亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The average estimate of the divisor function of integer matrices on square-free numbers

        2019-06-24 06:10:02YangXiaoweiLaoHuixue

        Yang Xiaowei,Lao Huixue

        (School of Mathematics and Statistics,Shandong Normal University,Ji′nan 250014,China)

        Abstract:Using the classical method in analytic number theory,this paper investigates the mean value of the divisor function of integer matrices on square-free numbers,and establishes an asymptotic formula,which generalized the related result.

        Keywords:asymptotic formula,square-free number,divisor function of integer matrix

        1 Introduction

        LetMk(Z)denote the ring of integer matrices of orderk.We denote the number of different representations of matrixC∈Mk(Z)in the form

        References[1-3]studied the distribution of values of the function

        Reference[5]gave bounds for second moment of error term?2(x)

        Study of the distribution of functiont(k)(n)fork≥3 has some difficulties.Reference[6]constructed the generating Dirichlet series fort(3)(n)

        and obtained the asymptotic formula

        Reference[7]established the asymptotic formula for a summatory function of the number of representations of matrices fromM2(Z)in the formC=A1A2A3,

        and estimated the error term of this asymptotic formula,where

        In this paper,we study the distribution of(n)on the square-free numbers.In detail,we have the following result.

        Theorem1.1 Asx→∞,the asymptotic equality

        holds,where the sum∑′indicates that the summation runs over square-free numbers.

        2 Preliminaries

        This section is devoted to give some preliminary results for the proof of Theorem 1.1.

        Lemma2.1[7]For each primep>p0,m∈N,

        Lemma2.2[5,8-9]For anyε>0,we have

        uniformly for|t|>10,T>10 and≤σ≤1+ε,and

        3 Proof of Theorem 1.1

        ProofNote that,whereμ(n)is the Mbius function.

        First,we will find the Dirichlet generating series corresponding to.By multiplicativity of function(n)and applying Lemma 2.1,we obtain whereG(s)converges absolutely for Res>.

        Using Perron′s formula[10],we have

        In addition,it is clear that,whereεis an arbitrarily small positive number.

        Consider the contour Γ at the points±iT,b±iT.We obtain the following relation

        whereP2(u)is the second-degree polynomial with computable coefficients.

        Using the estimate of zeta-function(3)in Lemma 2.2,we have

        where

        and

        for sufficiently largex.

        Thus we can derive the estimate on the horizontal lines

        In addition,it is clear that

        Thus,we have

        SettingT=x,we obtain the final result

        The proof of Theorem 1.1 is complete.

        中文字幕无码中文字幕有码 | 三级全黄的视频在线观看| 亚洲天堂av在线免费播放| 亚洲精品国产一二三区| 无码不卡av东京热毛片| 久久综合网天天 | 人妻风韵犹存av中文字幕| 丰满少妇人妻久久精品| 国产精品伦一区二区三级视频| 91av手机在线观看| 中文字幕无线精品亚洲乱码一区| 蜜臀av一区二区三区久久| 亚洲av无码乱码国产精品| 狠狠噜天天噜日日噜| 亚洲中文字幕无线乱码va| 国产一区二区三区视频地址| 亚洲综合在线一区二区三区| 在线一区不卡网址观看| 黄色三级一区二区三区| 亚洲精品在线国产精品| 国产成人精品一区二区三区免费| 国产欧美日韩不卡一区二区三区| 中文字幕亚洲高清精品一区在线| 色偷偷888欧美精品久久久 | 亚洲男人第一av网站| 一区二区三区四区亚洲综合 | 亚洲处破女av一区二区| 真实夫妻露脸自拍视频在线播放| 乱人伦中文无码视频在线观看| 福利视频一二区| 亚洲精品大全中文字幕| 国产人成无码视频在线观看| 久久精品一区二区免费播放| 女同性恋亚洲一区二区| 亚洲男人天堂一区二区| 亚洲色丰满少妇高潮18p| 国产成人一区二区三区视频免费蜜 | 国产乱子伦| 国产成人久久精品二区三区牛| 亚洲大片一区二区三区四区| 强开小婷嫩苞又嫩又紧视频韩国|