亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The average estimate of the divisor function of integer matrices on square-free numbers

        2019-06-24 06:10:02YangXiaoweiLaoHuixue

        Yang Xiaowei,Lao Huixue

        (School of Mathematics and Statistics,Shandong Normal University,Ji′nan 250014,China)

        Abstract:Using the classical method in analytic number theory,this paper investigates the mean value of the divisor function of integer matrices on square-free numbers,and establishes an asymptotic formula,which generalized the related result.

        Keywords:asymptotic formula,square-free number,divisor function of integer matrix

        1 Introduction

        LetMk(Z)denote the ring of integer matrices of orderk.We denote the number of different representations of matrixC∈Mk(Z)in the form

        References[1-3]studied the distribution of values of the function

        Reference[5]gave bounds for second moment of error term?2(x)

        Study of the distribution of functiont(k)(n)fork≥3 has some difficulties.Reference[6]constructed the generating Dirichlet series fort(3)(n)

        and obtained the asymptotic formula

        Reference[7]established the asymptotic formula for a summatory function of the number of representations of matrices fromM2(Z)in the formC=A1A2A3,

        and estimated the error term of this asymptotic formula,where

        In this paper,we study the distribution of(n)on the square-free numbers.In detail,we have the following result.

        Theorem1.1 Asx→∞,the asymptotic equality

        holds,where the sum∑′indicates that the summation runs over square-free numbers.

        2 Preliminaries

        This section is devoted to give some preliminary results for the proof of Theorem 1.1.

        Lemma2.1[7]For each primep>p0,m∈N,

        Lemma2.2[5,8-9]For anyε>0,we have

        uniformly for|t|>10,T>10 and≤σ≤1+ε,and

        3 Proof of Theorem 1.1

        ProofNote that,whereμ(n)is the Mbius function.

        First,we will find the Dirichlet generating series corresponding to.By multiplicativity of function(n)and applying Lemma 2.1,we obtain whereG(s)converges absolutely for Res>.

        Using Perron′s formula[10],we have

        In addition,it is clear that,whereεis an arbitrarily small positive number.

        Consider the contour Γ at the points±iT,b±iT.We obtain the following relation

        whereP2(u)is the second-degree polynomial with computable coefficients.

        Using the estimate of zeta-function(3)in Lemma 2.2,we have

        where

        and

        for sufficiently largex.

        Thus we can derive the estimate on the horizontal lines

        In addition,it is clear that

        Thus,we have

        SettingT=x,we obtain the final result

        The proof of Theorem 1.1 is complete.

        国产原创精品视频| 天天摸夜夜摸夜夜狠狠摸| 欧美aaaaaa级午夜福利视频| 欧美精品中文字幕亚洲专区| 成人国产自拍在线播放| 中国男男女在线免费av| 亚洲精品tv久久久久久久久久| 国产日韩av在线播放| 3344永久在线观看视频| 丰满少妇棚拍无码视频| 蜜桃在线观看视频在线观看| 国产成人精品一区二区三区av| 亚洲成a人片在线观看无码专区| 免费无码毛片一区二区app| 久热香蕉视频| 亚洲一区精品一区在线观看| 国产激情一区二区三区在线| av无码国产在线看免费网站| 97精品伊人久久大香线蕉| 亚洲熟妇中文字幕日产无码| 九七青青草视频在线观看| 国产高清成人在线观看视频| 亚洲国产天堂久久综合网| 欧美日韩精品一区二区在线观看| 欧美精品久久久久久久久| 国产成年女人特黄特色毛片免| 青青草国产在线视频自拍 | 麻豆国产人妻欲求不满谁演的| 2020久久精品亚洲热综合一本| 成人av一区二区三区四区| 婷婷射精av这里只有精品| 亚洲欧美日韩一区在线观看| 国产精品福利久久香蕉中文| 国产精品日韩亚洲一区二区| 制服丝袜一区二区三区| 国产精品久久毛片av大全日韩| 久久se精品一区精品二区国产| 国产激情免费观看视频| 免费国产线观看免费观看| 最近最新中文字幕| 国产精品三级在线专区1|