白敬 王婷
摘要 由于地球磁場的影響,電磁編隊可以在近地軌道穩(wěn)定飛行,通過改變電磁衛(wèi)星磁極的電流大小來保持一定的編隊隊形.雖然地球磁場通常被看作偶極場,并隨地球旋轉(zhuǎn),但地球磁場與電磁力場之間的相互作用被認為是一種內(nèi)力.當電磁衛(wèi)星編隊突然遇到障礙物需要積極避障時,電磁力作為內(nèi)力不能改變編隊方向,因此,必須對電磁衛(wèi)星編隊施加外力,以實現(xiàn)碰撞規(guī)避控制.本文研究了電推進技術(shù)在電磁衛(wèi)星編隊碰撞規(guī)避中的應用.在此過程中,電推進提供編隊轉(zhuǎn)向所需的外部推力,而電磁力作為輔助推力共同作用實現(xiàn)碰撞規(guī)避.電推進采用多模態(tài)霍爾推力器,基于模糊推斷的LQR重構(gòu)控制方法進行碰撞規(guī)避過程的控制,并通過數(shù)字仿真驗證了控制方法的有效性.
關(guān)鍵詞 電磁衛(wèi)星編隊;重構(gòu)控制;電推進;碰撞規(guī)避;近地軌道
中圖分類號 V439.4;V448.2
文獻標志碼 A
0 引言
與價格昂貴、結(jié)構(gòu)復雜的衛(wèi)星相比,小衛(wèi)星編隊具有低成本、高性能和靈活性強等優(yōu)點,已獲得廣泛應用.近年來,小衛(wèi)星編隊已成為空間動力學和控制領(lǐng)域的熱門課題.大多數(shù)研究者關(guān)注利用天然地磁場的電磁力進行近地軌道的小衛(wèi)星編隊飛行,包括洛倫茲衛(wèi)星編隊和電磁衛(wèi)星編隊[1].Peck[1]首先提出了洛倫茲衛(wèi)星編隊的概念,Mai[2]分析了地球低軌的電磁衛(wèi)星編隊飛行的動力學和控制方法.洛倫茲衛(wèi)星是一種帶靜電的航天器,它可以通過與周圍磁場的相互作用,為軌道機動誘導洛倫茲加速度[3].洛倫茲航天器通過無推進劑電磁推進,可實現(xiàn)航天器交會[4-5]、航天器懸停[6-8]、編隊飛行[9-11],以及行星捕獲和逃逸[12-13]、軌道傾角控制[14]等多種應用[15].
學者們分析了地軌附近的小衛(wèi)星編隊飛行的動力學模型及編隊控制方法.文獻[16]研究了衛(wèi)星間電磁力的最優(yōu)重構(gòu)軌跡和重構(gòu)控制,基于Tschauner-Hempel方程構(gòu)建了非線性動力學模型,采用高斯偽譜方法,通過數(shù)值模擬驗證,實現(xiàn)了最優(yōu)控制.文獻[17]分析了洛倫茲衛(wèi)星編隊動力學模型,提出一種無推進的閉環(huán)控制方法并通過數(shù)值仿真進行了驗證.盡管已有文獻討論了各種各樣保持編隊飛行的控制方法,但對動態(tài)碰撞規(guī)避過程的重構(gòu)控制研究較少.
在地球低軌附近有許多廢棄的衛(wèi)星和空間碎片,這對在軌飛行衛(wèi)星編隊構(gòu)成了潛在威脅.因此,有必要研究電磁衛(wèi)星編隊為實現(xiàn)碰撞規(guī)避的重構(gòu)控制方法.假設(shè)地球磁場是一個隨地球旋轉(zhuǎn)的傾斜偶極子,通過地球磁場與裝有電磁線圈的磁性衛(wèi)星的相互作用,可以很容易實現(xiàn)穩(wěn)定的編隊控制.但是,電磁衛(wèi)星之間的相互作用力是一種內(nèi)力,不能改變電磁衛(wèi)星編隊質(zhì)心的初始動量,必須通過外部推進來完成實際碰撞規(guī)避過程以滿足所需的轉(zhuǎn)向力.Saaj等[17]首先提出了庫侖衛(wèi)星編隊采用電動推進器和庫侖推進的混合推進下的碰撞規(guī)避方案.Wang[18]將多?;魻柾屏ζ鞒晒Φ貞糜谂鲎策^程中,為地球靜止軌道附近的庫侖衛(wèi)星編隊提供外部推力.基于筆者前期工作,本文采用霍爾推力器P-70作為電磁衛(wèi)星編隊碰撞規(guī)避過程的外部推進,采用基于模糊推斷的LQR控制方法設(shè)計了碰撞規(guī)避過程的重構(gòu)控制.
1 電磁衛(wèi)星編隊的相對動力學模型
電磁衛(wèi)星組成的衛(wèi)星編隊中,通過給衛(wèi)星中線圈充電產(chǎn)生磁偶極子,如圖1所示.假設(shè)由兩顆電磁衛(wèi)星組成的編隊中,其線圈分別是a和b,通過線圈的電流和偶極子的方向如圖1所示,偶極子的強度定義為μ=NiS,其中N表示繞線匝數(shù),i是流過線圈的電流,s表示線圈的面積,為單位方向向量.
對于給定的坐標系ox′y′z′,d是偶極L和偶極F中心之間的距離,α和β是繞軸旋轉(zhuǎn)的偶極的旋轉(zhuǎn)角,θ和φ是繞x′軸旋轉(zhuǎn)的偶極子的旋轉(zhuǎn)角.偶極L和偶極F的強度矢量如下:
μL=(μLcosα)x′+(μLsinαcosθ)y′+(μLsinαsinθ)z′,
OZ是沿著地球自轉(zhuǎn)軸指向北極的,主星坐標系的原點與主星的質(zhì)心重合,OX軸從地球中心指向主衛(wèi)星的軌道平面,OY軸的方向指向正方位角,OZ軸與OX和OY構(gòu)成右手坐標系.對于地心慣性,主星和第i個從星的動力學方程分別寫為
2 改進的多?;魻柾屏ζ骷癓QR重構(gòu)控制
如果障礙物突然出現(xiàn)在電磁衛(wèi)星編隊飛行的軌道上,則會造成與從星的碰撞.為實現(xiàn)碰撞規(guī)避將此過程描述為從星從當前軌道向更高軌道移動,而主星保持其位置.即通過增大主從星之間的編隊距離,可以避開障礙物.在此過程中,第i個跟蹤衛(wèi)星的狀態(tài)變量Xi=[xi,yi,zi,〖AKx·〗i,〖AKy·〗i,〖AKz·〗i]T,為實現(xiàn)碰撞規(guī)避的期望位置為Xdi=[xdi,ydi,zdi,〖AKx·〗di,〖AKy·〗di,〖AKz·〗di]T.此過程中擾動定義為D=[dx,dy,dz]T,系統(tǒng)輸出Y=[xi,yi,zi]T,則系統(tǒng)狀態(tài)方程可寫為
可以看出系統(tǒng)是漸近穩(wěn)定的.
基于李雅普諾夫穩(wěn)定性理論,e全局收斂到0.利用LQR設(shè)計的控制器可以實現(xiàn)電磁衛(wèi)星編隊的重構(gòu)控制.然而,由于控制律完全由系統(tǒng)狀態(tài)方程和重構(gòu)時間決定,而電推進的推力完全由參數(shù)Q和R的選擇決定,如果考慮變量信息,控制器在重構(gòu)過程中能更好地滿足編隊的自治性要求.為了增加自主性,設(shè)計了一種模糊邏輯控制器來改變和調(diào)整LQR控制器的性能.模糊邏輯系統(tǒng)采用位置誤差和電動力系統(tǒng)的輸入作為控制系統(tǒng)的輸入.模糊集的選取如圖3所示.通過選擇4組Q和R的值,控制增益K的取值分為4種情況:極小推力(B)、小推力(W)、中等推力(Z)和較大推力(D).
〖PSXX19210.eps;X*3,BP#〗
3 仿真結(jié)果及分析
本文采用了一顆主星和兩顆從衛(wèi)星組成的電磁衛(wèi)星編隊.主導衛(wèi)星圍繞著半徑為7 000 km的圓形軌道飛行,兩顆從衛(wèi)星位于主導衛(wèi)星的兩側(cè),它們共享圍繞主星飛行的相同軌道,如圖2所示.主星和兩顆從星都裝有三維磁偶極子.假設(shè)兩顆從星的磁偶極子間無相互作用,初始形成的相對運動軌跡為
由于電磁力只維持初始相對運動,因此碰撞避免過程可以描述為電磁力將其初始相對運動軌跡改變?yōu)橹貥?gòu)后的期望軌跡.在整個計算過程中,為了保持編隊隊形,參數(shù)選為
μl=μf1=μf2=[μx,μy,μz]T,
μx=μy=μz=0.8×105,
μe=3.986 5×1 014,
ml=mf1=mf2=100,
Fd=[-1.027,6.3,-2.5]×10-5,
Q=diag[1,1,1,100,100,100],
R=diag[0.01,0.01,0.01],
ρ=3×104×I3×3,
φ0=2×103.
從星的初始和最終狀態(tài)為
Xf10=[50,100,86.6],
Xf1d=[150,300,259.8],
Xf20=[-50,-100,-86.6],
Xf2d=[-150,-300,-259.8].
其中μx、μy、μz單位為A·m2,μe單位為m2·s-3,F(xiàn)d單位為N,Xf10、Xf1d、Xf20、Xf2d的單位均為m.
仿真結(jié)果如圖4所示.圖4a、4b和4c顯示了初始軌跡和從星的期望軌跡之間的位置誤差.圖4d、4e和4f顯示了初始軌跡和從星期望軌跡之間的速度誤差.圖4g和4h顯示了從星電推進在x軸、y軸和z軸的推力大小.從仿真結(jié)果可以看出,電磁衛(wèi)星編隊實現(xiàn)了碰撞規(guī)避重構(gòu)過程.
4 結(jié)論
本文首先分析了兩顆電磁衛(wèi)星的相對運動動力學模型,然后,闡述了基于模糊推理的LQR重構(gòu)控制方法.通過模糊推理系統(tǒng),電推進可以根據(jù)實際編隊的距離自動調(diào)整輸出推力以提供電磁衛(wèi)星編隊在碰撞規(guī)避過程中的轉(zhuǎn)向需要.最后,通過數(shù)值仿真進行了驗證.
參考文獻
References
[1] Peck M A.Prospects and challenges for Lorentz-augmented orbits[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit,San Francisco,CA,2005:15-18
[2] Mai A U.Dynamics and control of electromagnetic formation flights in low each orbits[C]∥AIAA Guidance Navigation,and Control Conference and Exhibit,Keystone,Colorado,2006
[3] Pollock G E,Gangestad J W,Longuski J M.Analytical solutions for the relative motion of spacecraft subject to Lorentz-force perturbations[J].Acta Astronautica,2011,68(1/2):204-217
[4] Yamakawa H,Bando M,Yano K,et al.Spacecraft relative dynamics under the infuluence of geomagnetic lorentz force[C]∥Aiaa/aas Astrodynamics Specialist Conference.2013
[5] Huang X,Yan Y,Zhou Y,et al.Improved analytical solutions for relative motion of Lorentz spacecraft with application to relative navigation in low Earth orbit[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2014,228(11):2138-2154
[6] Huang X,Yan Y,Zhou Y.Dynamics and control of spacecraft hovering using the geomagnetic Lorentz force[J].Advances in Space Research,2014,53(3):518-531
[7] Huang X,Yan Y,Zhou Y,et al.Sliding mode control for Lorentz-augmented spacecraft hovering around elliptic orbits[J].Acta Astronautica,2014,103:257-268
[8] Peck M A,Streetman B,Saaj C M,et al.Spacecraft formation flying using Lorentz forces[J].Journal of the British Interplanetary Society,2007,60(7):263-267
[9] Tsujii S,Bando M,Yamakawa H.Spacecraft formation flying dynamics and control using the geomagnetic Lorentz force[J].Journal of Guidance,Control,and Dynamics,2013,36(1):136-148
[10] Sobiesiak L A,Damaren C J.Optimal hybrid control for Lorentz-augmented formation flying[C]∥AIAA Guidance,Navigation,and Control Conference,Boston,MA,2013:19-22
[11] Huang X,Yan Y,Zhou Y.Optimal spacecraft formation establishment and reconfiguration propelled by the geomagnetic Lorentz force[J].Advances in Space Research,2014,54(11):2318-2335
[12] Gangestad J W,Pollock G E,Longuski J M .Lagranges planetary equations for the motion of electrostatically charged spacecraft[J].Celestial Mechanics and Dynamical Astronomy,2010,108:125-145
[13] Gangestad J W,Pollock G E,Longuski J M.Analytical expressions that characterize propellantless capture with electrostatically charged spacecraft[J].Journal of Guidance,Control and Dynamics,2011,34:247-258
[14] Pollock G E,Gangestad J W,Longuski J M.Inclination change in low-earth orbit via the geomagnetic Lorentz force[J].Journal of Guidance,Control,and Dynamics,2010,33(5):1387-1395
[15] Huang X,Yan Y,Zhou Y,et al.Output feedback control of Lorentz-augmented spacecraft rendezvous[J].Aerospace Science and Technology,2015,42:241-248
[16] Cai W W,Yang L P,Zhu Y W,et al.Optimal satellite formation reconfiguration actuated by inter-satellite electromagnetic forces[J].Acta Astronautica,2013,89:154-165
[17] Saaj C M,Lappas V,Schaub H,et al.Hybrid propulsion system for formation flying using electrostatic forces[J].Aerospace Science and Technology,2010,14(5):348-355
[18] Wang T.Collision avoidance of Coulomb spacecraft formations using multi-mode hall thrusters[J].Aerospace Science and Technology,2017,68:261-268
Applying electric propulsion to collision avoidance process
in electromagnetic formation flight
BAI Jing1 WANG Ting1
1 School of Instrument Science and Engineering,Southeast University,Nanjing 210096
AbstractElectromagnetic formation flights(EMFFs) can be stabilized in low Earth orbit owing to the influence of Earths magnetic field.Formation control is realized by changing the current magnitude of the magnetic pole of the EMFF.Although Earths magnetic field is generally considered to be a dipole and rotates with Earth,the interaction between the magnetic fields of Earth and the EMFF is considered to be an internal force.When a small magnetic satellite formation encounters an obstacle that must be avoided,the current magnetic force,which acts as an internal force,cannot promote directional changes.Therefore,it is necessary to exert external forces on the EMFF to gain control.As a continuation of the application of electric propulsion (EP) to Coulomb satellite formation,this study investigates how EP may be applied to collision avoidance by EMFFs.During the process,the external thrust of the EMFF was provided by EP,which served as supplementary propulsion to realize obstacle avoidance.EP adopted multimode Hall thrusters,and a linear formation was employed by the EMFF.Using the linear quadratic regulator control method with an added fuzzy reference system,EMFF achieved collision avoidance with numerical simulation.
Key wordselectromagnetic formation flights;reconfiguration control;electric propulsion;collision avoidance;low Earth orbit