陳夢嬌 徐岷
[摘要] 胃癌細胞對化療藥物不敏感,產(chǎn)生耐藥性是導致高死亡率的主要原因。上皮間質(zhì)轉(zhuǎn)化(EMT)在胃癌的進展中起到重要作用,越來越多證據(jù)表明EMT通過相關(guān)轉(zhuǎn)錄因子、細胞因子、重要信號通路、調(diào)節(jié)干性等參與了胃癌細胞化療耐藥性的產(chǎn)生。本研究就胃癌的EMT與化療耐藥關(guān)系的研究進展作一綜述,以助于在胃癌抗耐藥治療中找到新的策略。
[關(guān)鍵詞] 胃癌;上皮間質(zhì)轉(zhuǎn)化;化療;耐藥性
[中圖分類號] R734 [文獻標識碼] A [文章編號] 1673-7210(2019)05(a)-0046-04
Research progress on the relationship between epithelial-mesenchymal transition and chemoresistance in gastric cancer
CHEN Mengjiao1 XU Min2
1.School of Medicine, Jiangsu University, Jiangsu Province, Zhenjiang 212000, China; 2.Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu Province, Zhenjiang 212000, China
[Abstract] Insensitivity of tumor cells to chemotherapeutic agents and arising drug resistance are the main cause of high mortality in gastric cancer. Epithelial mesenchymal transformation (EMT) plays an important role in the progression of gastric cancer. There is mounting evidence demonstrating that EMT participates in gastric cancer chemotherapeutic drug resistance through related transcription factors, cytokines, important signaling pathways, and regulation of stemness. This article summarizes the relationship between EMT and chemoresistance in gastric cancer to help people find new strategies in anti-drug-resistant treatment of gastric cancer.
[Key words] Gastric cancer; Epithelial-mesenchymal transition; Chemotherapy; Drug resistance
胃癌是全球癌癥相關(guān)死亡的第三大原因[1],由于早期癥狀不明顯,大多數(shù)人確診胃癌時已進入中晚期階段?;煶蔀榱酥饕闹委煼椒?。然而,胃癌細胞對化療藥物產(chǎn)生耐藥性是導致化療失敗最主要的原因?;熌退幧婕昂芏鄼C制,越來越多研究表明,上皮間質(zhì)轉(zhuǎn)化(EMT)也是胃癌細胞對化療藥物產(chǎn)生耐藥性的機制之一。以下對EMT在胃癌發(fā)生化療耐藥過程中的作用進行詳細綜述。
1 EMT
EMT是指上皮細胞失去黏附、極性,向間質(zhì)細胞轉(zhuǎn)化,伴有上皮細胞標志物如E-鈣黏蛋白(E-Cadherin)表達的下調(diào)和間充質(zhì)表型標記物如波形蛋白(Vimentin)、N鈣黏蛋白(N-Cadherin)等表達的上調(diào)。根據(jù)生物環(huán)境、功能和調(diào)節(jié)機制不同,EMT分為3種類型,Ⅰ型EMT與胚胎發(fā)生和器官發(fā)育有關(guān);Ⅱ型EMT與傷口愈合、組織修復和器官纖維化有關(guān);Ⅲ型EMT賦予腫瘤細胞侵襲、轉(zhuǎn)移的能力,促進腫瘤進展,引起治療失敗,是預后不良的獨立指標[2]。Ⅲ型EMT是筆者在腫瘤治療中的主要研究對象。EMT在胃癌的發(fā)生發(fā)展中起著重要作用,受多種因素調(diào)控,包括細胞外因子、轉(zhuǎn)錄因子和關(guān)鍵信號途徑等[3]。
2 化療耐藥
在胃癌治療中,常使用化學藥物破壞癌細胞。然而,對化療的抵抗是治療胃癌方面遇到的主要障礙。目前,化療耐藥的機制已被廣泛接受,包括胞內(nèi)藥物濃度降低涉及耐藥相關(guān)蛋白(multidrug resistance-associated protein,MRP)、多藥耐藥基因1(multi-drug resistance,MDR1)也稱P糖蛋白(P-gp)、肺耐藥蛋白(lung resistance protein,LRP)、乳腺癌耐藥蛋白(breast cancer resistance protein,BCRP)的過度表達,凋亡相關(guān)基因如Bax和Bcl-2的異常、DNA損傷修復功能障礙、藥物代謝異常、藥物靶點改變、腫瘤微環(huán)境改變等[4-5]。目前證據(jù)表明,EMT過程也與胃癌的耐藥密切相關(guān)[6]。
3 胃癌的EMT和化療耐藥性
3.1 EMT相關(guān)轉(zhuǎn)錄因子與耐藥性
Snail是調(diào)節(jié)EMT的主要轉(zhuǎn)錄因子,Snail能夠通過與E-Cadherin啟動子中的E-box結(jié)合來下調(diào)E-Cadherin的表達而促進腫瘤的侵襲和遷移。Huang等[7]通過收集382例胃癌組織,證明了人表皮生長因子受體-2(HER2)的擴增與Snail的表達呈正相關(guān),且與單陽性或雙陰性組相比HER2/Snail雙陽性患者的預后較差。在細胞水平,HER2和Snail在MGC803/DDP和AGS/DDP順鉑耐藥株中過表達,與親本細胞相比,MGC803/DDP和AGS/DDP細胞表現(xiàn)出EMT特征形態(tài)。HER2表達下調(diào),引起兩種耐藥株中Snail的表達下調(diào),逆轉(zhuǎn)了耐藥株細胞成纖維樣表型并減弱了其增殖遷移能力,同時提高了胃癌細胞對順鉑的敏感性,表明HER2可能通過調(diào)節(jié)Snail影響了EMT進程進而調(diào)節(jié)胃癌細胞對順鉑的耐藥性。鋅指E盒結(jié)合同源盒蛋白(zinc finger E-box binding homeobox,ZEB)家庭成員,特別是ZEB2也可以抑制E-Cadherin表達并觸發(fā)EMT。Jiang等[8]發(fā)現(xiàn)ZEB2在胃癌組織和SGC7901/DDP細胞中均顯著上調(diào),其研究發(fā)現(xiàn)ZEB2的下調(diào)增強了SGC7901/DDP細胞對順鉑的敏感性。Geng等[9]向順鉑依賴的SGC7901/DDP細胞中轉(zhuǎn)染了針對ZEB2的小干擾RNA(si-RNA),使ZEB2在mRNA和蛋白質(zhì)水平上顯著降低,順鉑對轉(zhuǎn)染后細胞的抑制率及細胞凋亡率均明顯升高,表明沉默ZEB2可以有效地提高胃癌細胞對順鉑治療的敏感度。Twist是屬于基本螺旋-環(huán)-螺旋(base/helix-loop-helix,bHLH)蛋白家族的一種轉(zhuǎn)錄因子,它也可以抑制E-Cadherin的基因轉(zhuǎn)錄。Kang等[10]使用Twist-siRNA阻斷SGC7901、BGC823、MKN45胃癌細胞的EMT,Twist的敲低增加了這些胃癌細胞對多柔比星的敏感性。
3.2 EMT相關(guān)細胞因子與耐藥性
轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)是哺乳動物生長因子超家族的成員,是EMT常見的激動劑之一。與敏感株相比,Zhou等[11]檢測到TGF-β在耐曲妥珠單抗的胃癌細胞NCI-N87/TR中高表達。NCI-N87/TR耐藥株經(jīng)TGF-β處理后E-Cadherin降低,N-Cadherin升高,同時曲妥珠單抗對NCI-N87/TR細胞的半數(shù)抑制濃度由8.64 μg/mL增加至94.24 μg/mL,即對曲妥珠單抗的敏感度下降。干擾NCI-N87/TR細胞中的TGF-β得到相反的結(jié)果,因此得出結(jié)論TGF-β誘導的EMT途徑和胃癌細胞對曲妥珠單抗的耐藥性密切相關(guān)。Oh等[12]通過基因組和蛋白質(zhì)組學數(shù)據(jù)分析,結(jié)果顯示胃癌有兩種不同的分子亞型,即間充質(zhì)表型(mesenchymal phenotype,MP)和上皮表型(epithelial phenotype,EP),臨床數(shù)據(jù)顯示MP表型存活率低化療抗性大,而EP表型存活率高化療抗性小。胰島素樣生長因子1(insulin-like growth factor 1,IGF-1)在MP表型高表達,綜合分析顯示IGF-1不僅參與驅(qū)動EMT還促進了化療耐藥。Banerjee等[13]報道了白細胞介素-6(IL-6)是促進EMT的細胞因子之一。IL-6抑制劑處理胃癌細胞AGS、SNU719后細胞的遷移能力下降,且5-氟尿嘧啶(5-FU)誘導胃癌細胞的凋亡率升高。這表明IL-6能改變胃癌細胞EMT特征,從而影響了胃癌的化療耐藥性。Kuai等[14]證明了EMT另一相關(guān)細胞因子白細胞介素-8(IL-8)過表達能增強胃癌細胞遷移和侵襲能力,下調(diào)胃癌細胞中IL-8的表達能增加奧沙利鉑對細胞的毒性作用。
3.3 EMT相關(guān)信號通路與耐藥性
許多對EMT有重要調(diào)節(jié)作用的信號通路也與耐藥性密切相關(guān)。Kim等[15]用體外誘導法建立了人胃癌拉帕替尼耐藥細胞株SNU216/LR,SNU216/LR細胞高表達Vimentin,而敏感株高表達E-Cadherin,即耐藥株具有EMT特征。Wnt/β-catenin信號傳導參與EMT的誘導,Kim團隊驗證了抑制Wnt/β-catenin通路能下調(diào)EMT信號并且恢復SNU216/LR細胞對拉帕替尼的敏感性。Zhang等[16]認為胃癌細胞對拉帕替尼的抗性與旁路受體酪氨酸激酶(RTK)途徑的激活有關(guān)。RTK途徑中的激酶活化促進了HER2+胃癌細胞對拉帕替尼的抗性,其中酪氨酸激酶受體和胰島素樣生長因子1受體的激活可逆轉(zhuǎn)拉帕替尼對β-連環(huán)蛋白(β-catenin)、糖原合成酶激酶3β的抑制,并恢復EMT誘導轉(zhuǎn)錄因子Snail和ZEB1的表達,導致Vimentin重新表達。RTK途徑中的激酶可能通過激活Wnt/β-catenin信號通路誘導EMT過程并導致了胃癌細胞對拉帕替尼耐藥。PI3K/Akt信號通路也是調(diào)控腫瘤細胞EMT的信號通路之一,Lee等[17]在SNU216/LR耐藥株和SNU216敏感株兩種細胞中進行了定量磷酸化蛋白質(zhì)組分析發(fā)現(xiàn)PI3K/Akt通路在SNU216/LR細胞中被激活,使用PI3K/mTOR抑制劑聯(lián)合拉帕替尼處理細胞,比單用拉帕替尼更能抑制細胞的生長,因此認為這個通路激活也是耐藥的主要機制。
Rho蛋白家族是Ras超家族中小G蛋白的成員之一,其中RhoA(ras homologous member A)被研究最多,PI3K/Akt位于其上游能激活RhoA,RhoA下游為c-Jun氨基末端激酶。Yoon等[18]發(fā)現(xiàn)下調(diào)RhoA能使MKN45和SNU668細胞增殖遷移能力下降,并且逆轉(zhuǎn)了MKN45和SNU668細胞對5-FU的化療抗性,表明RhoA介導的信號通路在調(diào)節(jié)EMT和耐藥性中起到了重要作用。
3.4 EMT、腫瘤干細胞與耐藥性
CSCs(cancer stem cells,CSCs)是腫瘤的起源,與腫瘤的復發(fā)、侵襲和轉(zhuǎn)移密切相關(guān),而且具有多藥耐藥性。EMT的激活能誘導癌細胞產(chǎn)生自我更新能力,促進CSCs形成以及CSCs的多藥耐藥性表達,EMT可以作為各種癌癥類型的CSCs表型的共同調(diào)節(jié)因子,因此可以通過EMT過程將CSCs與化療耐藥性聯(lián)系起來[19]。Bagheri等[20]從接受化療后的胃癌病人組織中培養(yǎng)出球形集落,這些球形集落具有CSCs特征,在含血清的培養(yǎng)基中分化為間質(zhì)樣細胞并高表達Snail和Twist1,該研究結(jié)果提示化療耐藥的胃癌組織中富含CSCs,且高表達EMT相關(guān)轉(zhuǎn)錄因子,證明了CSCs、EMT與胃癌化療耐藥密切相關(guān)。Wang等[21]研究表明富含G蛋白偶聯(lián)的亮氨酸重復序列(leucine-rich repeat-containing G-protein coupled receptor 5,LGR5)是一個CSCs標志,上調(diào)LGR5不僅使胃癌細胞具有更強的增殖、遷移能力,還增加了胃癌細胞對奧沙利鉑的耐藥性,提示腫瘤干性和EMT的調(diào)節(jié)機制密切相關(guān),并參與了耐藥性的調(diào)節(jié)。NANOG是CSCs中重要的調(diào)節(jié)因子,在CSCs自我更新和多向分化潛能中起到重要作用,在胃癌CSCs中NANOGP8編碼了NANOG的表達,NANOGP8是胃癌CSCs的主要調(diào)節(jié)因子。Ma等[22]研究顯示NANOGP8增強了EMT標記蛋白和Wnt/β-catenin信號,同時賦予癌細胞化學抗性,提示NANOGP8是胃癌對藥物抗性的重要驅(qū)動因素。上述報道表明EMT可能通過增強胃癌細胞的干細胞特性而促進耐藥。
3.5 EMT相關(guān)藥物與耐藥性
質(zhì)子泵抑制劑(proton pump inhibitor,PPI),是一類H+/K+ATP酶抑制劑,是一類重要的抑制胃酸分泌的藥物。Zhang等[23]證明PPI泮托拉唑可以靶向抑制EMT來逆轉(zhuǎn)阿霉素耐藥株SGC7901/ADR的侵襲力,還從體內(nèi)和體外驗證了泮托拉唑可以通過抑制P-gp和MRP1增強化療藥物的細胞毒作[24]。Feng等[25]也證明了泮托拉唑通過抑制EMT/β catenin通路提高了胃癌細胞對5-FU的敏感性。Huang等[26]發(fā)現(xiàn)泮托拉唑能抑制EMT相關(guān)細胞因子白細胞介素-6(IL-6)的表達而恢復了胃癌細胞對順鉑的敏感性。這些證據(jù)都表明泮托拉唑可以通過調(diào)節(jié)EMT來增強化療藥物的作用。吳茱萸堿是一種來自植物的天然化學物質(zhì),Wen等[27]證明吳茱萸堿不僅對EMT有抑制作用,還能降低胃癌干細胞的成球能力及對奧沙利鉑的抗性。該研究結(jié)果表明吳茱萸可能是治療胃癌的潛在新型抗腫瘤劑。
4 結(jié)語
研究表明,EMT不僅是胃癌耐藥的原因,也可能是胃癌中耐藥的結(jié)果。腫瘤的發(fā)生、發(fā)展以及耐藥性的產(chǎn)生是一個復雜的生物學過程,涉及多種分子機制,其中EMT與化療耐藥有著密不可分的關(guān)系,因此明確EMT在腫瘤細胞耐藥中的作用及機制,有望為解決腫瘤耐藥的難題提供一種新途徑。通過靶向EMT來逆轉(zhuǎn)耐藥性可以成為潛在的腫瘤治療策略。
[參考文獻]
[1] Bray F,F(xiàn)erlay J,Soerjomataram I,et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin,2018,68(6):394-424.
[2] Peng Z,Wang CX,F(xiàn)ang EH,et al. Role of epithelial-mesenchymal transition in gastric cancer initiation and progression [J]. World J Gastroenterol,2014,20(18):5403-5410.
[3] Nieto MA,Huang RY,Jackson RA,et al. Emt:2016 [J]. Cell,2016,166(1):21-45.
[4] Fodale V,Pierobon M,Liotta L,et al. Mechanism of cell adaptation:when and how do cancer cells develop chemoresistance?[J]. Cancer J,2011,17(2):89-95.
[5] Shi WJ,Gao JB. Molecular mechanisms of chemoresistance in gastric cancer [J]. World J Gastrointest Oncol,2016,8(9):673-681.
[6] Voon DC,Huang RY,Jackson RA,et al. The EMT spectrum and therapeutic opportunities [J]. Mol Oncol,2017, 11(7):878-891.
[7] Huang D,Duan H,Huang H,et al. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition [J]. Sci Rep,2016,6:20502.
[8] Jiang T,Dong P,Li L,et al. MicroRNA-200c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells [J]. Oncol Rep,2017,38(1):151-158.
[9] Geng DM,Kan XM,Zhang WW. Effect of ZEB2 silencing on cisplatin resistance in gastric cancer [J]. Eur Rev Med Pharmacol Sci,2017,21(8):1746-1752.
[10] Kang X,Li M,Zhu H,et al. DUSP4 promotes doxorubicin resistance in gastric cancer through epithelial-mesenchymal transition [J]. Oncotarget,2017,8(55):94028-94039.
[11] Zhou X,Men X,Zhao R,et al. miR-200c inhibits TGF-beta-induced-EMT to restore trastuzumab sensitivity by targeting ZEB1 and ZEB2 in gastric cancer [J]. Cancer Gene Ther,2018,25(3/4):68-76.
[12] Oh SC,Sohn BH,Cheong JH,et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype [J]. Nat Commun,2018,9(1):1777.
[13] Banerjee AS,Pal AD,Banerjee S. Epstein-Barr virus-encoded small non-coding RNAs induce cancer cell chemoresistance and migration [J]. Virology,2013,443(2):294-305.
[14] Kuai WX,Wang Q,Yang XZ,et al. Interleukin-8 associates with adhesion,migration,invasion and chemosensitivity of human gastric cancer cells [J]. World J Gastroenterol,2012,18(9):979-985.
[15] Kim HP,Han SW,Song SH,et al. Testican-1-mediated epithelial-mesenchymal transition signaling confers acquired resistance to lapatinib in HER2-positive gastric cancer [J]. Oncogene,2014,33(25):3334-3341.
[16] Zhang Z,Wang J,Ji D,et al. Functional genetic approach identifies MET,HER3,IGF1R,INSR pathways as determinants of lapatinib unresponsiveness in HER2-positive gastric cancer [J]. Clin Cancer Res,2014,20(17):4559-4573.
[17] Lee YY,Kim HP,Kang MJ,et al. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line [J]. Exp Mol Med,2013,45:e64.
[18] Yoon C,Cho SJ,Aksoy BA,et al. Chemotherapy Resistance in Diffuse-Type Gastric Adenocarcinoma Is Mediated by RhoA Activation in Cancer Stem-Like Cells [J]. Clin Cancer Res,2016,22(4):971-983.
[19] Shibue T,Weinberg RA. EMT,CSCs,and drug resistance:the mechanistic link and clinical implications [J]. Nat Rev Clin Oncol,2017,14(10):611-629.
[20] Bagheri V,Memar B,Behzadi R,et al. Isolation and identification of chemotherapy-enriched sphere-forming cells from a patient with gastric cancer [J]. J Cell Physiol,2018,233(10):7036-7046.
[21] Wang B,Chen Q,Cao Y,et al. LGR5 Is a Gastric Cancer Stem Cell Marker Associated with Stemness and the EMT Signature Genes NANOG,NANOGP8,PRRX1,TWIST1,and BMI1 [J]. PLoS One,2016,11(12):e0168904.
[22] Ma X,Wang B,Wang X,et al. NANOGP8 is the key regulator of stemness,EMT,Wnt pathway,chemoresistance,and other malignant phenotypes in gastric cancer cells [J]. PLoS One,2018,13(4):e0192436.
[23] Zhang B,Yang Y,Shi X,et al. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-β/β-catenin signaling and epithelial–mesenchymal transition [J]. Cancer Letters,2015,356(2):704-712.
[24] Chen M,Huang SL,Zhang XQ,et al. Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/mTOR/HIF-1alpha/P-gp and MRP1 signaling pathway in vitro and in vivo [J]. J Cell Biochem,2012,113(7):2474-2487.
[25] Feng S,Zheng Z,F(xiàn)eng L,et al. Proton pump inhibitor pantoprazole inhibits the proliferation,selfrenewal and chemoresistance of gastric cancer stem cells via the EMT/betacatenin pathways [J]. Oncol Rep,2016,36(6):3207-3214.
[26] Huang S,Chen M,Ding X,et al. Proton pump inhibitor selectively suppresses proliferation and restores the chemosensitivity of gastric cancer cells by inhibiting STAT3 signaling pathway [J]. Int Immunopharmacol,2013, 17(3):585-592.
[27] Wen Z,F(xiàn)eng S,Wei L,et al. Evodiamine,a novel inhibitor of the Wnt pathway,inhibits the self-renewal of gastric cancer stem cells [J]. Int J Mol Med,2015,36(6):1657-1663.
(收稿日期:2018-11-13 本文編輯:金 虹)