亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The average estimate of the divisor function of integer matrices on square-free numbers

        2019-06-24 06:10:02YangXiaoweiLaoHuixue

        Yang Xiaowei,Lao Huixue

        (School of Mathematics and Statistics,Shandong Normal University,Ji′nan 250014,China)

        Abstract:Using the classical method in analytic number theory,this paper investigates the mean value of the divisor function of integer matrices on square-free numbers,and establishes an asymptotic formula,which generalized the related result.

        Keywords:asymptotic formula,square-free number,divisor function of integer matrix

        1 Introduction

        LetMk(Z)denote the ring of integer matrices of orderk.We denote the number of different representations of matrixC∈Mk(Z)in the form

        References[1-3]studied the distribution of values of the function

        Reference[5]gave bounds for second moment of error term?2(x)

        Study of the distribution of functiont(k)(n)fork≥3 has some difficulties.Reference[6]constructed the generating Dirichlet series fort(3)(n)

        and obtained the asymptotic formula

        Reference[7]established the asymptotic formula for a summatory function of the number of representations of matrices fromM2(Z)in the formC=A1A2A3,

        and estimated the error term of this asymptotic formula,where

        In this paper,we study the distribution of(n)on the square-free numbers.In detail,we have the following result.

        Theorem1.1 Asx→∞,the asymptotic equality

        holds,where the sum∑′indicates that the summation runs over square-free numbers.

        2 Preliminaries

        This section is devoted to give some preliminary results for the proof of Theorem 1.1.

        Lemma2.1[7]For each primep>p0,m∈N,

        Lemma2.2[5,8-9]For anyε>0,we have

        uniformly for|t|>10,T>10 and≤σ≤1+ε,and

        3 Proof of Theorem 1.1

        ProofNote that,whereμ(n)is the Mbius function.

        First,we will find the Dirichlet generating series corresponding to.By multiplicativity of function(n)and applying Lemma 2.1,we obtain whereG(s)converges absolutely for Res>.

        Using Perron′s formula[10],we have

        In addition,it is clear that,whereεis an arbitrarily small positive number.

        Consider the contour Γ at the points±iT,b±iT.We obtain the following relation

        whereP2(u)is the second-degree polynomial with computable coefficients.

        Using the estimate of zeta-function(3)in Lemma 2.2,we have

        where

        and

        for sufficiently largex.

        Thus we can derive the estimate on the horizontal lines

        In addition,it is clear that

        Thus,we have

        SettingT=x,we obtain the final result

        The proof of Theorem 1.1 is complete.

        四虎国产精品永久在线无码| 精品一区二区av天堂色偷偷| 在办公室被c到呻吟的动态图| 国产乱子伦在线观看| 97日日碰日日摸日日澡| 免费av网址一区二区| 少妇免费av一区二区三区久久| 免费看av在线网站网址| 天天影视色香欲综合久久 | 欧美寡妇xxxx黑人猛交| 亚洲天堂在线视频播放| 风流少妇一区二区三区| 一本久道竹内纱里奈中文字幕| 欧美a级毛欧美1级a大片免费播放| 国产成年无码V片在线| 二区三区视频在线观看| 91丝袜美腿亚洲一区二区| 色 综合 欧美 亚洲 国产| 国产中文aⅴ在线| 中文字幕色婷婷在线视频| 午夜性刺激免费看视频| 使劲快高潮了国语对白在线| 久久久久亚洲AV片无码乐播| 日本师生三片在线观看| 亚洲日韩国产欧美一区二区三区 | 娇柔白嫩呻吟人妻尤物| 人妻在线有码中文字幕| 麻豆av一区二区三区| 欧美成人三级一区二区在线观看 | av在线播放男人天堂| 性欧美牲交xxxxx视频欧美 | 99久久婷婷国产亚洲终合精品| 精精国产xxxx视频在线播放| 久久水蜜桃亚洲av无码精品麻豆| 在线看高清中文字幕一区| 国产va免费精品观看精品| 大地资源中文第三页| 中文字幕亚洲乱码熟女在线| 又硬又粗进去好爽免费| 亚洲精品国偷自产在线99正片| 亚洲中文字幕女同一区二区三区|