周瑢,劉盼,黎冬華,張艷欣,王林海,張秀榮,魏鑫
?
芝麻硬脂酸脫飽和酶基因的克隆及功能驗證
周瑢1,劉盼1,黎冬華1,張艷欣1,王林海1,張秀榮1,魏鑫2
(1中國農(nóng)業(yè)科學院油料作物研究所/農(nóng)業(yè)部油料作物生物學與遺傳育種重點實驗室,武漢 430062;2上海師范大學生命科學學院,上海 200234)
【目的】對芝麻△9硬脂酰-ACP脫飽和酶基因(△9 stearoyl acyl-carrier-protein desaturase)進行克隆與表達分析,并轉(zhuǎn)入擬南芥,探究其在油酸合成過程中的作用,為芝麻油酸含量的遺傳改良提供分子基礎。【方法】提取中芝13葉片的總RNA,反轉(zhuǎn)錄為cDNA。根據(jù)芝麻基因組數(shù)據(jù)庫中的序列信息(序列號為SIN_1008977)設計引物,以cDNA為模板,通過RT-PCR克隆獲得編碼區(qū)序列,并與參考基因組序列進行比較。利用InterPro進行保守結(jié)構(gòu)域分析,獲得SiSAD蛋白的保守結(jié)構(gòu)域。利用BLAST對SiSAD蛋白進行同源對比,獲得SiSAD的同源蛋白質(zhì)。采用鄰接法構(gòu)建系統(tǒng)進化樹,獲得芝麻SAD蛋白與橄欖、牽?;?、蓖麻、萵苣、葡萄、柑橘、擬南芥等植物SAD蛋白的親緣關系。通過熒光定量PCR檢測在2個芝麻品種中芝33和中豐芝一號的根、莖、葉、蕾和種子中的相對表達量,分析的表達特異性。將連接過表達載體,通過農(nóng)桿菌介導法轉(zhuǎn)化野生型擬南芥(Col-0),篩選陽性后代,對T3代轉(zhuǎn)基因和野生型的擬南芥種子中硬脂酸和油酸相對含量進行測定,分析的功能。【結(jié)果】成功獲得的編碼區(qū)序列,與參考基因組序列一致,全長為1 152 bp,編碼383個氨基酸,SiSAD蛋白的分子量為43 kD,等電點為6.18。發(fā)現(xiàn)SiSAD蛋白含有一個保守結(jié)構(gòu)域,屬于脂肪酸去飽和酶家族成員,與其他植物的SAD蛋白質(zhì)序列的同源性較高,暗示在不同物種中的功能可能比較保守。系統(tǒng)進化分析顯示,芝麻SAD蛋白與牽?;ê烷蠙斓腟AD蛋白處于同一分支,進化關系較近,與蓖麻、擬南芥、柑橘的SAD蛋白親緣關系較遠。熒光定量PCR結(jié)果表明,在芝麻種子中的表達量遠遠高于其他組織,有顯著的組織特異性。成功構(gòu)建了的過表達載體,通過農(nóng)桿菌介導法轉(zhuǎn)化擬南芥,結(jié)果表明成功導入擬南芥中,而且轉(zhuǎn)錄水平很高。對T3代轉(zhuǎn)基因擬南芥種子中硬脂酸和油酸的相對含量分析表明,與野生型擬南芥比較,3個轉(zhuǎn)擬南芥株系中硬脂酸(C18:0)含量分別降低了3.0%、4.8%和6.1%,而油酸(C18:1)含量分別升高了2.8%、4.3%和7.8%,平均升高4.97%。【結(jié)論】克隆獲得芝麻的全長cDNA序列,鑒定了的功能,發(fā)現(xiàn)在油酸合成代謝過程中正向增加油酸含量,可應用于高油酸芝麻新品種培育。
芝麻;;過表達;油酸;功能驗證
【研究意義】芝麻(L.)屬胡麻科,主要分布在亞洲和非洲,在中國種植已長達2 100余年。芝麻種子含油量高,平均可達55%,有“油料皇后”之美稱,脂肪酸含量豐富,其中,油酸和亞油酸之和約占85%。油酸為具有一個雙鍵的單不飽和脂肪酸,氧化穩(wěn)定性高于其他多不飽和脂肪酸,因此,其貨架期較長[1-3],另據(jù)報道,油酸可降低低密度膽固醇,減緩動脈粥樣硬化,有效預防心血管疾病的發(fā)生[4-7],但人體自身合成的油酸遠遠不能滿足身體需求,需要從食物中攝取,故食用油酸含量較高的食用油十分必要。主要植物油中油酸含量分別為橄欖油55%—83%、茶籽油74%—87%、花生油35%—67%,菜籽油61%—70%,而芝麻油中為34%—46%[8-10],相對較低。因此,發(fā)掘和利用芝麻中與油酸代謝相關的重要基因,為芝麻油酸的遺傳改良提供重要的基因資源。【前人研究進展】前人研究表明,編碼的△9硬脂酰-ACP脫飽和酶(△9 stearoyl acyl-carrier-protein desaturase,SAD酶)是存在于細胞質(zhì)體中的一種可溶性酶,該酶催化的反應是在硬脂酸(18:0)的第9、第10位間脫氫形成第一個雙鍵[11],是硬脂酸向油酸轉(zhuǎn)化的唯一催化酶,因此,SAD調(diào)控植物中飽和脂肪酸和不飽和脂肪酸比例方面起到關鍵作用[12-15]。目前,SAD已經(jīng)在玉米、大豆、亞麻、蓖麻等多種植物中被克隆,并明確了其功能[16-20]。Klinkenberg等[21]研究表明在干旱和缺氧逆境條件下,能夠增加擬南芥體內(nèi)的不飽和脂肪酸含量。Wendy等[22]發(fā)現(xiàn)通過轉(zhuǎn)基因技術將土豆轉(zhuǎn)入到煙草中,煙草葉片和種子中的不飽和脂肪酸含量明顯増加。Knutzon等[23]通過反義抑制技術使沉默,轉(zhuǎn)基因油菜種子中硬脂酸含量、亞油酸含量均顯著高于對照。【本研究切入點】目前,有關芝麻的功能研究鮮見報道。國內(nèi)應用的芝麻良種油酸含量偏低而飽和脂肪酸含量偏高,通過品種改良來提高芝麻品種的油酸含量是新時期重要育種目標。芝麻基因組測序已經(jīng)完成,為解析芝麻油酸合成代謝等分子機制和發(fā)掘相關基因提供了重要的基礎?!緮M解決的關鍵問題】本研究從芝麻品種中芝13中克隆得到芝麻的cDNA全長序列,通過進行多序列比對、系統(tǒng)進化樹分析,構(gòu)建表達載體轉(zhuǎn)化擬南芥,研究在芝麻油酸含量中的作用,為芝麻脂肪酸組分遺傳改良提供基因資源。
中芝13、中芝33和中豐芝一號(由中國農(nóng)業(yè)科學院油料作物研究所芝麻種質(zhì)資源課題組育成和保存種子)種植于中國農(nóng)業(yè)科學院油料作物研究所試驗田,在開花授粉后,取發(fā)育25 d的種子,于液氮中迅速冷凍,-80℃保存待用。選用野生型擬南芥(Col-0)作為芝麻的轉(zhuǎn)化受體。野生型擬南芥及轉(zhuǎn)基因后代均種植于植物培養(yǎng)間(22℃,120—150 μmol·m-2s-1光照強度,25%—75%相對濕度,光周期為16 h光照/8 h黑暗),取葉片及幼嫩角果于-80℃保存?zhèn)溆谩?/p>
利用植物總RNA提取試劑盒(Aidlab,China)提取中芝13幼嫩葉片總RNA,用反轉(zhuǎn)錄試劑盒(BIO-RAD,USA)獲得cDNA。根據(jù)Sinbase(http://ocri-genomics.org/Sinbase/index.html)[24-25]數(shù)據(jù)庫中的序列信息(序列號為SIN_1008977),設計引物SiSAD-F/R(表1)擴增的CDS序列,與pEASY-T1載體連接,得到pEASY-SiSAD,測序正確后備用。
表1 引物序列表
用DNAMAN軟件對測序結(jié)果進行分析,通過在線軟件ProtParam(http://web.expasy.org/protparam/)分析基因編碼蛋白質(zhì)的氨基酸組成、蛋白質(zhì)相對分子質(zhì)量、理論等電點等理化性質(zhì),利用InterPro分析(http://www.ebi.ac.uk/interpro/)SAD蛋白的功能結(jié)構(gòu)域,在NCBI網(wǎng)站(http://www.ncbi.nlm.nih.gov/ BLAST/)上進行BLAST序列比對分析,并用ClustalX進行多序列氨基酸同源性比對分析,利用MAGA5軟件采用Neighborjoining法構(gòu)建系統(tǒng)進化樹。
用限制性內(nèi)切酶Ⅰ和Ⅰ酶切植物表達載體pBI121,采用同源重組法獲得重組質(zhì)粒pBI121- SAD。利用農(nóng)桿菌介導法將植物表達載體pBI121-SAD轉(zhuǎn)化野生型擬南芥Col-0,使用Kana作為篩選標記。以轉(zhuǎn)化pBI121空載體的擬南芥植株和野生型擬南芥為對照,獲得T1種子,經(jīng)50 μg·mL-1卡那霉素篩選后移栽至溫室生長,自交得到T2種子,再經(jīng)自交和篩選后得到純系用于后續(xù)試驗。
根據(jù)全長CDS序列設計熒光定量PCR引物(表1)。使用iScript cDNA Synthesis Kit(BIO-RAD,USA)試劑盒在Light Cycler 480 II(Roche,Germany)實時定量PCR儀上進行Real-time PCR反應。以芝麻為內(nèi)參基因,采用3步法反應程序,進行融解曲線和熒光值變化曲線分析,用2-ΔΔCt法計算目的基因的相對表達量。
分別收取3個轉(zhuǎn)擬南芥株系T3的種子,以轉(zhuǎn)pBI121空載的轉(zhuǎn)基因擬南芥T3種子為對照,每份樣品種子量約為0.1 g,每個株系設置3個生物學重復,采用氣相色譜法測定擬南芥種子中硬脂酸(C18:0)、油酸(C18:1)的相對含量,測定由農(nóng)業(yè)部油料及制品質(zhì)量監(jiān)督檢驗測試中心完成。
以中芝13發(fā)育25 d的種子cDNA為模板,通過PCR擴增得到一條大于1 000 bp的條帶(圖1),測序結(jié)果表明,目的片段的堿基序列與芝麻基因組數(shù)據(jù)庫基因(序列號SIN_1008977)編碼區(qū)序列完全一致,起始密碼子為ATG,終止密碼子為TAG,全長1 152 bp,編碼383個氨基酸,其分子量為43 kD,等電點為6.18。
利用NCBI在線分析工具分析,發(fā)現(xiàn)芝麻SiSAD蛋白序列中含有1個保守結(jié)構(gòu)域,屬于脂肪酸去飽和酶家族成員(圖2),位于氨基酸序列的第51—377位。利用ClustalX軟件將SiSAD與橄欖()、牽?;ǎǎ?、蓖麻()、萵苣()、葡萄()、柑橘()、擬南芥()等7個高等植物的SAD蛋白序列進行比對(圖3),結(jié)果表明,芝麻SiSAD蛋白和橄欖、牽?;ㄏ嗨贫容^高。利用MAGA5.0軟件構(gòu)建系統(tǒng)發(fā)育樹(圖4),結(jié)果表明,11個植物SAD氨基酸序列被聚為三大類,芝麻SAD蛋白與牽?;ā㈤蠙霺AD蛋白親緣關系最近,其次與葡萄、萵苣蛋SAD白親緣關系較近,與蓖麻、擬南芥、柑橘等物種SAD蛋白的親緣關系較遠(圖4)。另外,研究發(fā)現(xiàn),植物SAD的氨基酸序列與酵母和藻類的沒有同源性,說明高等植物的SAD是獨立進化的[26]。
圖1 芝麻SiSAD的PCR擴增
圖2 SiSAD蛋白的保守結(jié)構(gòu)域
通過對中33和中豐芝一號這2個芝麻品種的不同組織中的表達分析(圖5),發(fā)現(xiàn)在2個芝麻材料的根、莖、葉和蕾中表達量極低,而在種子中大量表達。
2.3.1 轉(zhuǎn)基因擬南芥株系的SiSAD表達水平檢測 利用農(nóng)桿菌介導法獲得純系T2株系(SAD-1、SAD-2和SAD-3),取這三個轉(zhuǎn)基因純系的幼嫩角果,以同一生長時期的野生型擬南芥(WT)為對照,對的表達進行鑒定,結(jié)果表明,芝麻在轉(zhuǎn)基因擬南芥株系的角果中表達,表明轉(zhuǎn)化成功,并得到表達(圖6)。
2.3.2 轉(zhuǎn)基因擬南芥脂肪酸含量檢測 用氣相色譜法分析轉(zhuǎn)基因擬南芥中硬脂酸(C18:0)和油酸(C18:1)2種脂肪酸的相對含量,與對照相比,轉(zhuǎn)擬南芥硬脂酸(C18:0)的含量分別降低了3.0%、4.8%和6.1%,而油酸(C18:1)分別升高了2.8%、4.3%和7.8%,平均升高4.97%。表明芝麻的過量表達可以促進硬脂酸向油酸的轉(zhuǎn)化(圖7)。
圖3 芝麻SiSAD與其他物種SAD氨基酸序列比對分析
圖4 芝麻SiSAD與其他植物蛋白的系統(tǒng)進化樹
圖5 芝麻SiSAD在中芝33和中豐芝一號不同組織器官中的表達分析圖
**:差異極顯著(P<0.01)。下同
*:差異顯著(P<0.05)
植物中的△9硬脂酰-ACP脫飽和酶(SAD)定位于質(zhì)體上,催化硬脂酰-ACP脫飽和而在脂肪酸鏈的C9與C10間引入一個雙鍵形成油酰-ACP的反應。本研究從芝麻品種中芝13中克隆,其編碼383個氨基酸。多重序列比對結(jié)果顯示SiSAD屬于脂肪酸去飽和酶家族成員,在C端具有相當高的同源性,含有脂肪酸去飽和酶的典型結(jié)構(gòu)域。進化分析表明,SiSAD與牽?;ā㈤蠙斓戎参镉H緣關系十分相近,屬于同一個分支。表明這些特定結(jié)構(gòu)在生物的進化匯中是穩(wěn)定、保守的,是功能的基本單元。本研究表明在種子中的表達量遠高于其他組織器官。這與Fofana等[27]發(fā)現(xiàn)亞麻在種子子房中表達量最高這一結(jié)果相符。
在擬南芥中進行了過表達研究,結(jié)果顯示,轉(zhuǎn)擬南芥株系中油酸(C18:1)含量平均升高了4.97%。表明芝麻的過量表達可以促進硬脂酸向油酸的轉(zhuǎn)化。Du等[28]將在玉米中進行超表達后,其成熟種子中的硬脂酸含量以及飽和脂肪酸與不飽和脂肪酸之比均低于對照。相反,通過RNAi干擾,轉(zhuǎn)基因玉米種子中的硬脂酸含量、長鏈飽和脂肪酸含量及飽和脂肪酸與不飽和脂肪酸之比較對照均有增高,油酸含量顯著低于對照。在擬南芥突變株/中,功能的缺失表現(xiàn)為突變體株中的硬脂酸(C18:0)含量升高,油酸(C18:1)含量降低[29]。Liu等[30]運用RNA干涉技術使棉花()的基因沉默,發(fā)現(xiàn)棉籽油中硬脂酸含量從20%上升到30%—40%,而其他3種主要脂肪酸棕櫚酸、油酸和亞油酸的含量減少。
油酸含量是影響芝麻及其制品營養(yǎng)價值和理化穩(wěn)定性的重要品質(zhì)指標之一,近年來,油菜、花生等通過品種改良已經(jīng)實現(xiàn)了高油酸化,而芝麻的高油酸品種改良尚未見成功案例報道。本研究獲得了芝麻△9 硬脂酰-ACP脫飽和酶基因,證明其在油酸合成過程中的作用,為進一步提高芝麻油酸含量提供了理論依據(jù)和基因資源,對高油酸芝麻育種具有實踐意義。
獲得芝麻硬脂酰酰基載體蛋白脫飽和酶基因的cDNA全長序列,全長1 152 bp,編碼383個氨基酸,分子量為29.15 kD;的過表達可以催化轉(zhuǎn)基因擬南芥中硬脂酸向油酸轉(zhuǎn)化,提高油酸的含量。
[1] 林平, 姜玉梅, 陳瑛. 幾種油料作物中脂肪酸組成的研究及探討. 江西科學, 2000, 18(2): 116-119.
LIN P, JIANG Y M, CHEN Y. A study of the fatty acid content in several oil_bearing crops., 2000, 18(2): 116-119. (in Chinese)
[2] BOLTON G E, SANDERS T H. Effect of roasting oil composition on the stability of roasted high-oleic peanuts., 2002, 79: 129-132.
[3] CHANG S, PETERSON R J, Ho C T. Chemical reactions involved in the deep-fat frying of foods., 1978, 55(10): 718-727.
[4] 杜海, 郎春秀, 王伏林, 陳錦清, 吳關庭. 油菜種子油酸含量的遺傳改良. 核農(nóng)學報, 2011, 25(6): 1179- 1183.
DU H, LANG C X, WANG F L, CHEN J Q, WU G T. Genetic improvement of oleic acid content in rapeseed., 2011, 25(6): 1179-1183. (in Chinese)
[5] SLEIGHT P. Cholesterol and coronary heart disease mortality., 1992, 22(5): 576-579.
[6] SMITH D G, Song F, SHELDON T A. Cholesterol lowering and mortality: the importance of considering initial level of risk., 1993, 306(6889): 1367-1373.
[7] 王景梓, 徐貴發(fā). 單不飽和脂肪酸與冠心病的關系. 食品與藥品, 2005, 7(10A): 21- 23.
WANG J Z, XU G F. Monounsaturated fatty acid in relation to coronary heart disease., 2005, 7(10A): 21- 23. (in Chinese)
[8] 蔣秀琴, 劉立成, 趙福忠, 劉光前, 王旭. 常見植物油脂肪酸含量的分析. 飼料博覽, 2010(3): 27-30.
JIANG X Q, LIU L C, ZHAO G Z, LIU G Q, WANG X. Analysis of fatty acid in vegetable oils., 2010(3): 27-30. (in Chinese)
[9] 袁利文. 植物油中主要脂肪酸含量的分析. 中國檢驗檢測, 2018(1): 18-21.
YUAN L W. Analysis of main fatty acid in vegetable oil., 2018(1): 18-21. (in Chinese)
[10] 楊帆, 薛長勇. 常用食用油的營養(yǎng)特點和作用研究進展. 中國食物與營養(yǎng). 2013, 19(3): 63-66.
YANG F, XUE C Y. Research advancement of nutritional characteristics and functions of common edible oils., 2013, 19(3): 63-66. (in Chinese)
[11] BROADWATER J A, AI J, LOEHR T M. Peroxodiferric intermediate of stearoyl-acyl carrier protein A9-desaturase: oxidase reactivity during single turn over and implications for the mechanism of desaturation., 1998, 37: 14664-14671.
[12] ROUGHAN P G, SLACK C R. Cellular organization of glycerolipid metabolism., 1982, 33: 97-132.
[13] DAMUDE H G, ZHANG H, FARRALL L, RIPP K G, TOMB J F, HOLLERBACH D, YADAV N S. Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants., 2006, 103(25): 9446-9451.
[14] PAUL R, REBECCA W, ANDREA C, REOBERT G U, LILIAN M. Effect of Δ9-stearoyl-ACP-desaturase-C mutants in a high oleic background on soybean seed oil composition., 2014, 127(2): 349-358.
[15] ZHANG Y F, MAXIMOVA S N, GUILTINAN M J. Characterization of a stearoyl-acyl carrier protein desaturase gene from potential biofuel plant., 2015, 6: 239.
[16] BYFIELD G E, XUE H, UPCHURCH R G. Two genes from soybean encoding soluble Δ9 stearoyl-ACP desaturases., 2006, 46(2): 840-846.
[17] FOFANA B, DUGUID S, CLOUTIER S. Cloning of fatty acid biosynthetic genes β-ketoacyl CoA synthase, fatty acid elongase, stearoyl-ACP desaturase, and fatty acid desaturase and analysis of expression in the early developmental stages of flax (L.) seeds., 2004, 166(6): 1487-1496
[18] LIU Z, YANG X, FU Y. SAD, a stearoyl-acyl carrier protein desaturase highly expressed in high-oil maize inbred lines., 2009, 56(5): 709-715.
[19] SHANG X, CHENG C, DING J, GUO W. Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition., 2017, 292: 173-186.
[20] KNUTZON D S, SCHERER D E, SCHRECHENGOST W E. Nucleotide sequence of a complementary DNA clone encoding stearoyl-ACP desaturase from castor bean,., 1991, 96: 344-345
[21] KLINKENBERG J, FAIST H, SAUPE S, LAMBERTZ S, KRISCHKE M, STINGL N, FEKETE A, MUELLER M J, FEUSSNER I, HEDRICH R, DEEKEN R. Two fatty acid desaturases, stearoyl-acyl carrier protein Δ9- desaturase 6 and fatty acid desaturase 3 are involved in drought and hypoxia stress signaling incrown galls., 2014, 164: 570-583.
[22] WENDY C, PAOLO L, NUNZIA S, MONICA D P, PAOLA S, VIRGINIA C, NOREEN M C, ALAN M M, PETER M, TONY A K, PHILIP J D, STEFANIA G, TEODORO C. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance., 2008, 17: 769-782.
[23] KNUTZON D S, THOMPSON G A, RADKE S E. Modification of brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene., 1992, 89: 2624-2628.
[24] WANG L, YU S, TONG C, ZHAO Y, LIU Y, SONG C, ZHANG Y, ZHANG X, WANG Y, HUA W, LI D, LI D, LI F, YU J, XU C, HAN X, HUANG S, TAI S, WANG J, XU X, LI Y, LIU S, VARSHNEY R, WANG J, ZHANG X. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis., 2014, 15(2): 1-13.
[25] WANG L, YU J, LI D, ZHANG X. Sinbase: an integrated database to study genomics, genetics and comparative genomics in., 2015, 56(1): e2.
[26] 羅通, 鄧騖遠, 張富麗. 植物硬脂酰-酰基載體蛋白脫飽和酶. 生命的化學, 2006, 26(2): 133-136.
LUO T, DENG W Y, ZHANG F L. The stearoyl–acyl carrier protein desaturase in plants., 2006, 26(2): 133-136. (in Chinese)
[27] FOFANA B, CLOUTIER S, DUGUID S, CHING J, RAMPITSCH C. Gene expression of stearoyl-ACP desaturase and delta12 fatty acid desaturase 2 is modulated during seed development of flax ()., 2006, 41(7): 705-712.
[28] DU H, MIN H, HU J, LI J. Modification of the fatty acid composition in Arabidopsis and maize seeds using a stearoyl-acyl carrier protein desaturase-1(ZmSAD1) gene., 2016, 16(1): 137.
[29] AARDRA K, JOHN S, EDWARD W, LUDMILA L, DAVID H, PARDEEP K. Thestearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis., 2007, 63, 2: 257-271.
[30] LIU Q, SINGH S P, GREEN A G. High-stearic and high-oleic cottonseed oils produced by hpRNA-mediated post-transcriptional gene silencing., 2002, 129: 1732-1743.
(責任編輯 李莉)
Cloning and Functional Characterization of SesameGene
ZHOU Rong1, LIU Pan1, LI Donghua1, ZHANG Yanxin1, WANG Linhai1, ZHANG Xiurong1, WEI Xin2
(1Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062;2College of Life Sciences, Shanghai Normal University, Shanghai 200234)
【Objective】 Sesame SiSAD (△9 stearoyl acyl-carrier-protein desaturase) gene was cloned and the expression of it was detected. It was transformed into Arabidopsis to investigate its role in the oleic acid synthesis. This study aims to provide molecular basis for the genetic improvement of sesame oleic acid content. 【Method】Total RNA was extracted from leaf of the variety Zhongzhi13 and then was reverse transcripted into cDNA. Using the primers that designed according to the reference genome, the coding region sequence of SiSAD was obtained by RT-PCR. The sequence was further compared with the reference genome. The conserved motifs of SiSAD protein were identified by InterPro and the homologous proteins of SiSAD were recognized by BLAST. A phylogenetic tree of SiSAD from sesame,var. sylvestris,,,,,andwas constructed by neighbor-joining method to reveal the relationship of SiSAD protein in these species. Expression profiles of SiSAD in roots, stems, leaves, buds and seeds at two varieties Zhongzhi33 and Zhongfengzhi No.1 were investigated. The SiSAD gene was linked to a 35S vector and transformed into Arabidopsis by the Agrobacterium tumefaciens-mediated floral dip method. Based on the qRT-PCR detection, successful transformed Arabidopsis individuals were selected from the progenies. The stearic acid and oleic acid content in the seeds of transgenic T3Arabidopsis seeds and Col-0 were detected and function of SiSAD was concluded. 【Result】 Total coding region sequence of SiSAD was cloned and the sequence was the same as the reference genome. It consisted of 1 152 nucleotides encoding a protein of 383 amino acids with a calculated molecular mass of 43 kD anda predicted pI of 6.18. We found that SiSAD gene contained one conserved function domain, which had been identified as a signature motif within the fatty acid desaturase family members. The similarity of SiSAD proteins from different species was quite high, indicating that SiSAD in different plant might had conserved function. The phylogenetic tree composed of SAD proteins showed that SiSAD, InSAD and OeSAD had been grouped together, suggested a close relationship of SiSAD protein among sesame,var. sylvestris andIn contrast, SiSAD had a far relationship to AtSAD, CsSAD and RcSAD. qRT-PCR results showed that SiSAD is organ-specific expressed and had a highest expression level in seeds. We successfully constructed the overexpression vector of SiSAD and introduced the vector into Arabidopsis by Agrobacterium-mediated transformation. qRT-PCR was used to test the transcription of SiSAD in transgenic Arabidopsis plants. Compared with the Arabidopsis wild type Col-0, stearic acid content of 3 transgenic lines with overexpressed SiSAD gene was decreased by 3.0%, 4.8% and 6.1%, respectively. Which oleic acid content in these lines was increased by 2.8%, 4.3% and 7.8% (4.97% in average). 【Conclusion】In this study, the total coding region sequence of SiSAD was cloned and function of SiSAD was characterized. SiSAD might plays important roles in improving oleic acid content, which could be used in the genetic improvement of oleic acid content in sesame seeds.
sesame; SiSAD; over-expression; oleic acid; functional characterization
10.3864/j.issn.0578-1752.2019.10.002
2019-01-24;
2019-03-11
創(chuàng)新工程(CAAS-ASTIP-2013-OCRI)、國家自然科學基金(31671282)、武漢市科技計劃(2018020401011303)、上海市青年科技啟明星計劃(19QA1406500)
周瑢,E-mail:rongzzzzzz@126.com。劉盼,E-mail:liupan91040220@163.com。周瑢與劉盼為同等貢獻作者。通信作者張秀榮,E-mail:zhangxr@oilcrops.cn。通信作者魏鑫,E-mail:xwei@shnu.edu.cn