜層[J]. 表面技術(shù), 2017, 46(3): 47-52. GUO Jia-cheng, XU Wen-bin, ZHANG Zhi-cheng, et al. Preparation of high infrared emissivity and electrical conductivity coating on magnesium alloy[J]. Surface technology, 2017, 46(3): 47-52.

        [70] SHAMSA M, LIU W L, BALANDIN A A, et al. Thermal conductivity of diamond-like carbon films[J]. Applied physics letters, 2006, 89(16): 085401.

        [71] BULLEN A J, OHARA K E, CAHILL D G, et al. Thermal conductivity of amorphous carbon thin films[J]. Journal of applied physics, 2000, 88(11): 6317-6320.

        [72] BALANDIN A A, SHAMSA M, LIU W L, et al. Thermal conductivity of ultrathin tetrahedral amorphous carbon films[J]. Applied physics letters, 2008, 93(4): 043115.

        [73] TSAI P Y, HUANG H K, SUNG C M, et al. Thermal characteristics of InGaN/GaN flip-chip light emitting diodes with diamond-like carbon heat-spreading layers[J]. International journal of photoenergy, 2014(3): 829284.

        [74] 佚名. 旌宇顯卡散熱器配備類金剛石碳薄膜[J]. 超硬材料工程, 2009, 21(1): 4. YI Ming. Diamond-like carbon filmequipped with Jingyu display card radiator[J]. Superhard material engineering, 2009, 21(1): 4.

        [75] WANG Lei, WRIGHT C D, AZIZ M M, et al. Optimisation of readout performance of phase-change probe memory in terms of capping layer and probe tip[J]. Electronic materials letters, 2014, 10(6): 1045-1049.

        [76] LIU Wei-li, BALANDIN A A. Temperature dependence of thermal conductivity of AlGa1?xN thin films measured by the differential 3ω technique[J]. Applied physics letters, 2004, 85(22): 5230-5232.

        [77] BOGNER M, HOFER A, BENSTETTER G, et al. Differential 3ω method for measuring thermal conductivity of AlN and Si3N4thin films[J]. Thin solid films, 2015, 591: 267-270.

        [78] BOGNER M, BENSTETTER G, FU Yong-qing. Cross-and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method[J]. Surface & coatings technology, 2017, 320: 91-96.

        [79] MORIDI A, ZHANG Liang-chi, LIU Wei-dong, et al. Characterisation of high thermal conductivity thin-film substrate systems and their interface thermal resistance[J]. Surface & coatings technology, 2018, 334: 233-242.

        [80] YAN Ru-sen, SIMPSON J R, BERTOLAZZI S, et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy[J]. ACS nano, 2014, 8(1): 986-993.

        [81] KANG J G, HONG K S, YANG H S. Studies of thermal conductivity of Gd2Zr2O7and diamond-like carbon films and the interfacial effect[J]. Japanese journal of applied physics, 2010, 49(2): 1-4.

        [82] 張武康, 陳小源, 李東棟, 等. 薄膜熱導(dǎo)率測(cè)量方法研究進(jìn)展[J]. 功能材料, 2017, 48(6): 6034-6041. ZHANG Wu-kang, CHEN Xiao-yuan, LI Dong-dong, et al. Research progress of measurement for the thermal conductivity of thin films[J]. Functional materials, 2017, 48(6): 6034-6041.

        [83] MORAES V, RIEDL H, RACHBAUER R, et al. Thermal conductivity and mechanical properties of AlN-based thin films[J]. Journal of applied physics, 2016, 119(22): 225304.

        [84] ALAILI K, ORDONEZ-MIRANDA J, EZZAHRI Y. Effective interface thermal resistance and thermal conductivity of dielectric nanolayers[J]. International journal of thermal sciences, 2018, 131(7): 40-47.

        [85] AISSA K A, ACHOUR A, CAMUS J, et al. Comparison of the structural properties and residual stress of AlN films deposited by DC magnetron sputtering and high power impulse magnetron sputtering at different working pressure[J]. Thin solid films, 2014, 550(1): 264-267.

        Thermal Conductive Coatings by PVD Technology

        1a,1a,1b,2

        (1.a. School of Materials Science and Engineering, b. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China; 2. Singapore Polytechnic, Singapore 139651, Singapore)

        Firstly, the necessity of thermal conductive coating research was analyzed based on the application background of thermal conductive coating. Secondly, the thermal conduction mechanism of the coating and the macroscopical and microcosmic factors affecting the thermal conductivity of the coating were discussed. On this basis, the research status of PVD thermal conductive coatings was described, and three common PVD thermal conductive coatings, namely SiC, AlN and DLC, were emphatically analyzed.Phonon scattering was the direct factor affecting the thermal conductivity of the coating, and phonon scattering could be caused by some factors, such as coating internal isotope, impurities, defects and grain boundary. The interfacial thermal resistance caused by phonon scattering had great influence on the thermal conductivity of the coating. Thermal conductivity of the coating could be improved to a certain extent by reasonably selecting preparation technology and accurately controlling process parameters.On this basis, the technological cooperation of ion source assisted high-power pulsed magnetron sputtering (HiPIMS) is proposed to improve coating quality and density, optimize interface structure and reduce interface thermal resistance, in order to achieve the high thermal conductivity of the coating.

        thermal conductive coatings; thermal conductivity; thermal resistance; phonon scattering; interface structure

        2018-11-29;

        2019-01-14

        YU Bin (1996—), Male, Master, Research focus: hard and functional film.

        孫德恩(1974—),男,博士,教授,主要研究方向?yàn)橛操|(zhì)及功能薄膜。郵箱:deen_sun@cqu.edu.cn

        TG174.444

        A

        1001-3660(2019)06-0158-09

        10.16490/j.cnki.issn.1001-3660.2019.06.018

        2018-11-29;

        2019-01-14

        國家自然科學(xué)基金(51771037);材料腐蝕與防護(hù)四川省重點(diǎn)實(shí)驗(yàn)室開放基金(2016CL13);重慶市基礎(chǔ)與前沿研究計(jì)劃項(xiàng)目(cstc2015jcyjA70005)

        Support by National Natural Science Foundation of China(51771037); Material Corrosion and Protection in Sichuan Province Key Laboratory of Open Fund(2016CL13); The Basic and Frontier Research Project of Chongqing (cstc2015jcyjA70005)

        余斌(1996—),男,碩士,主要研究硬質(zhì)及功能薄膜。

        SUN De-en (1974—), Male, Doctor, Professor, Research focus: hard and functional film. E-mail: deen_sun@cqu.edu.cn

        猜你喜歡
        導(dǎo)熱性聲子熱導(dǎo)率
        空位缺陷對(duì)單層石墨烯導(dǎo)熱特性影響的分子動(dòng)力學(xué)
        半無限板類聲子晶體帶隙仿真的PWE/NS-FEM方法
        納米表面聲子 首次實(shí)現(xiàn)三維成像
        聲子晶體覆蓋層吸聲機(jī)理研究
        連續(xù)碳纖維鋁基復(fù)合材料橫向等效熱導(dǎo)率的模擬分析
        Si3N4/BN復(fù)合陶瓷熱導(dǎo)率及其有限元分析
        基于聲子晶體理論的導(dǎo)線防舞方法及數(shù)值驗(yàn)證
        PBT/石墨烯微片復(fù)合材料的導(dǎo)熱性能和力學(xué)性能
        中國塑料(2016年5期)2016-04-16 05:25:39
        金屬熱導(dǎo)率的第一性原理計(jì)算方法在鋁中的應(yīng)用
        BN填充PA6基導(dǎo)熱絕緣復(fù)合材料導(dǎo)熱性能研究
        中國塑料(2015年3期)2015-11-27 03:41:47
        无码国产精品一区二区免费网曝| 欧美性猛交99久久久久99按摩| 国产av无码专区亚洲avjulia| 国产成人精品日本亚洲| 国产男女插插一级| 在线播放无码高潮的视频| 国产精品网站夜色| 中文字幕人妻丝袜成熟乱| 精品少妇后入一区二区三区| 男人一插就想射的原因| 一区二区三区中文字幕p站| 欧美日韩色另类综合| 国产免费av片在线观看播放| 大红酸枝极品老料颜色| 亚洲av男人的天堂一区| 精品无码av无码专区| 在线播放免费人成毛片乱码| 国产乱理伦片在线观看| 亚洲VR永久无码一区| 午夜在线观看一区二区三区四区| 色婷婷久久亚洲综合看片| 免费人妻无码不卡中文字幕18禁 | 久久国产成人午夜av影院| 成人a在线观看| 亚洲嫩模高清在线视频| 亚洲高清激情一区二区三区| 中文亚洲av片不卡在线观看| 亚洲日韩精品欧美一区二区一| 91中文人妻丝袜乱一区三区 | 新久久久高清黄色国产| 日本一区二区三区人妻| 无套内内射视频网站| 性色av 一区二区三区| 国产午夜福利不卡在线观看视频| 美女黄网站永久免费观看网站| 成人性生交大片免费入口| 国产精品免费精品自在线观看| 2021国产精品久久| 激情一区二区三区视频| 91九色熟女潮喷露脸合集| 久久久久久亚洲av成人无码国产|