亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于心沖擊信號(hào)的自動(dòng)睡眠分期算法研究進(jìn)展

        2019-05-24 14:17:58段鵬慧嚴(yán)加勇段世梅
        軟件導(dǎo)刊 2019年5期

        段鵬慧 嚴(yán)加勇 段世梅

        摘 要:睡眠分期是指對(duì)睡眠階段進(jìn)行分類(lèi),其是睡眠研究與睡眠相關(guān)疾病診斷的主要手段之一,具有重要的臨床研究與應(yīng)用價(jià)值。近年來(lái),基于心沖擊信號(hào)的自動(dòng)睡眠分期算法受到研究人員的重點(diǎn)關(guān)注。在介紹睡眠分期和心沖擊信號(hào)基本知識(shí)的基礎(chǔ)上,詳細(xì)介紹了近年來(lái)基于心沖擊信號(hào)的自動(dòng)睡眠分期算法,并分析該領(lǐng)域研究進(jìn)展與未來(lái)發(fā)展趨勢(shì)。

        關(guān)鍵詞:睡眠分期;心沖擊信號(hào);自動(dòng)睡眠分期算法

        DOI:10. 11907/rjdk. 191226

        中圖分類(lèi)號(hào):TP312 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-7800(2019)005-0005-04

        Abstract:Sleep staging is the classification of sleep stages, which is essential for the diagnosis of sleep-related disorders and sleep research, and has important significance for clinical research and application. In recent years, automatic sleep staging algorithms based on ballistocardiogram(BCG) have attracted many researchers attention. On the basis of introducing the basic knowledge of sleep staging and ballistocardiogram, the present paper introduces the automatic sleep staging algorithms based on ballistocardiogram in recent years. In the end, the research progress of this field is analyzed, and development trends of next phase are pointed out.

        Key Words:sleep staging;ballistocardiogram;automatic sleep staging algorithms

        0 引言

        睡眠與人類(lèi)身體健康及生活質(zhì)量密切相關(guān),充足的睡眠可保證人體代謝正常運(yùn)行,提高人體免疫力。隨著社會(huì)生活節(jié)奏的加快、工作壓力的增大,越來(lái)越多的人出現(xiàn)了睡眠不足、睡眠質(zhì)量下降的情況,嚴(yán)重時(shí)甚至引發(fā)睡眠呼吸障礙等生理疾病,同時(shí)一些心血管疾病及精神疾病也與睡眠情況緊密相關(guān),因此睡眠研究顯得尤為重要。睡眠分期主要分析人的醒睡狀態(tài)及睡眠深淺程度,是睡眠研究的主要手段之一,在睡眠質(zhì)量評(píng)估與睡眠相關(guān)疾病診斷方面發(fā)揮著重要作用。

        目前在臨床上,睡眠分期研究主要是利用多導(dǎo)睡眠記錄儀(Polysomnography,PSG)采集心電、腦電、眼電等電生理信號(hào)[1-12],但此類(lèi)方法需要在受測(cè)人員身體多處部位固定檢測(cè)電極以檢測(cè)電生理信號(hào),受測(cè)人員會(huì)有較強(qiáng)的束縛感,因而可能影響測(cè)試結(jié)果,且容易產(chǎn)生誤差,而且人體多導(dǎo)生理信號(hào)采集過(guò)程較為復(fù)雜,對(duì)專(zhuān)家的經(jīng)驗(yàn)與操作水平依賴(lài)性較強(qiáng)。心沖擊(Ballistocardiogram,BCG)信號(hào)通過(guò)無(wú)干擾、非接觸式方式采集數(shù)據(jù),同時(shí)又包含多種生理參數(shù),因此基于BCG信號(hào)的睡眠分期方法在此需求背景下應(yīng)運(yùn)而生。

        1 睡眠分期與心沖擊信號(hào)基礎(chǔ)知識(shí)

        在睡眠過(guò)程中,人體在各種睡眠狀態(tài)下會(huì)發(fā)生不同的生理變化[13]。1968年,Rechtschaffen&Kales[14]利用睡眠時(shí)腦電圖(Electroencephalogram,EEG)、眼電圖(Electrooculogram,EOG)、肌電圖(Electromyography,EMG)等多路生理信號(hào)進(jìn)行睡眠分期,將睡眠分為6個(gè)階段:覺(jué)醒期(Wakefulness,W)、快速眼動(dòng)睡眠期(Rapid Eye Moment,REM)和4個(gè)非快速眼動(dòng)睡眠期(Non-rapid Eye Movement,NREM),其中S1、S2為淺睡期(Light Sleep,LS),S3、S4為深睡期(也稱(chēng)為慢波睡眠期,Slow Wave Sleep,SWS)。2007年,美國(guó)睡眠醫(yī)學(xué)會(huì)(American Academy of Sleep Medicine,AASM) 將R&K睡眠分期準(zhǔn)則中的S3和S4期合成為非快速眼動(dòng)3期,分為W、R、N1、N2、N3共5個(gè)階段 [15]。不同睡眠分期方法對(duì)比如圖1所示。

        心臟搏動(dòng)能引發(fā)身體產(chǎn)生相應(yīng)運(yùn)動(dòng),可通過(guò)高靈敏度傳感器拾取該運(yùn)動(dòng)信號(hào),并將其描記成波形,該波形稱(chēng)為心沖擊信號(hào),簡(jiǎn)稱(chēng)BCG信號(hào)。與心電信號(hào)(Electrocardiogram,ECG)不同,BCG獲取的是人體機(jī)械振動(dòng)信號(hào),是一種非平穩(wěn)的生物信號(hào),屬于低頻生理信號(hào),頻率介于1~10Hz之間,幅值微弱,容易受到外界干擾,而ECG反映的是心臟興奮的產(chǎn)生、傳導(dǎo)與恢復(fù)過(guò)程中生物電的變化,兩者工作方式及原理完全不同。圖2、圖3分別為BCG與ECG波形示意圖,從圖中可以看出,BCG信號(hào)主要包含H、I、J、K、 L與M、N波, J 波為峰值特征點(diǎn),通常將較為明顯的H、I、J、K、L作為一個(gè)I-J波群,表示一次心臟搏動(dòng),而ECG信號(hào)的一次心臟搏動(dòng)主要包括P波、QRS波群和T波,其中R波為峰值特征點(diǎn)。兩者相比,BCG信號(hào)的HIJK峰可清晰界定,同時(shí)IJK峰與ECG信號(hào)的QRS波在時(shí)間上具有一致性[16]。

        2 基于心沖擊信號(hào)的自動(dòng)睡眠分期算法

        上世紀(jì)90年代以后,隨著傳感器技術(shù)與電子技術(shù)的快速發(fā)展,使得對(duì)BCG信號(hào)的有效采集與分析成為可能。1991年,Jansen等[17]設(shè)計(jì)出靜電荷敏感床墊(Static Charge Sensitive Bed,SCSB),發(fā)現(xiàn)可以從SCSB信號(hào)中獲得BCG信號(hào),這也是利用BCG信號(hào)進(jìn)行睡眠監(jiān)測(cè)的雛形;1996年,俞夢(mèng)孫等[18]研制了微動(dòng)敏感床墊監(jiān)測(cè)系統(tǒng),采用以小波分析為主的信號(hào)處理技術(shù),分析24名健康受測(cè)人員心動(dòng)周期的變異性,將睡眠階段分為Wake、REM和NREM。與腦電波分析結(jié)果相比,該方式符合率達(dá)到0.852±0.048,但其仍不能對(duì)睡眠中非快速眼動(dòng)期進(jìn)行準(zhǔn)確劃分,從而影響對(duì)睡眠深淺的識(shí)別;Watanabe等[19]采用充氣式微動(dòng)敏感床墊,分析夜間睡眠中的睡眠階段轉(zhuǎn)變以及睡眠階段與測(cè)量生理信號(hào)之間的關(guān)系,建立睡眠數(shù)學(xué)模型,并進(jìn)行睡眠分期,分期結(jié)果為:NREM期、REM期與Wake期,與R&K準(zhǔn)則的一致性分別為:82.6%、38.3%和70.5%。

        近年來(lái),多項(xiàng)研究工作[19-21]研究、分析了心率變異性(Heart Rate Variability,HRV)與睡眠分期之間的關(guān)系,研究表明HRV分析可以成為睡眠分期研究的基礎(chǔ)[22-24]。HRV主要測(cè)量ECG信號(hào)的RR間期(ECG RRI),HRV分析對(duì)象包括0.04Hz-0.15Hz頻率范圍內(nèi)的LF-HRV成分和0.15Hz-0.40Hz頻率范圍內(nèi)的HF-HRV成分[20]。一些研究人員將HRV分析巧妙應(yīng)用于基于BCG信號(hào)的睡眠分期研究[24-30]。例如,Alihanka等[24提出基于單通道靜態(tài)電荷敏感床(One-channel Static Charge-sensitive-bed,SCSB)提取BCG信號(hào)和體動(dòng)信號(hào),可實(shí)現(xiàn)對(duì)BCG、心率、呼吸幅度和身體運(yùn)動(dòng)的長(zhǎng)期連續(xù)監(jiān)測(cè);Kortelainen等[25]使用壓敏傳感器和倒譜方法從BCG信號(hào)中提取心跳間隔(Inter Beat Interval,IBI),與ECG RRI相比,其相對(duì)誤差為0.35%,可見(jiàn)BCG IBI相當(dāng)于ECG RRI,可將其應(yīng)用于基于BCG信號(hào)的睡眠分期研究中。

        截至目前,雖然基于BCG信號(hào)的睡眠分期具體算法有所不同,但基本依據(jù)是比較類(lèi)似的,即睡眠深淺與心率、呼吸頻率等體征具有較強(qiáng)關(guān)聯(lián)性,如表1所示[26]。

        由表1可以看出,淺睡和深睡周期可以由HR、HRV和RRV確定,REM和Wakefulness可由RRV與體動(dòng)進(jìn)行分辨。近年來(lái),一些研究人員基于BCG信號(hào)進(jìn)行睡眠自動(dòng)分期研究,并取得了一定成果。一些典型的基于BCG信號(hào)的自動(dòng)睡眠分期算法及結(jié)果如表2所示[19,27-30]。

        通過(guò)對(duì)各種基于BCG信號(hào)的自動(dòng)睡眠分期算法的分析,可以看出,由于對(duì)BCG信號(hào)的特征提取方法、模式識(shí)別分類(lèi)器選擇等均不相同,睡眠分期效果也不同。其方法大多是利用BCG信號(hào)中的HBI取代ECG中的RRI,依據(jù)心率變異性與睡眠時(shí)相的密切關(guān)系,并與呼吸頻率或體動(dòng)信號(hào)相結(jié)合,實(shí)現(xiàn)自動(dòng)睡眠分期?;贐CG信號(hào)的自動(dòng)睡眠分期一般過(guò)程為:首先對(duì)從微動(dòng)敏感床墊中提取的BCG信號(hào)進(jìn)行濾波,然后將心沖擊圖和對(duì)應(yīng)的標(biāo)準(zhǔn)時(shí)相圖按相同時(shí)間間隔進(jìn)行劃分,從劃分得到的片段中提取特征值,將特征值對(duì)應(yīng)的睡眠時(shí)相作為訓(xùn)練集對(duì)分類(lèi)模型進(jìn)行訓(xùn)練,從而得到睡眠時(shí)相分期結(jié)果。然而,目前基于BCG信號(hào)的自動(dòng)睡眠分期算法大多只能實(shí)現(xiàn)對(duì)兩或三個(gè)睡眠時(shí)相的劃分,靈敏度與準(zhǔn)確度較低。

        3 結(jié)論與展望

        睡眠分期是睡眠研究與睡眠相關(guān)疾病診斷的主要手段之一。BCG技術(shù)具備無(wú)創(chuàng)、非接觸式以及可以長(zhǎng)期連續(xù)監(jiān)測(cè)等優(yōu)點(diǎn),因此是自動(dòng)睡眠分期研究的一個(gè)發(fā)展方向。目前利用BCG信號(hào)進(jìn)行睡眠分期研究,均是通過(guò)對(duì)信號(hào)進(jìn)行濾波、統(tǒng)計(jì)分析或模版匹配算法分析,靈敏度和準(zhǔn)確度較低,只能實(shí)現(xiàn)對(duì)兩或三個(gè)睡眠時(shí)相的劃分。因此,如何進(jìn)一步提高分類(lèi)方法的靈敏度和準(zhǔn)確度,使睡眠時(shí)相劃分更為準(zhǔn)確,仍需要研究者們作進(jìn)一步探索。

        參考文獻(xiàn):

        [1] HSU Y L,YANG Y T,WANG J S, et al. Automatic sleep stage recurrent neural classifier using energy features of EEG signals[J]. Neurocomputing, 2013, 104:105-114.

        [2] 周鵬,李向新,張翼,等. 基于主成分分析和支持向量機(jī)的睡眠分期研究[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2013(6):1176-1179.

        [3] ZHU G,LI Y,WEN P. Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal[J]. IEEE Journal of Biomedical and Health Informatics., 2014,18 (6):1813-1821.

        [4] LAJNEF T,CHAIBI S,RUBY P,et al. Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines[J]. Journal of Neuroscience Methods, 2015, 250:94-105.

        [5] HASSAN A R,BHUIYAN M I H. Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating[J]. Biomedical Signal Processing and Control, 2016, 24:1-10.

        [6] HASSAN A R,BHUIYAN M I H. A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features[J]. Journal of Neuroscience Methods, 2016, 271:107-118.

        [7] HASSAN A R,BHUIYAN M I H. Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting[J]. Computer Methods and Programs in Biomedicine, 2017, 140:201-210.

        [8] WEI L, LIN Y,WANG J, et al. Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG[C]. 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 2017.

        [9] SILVEIRA T L T,KOZAKEVICIUS A J,RODRIGUES C R. Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain[J]. Medical & Biological Engineering & Computing, 2017, 55(2):343-352.

        [10] SHARMA M,GOYAL D,ACHUTH P V,et al. An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank [J]. Computers in Biology & Medicine, 2018, 98:58-75.

        [11] SORS A,BONNET S,MIREK,et al.A convolutional neural network for sleep stage scoring from raw single-channel EEG[J].Biomedical Signal Processing and Control,2018,42:107-114.

        [12] GHASEMZADEH P, KALBKHANI H, SARTIPI S, et al. Classification of sleep stages based on LSTAR model[J]. Applied Soft Computing,2019,75:523-536.

        [13] 高群霞. 基于EEG的睡眠分期與睡眠評(píng)估方法研究[D].廣州:華南理工大學(xué), 2015.

        [14] RECHTSCHAFFEN A,KALES A. A manual of standardized terminology, techniques, and scoring systems for sleep stages of human subjects[M]. Los Angeles:Brain Information Service/Brain Research Institute,University of California:1968.

        [15] IBER C,ANCOLI-ISRAEL S,CHESSON A,et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications[M]. Westchester,IL:American Academy of Sleep Medicine,2007.

        [16] 張先文,張麗巖,丁力超,等. 基于心沖擊信號(hào)的心率檢測(cè)[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2017(7):94-98.

        [17] JANSEN B H,LARSON B H,SHANKAR K. Monitoring of the ballistocardiogram with the static charge sensitive bed [J]. IEEE Transactions on Biomedical Engineering,1991, 38(8):748-751.

        [18] 俞夢(mèng)孫,楊軍,周玉彬,等. 用微動(dòng)敏感床墊監(jiān)測(cè)睡眠的研究[J].中華航空航天醫(yī)學(xué)雜志,1999,10(1):40-45.

        [19] WATANABE T,WATANABE K. Noncontact method for sleep stage estimation[J]. IEEE Ttransactions on Biomedical Engineering, 2004, 51(10):1735.

        [20] PENZEL T,KANTELHARDT J W,GROTE L,et al. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(10):1143-1151.

        [21] REDMOND S J,HENEGHAN C. Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(3):485-496.

        [22] KIM J, LEE J, SHIN M. Sleep stage classification based on noise-reduced fractal property of heart rate variability[J]. Procedia Computer Science, 2017, 116:435-440.

        [23] HERZIG D,ESER P,OMLIN X,et al.Reproducibility of heart rate variability is parameter and sleep stage dependent[J].Frontiers in Physiology,2018,8:1-10.

        [24] ALIHANKA J,VAAHTORANTA K,SAARIKIVI I. A new method for long-term monitoring of the ballistocardiogram, heart rate, and respiration[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 1981, 240(5): 384-392.

        [25] KORTELAINEN J M,VIRKKALA J. FFT averaging of multichannel BCG signals from bed mattress sensor to improve estimation of heart beat interval[C]. International Conference of the IEEE Engineering in Medicine & Biology Society, 2007.

        [26] NURMI. Nocturnal sleep quality and quantity analysis with ballistocardiography[D]. Espoo:Aalto University, 2016.

        [27] MIGLIORINI M,BIANCHI A M, DOMENICO N, et al. Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors[C]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2010:3273-3276.

        [28] KORTELAINEN J M, MENDEZ M O, BIANCHI A M, et al. Sleep staging based on signals acquired through bed sensor[J]. IEEE Transactions on Information Technology in Biomedicine,2010, 14(3):776-785.

        [29] PARK K S, HWANG S H, JUNG D W, et al. Ballistocardiography for nonintrusive sleep structure estimation [C]. Engineering in Medicine & Biology Society. IEEE, 2014.

        [30] NI H,ZHAO T,ZHOU X,et al. Analyzing sleep stages in home environment based on ballistocardiography[M]. New York:Springer International Publishing, 2015.

        (責(zé)任編輯:黃 ?。?/p>

        丰满少妇被猛烈进入| 国产三级精品美女三级| 无码久久流水呻吟| 国产精品久久综合桃花网| 无码一区二区三区在线在看| 日产精品一区二区三区| 国产成人久久精品77777综合| 无码高潮少妇毛多水多水免费| 日韩精品一区二区在线视| 日本黑人亚洲一区二区| 水蜜桃在线观看一区二区| www国产亚洲精品久久麻豆| 亚洲精品久久久久久久蜜桃| 特黄做受又粗又长又大又硬| 中文无码日韩欧| 国产国语熟妇视频在线观看| 初尝黑人巨砲波多野结衣| 欧美日韩综合在线视频免费看| 国产成人久久精品二区三区| 精品不卡视频在线网址| av高清在线不卡直播| 精品www日韩熟女人妻| √最新版天堂资源在线| 欧美乱人伦中文字幕在线不卡| 国产成人久久精品77777综合| 国产午夜激情视频在线看| 日日麻批免费高清视频| 吃奶摸下高潮60分钟免费视频| 欧美日韩一区二区综合| 国产视频网站一区二区三区| 丰满熟女人妻一区二区三区| 免费看黄视频亚洲网站| 国产一级二级三级在线观看视频 | 国产色视频一区二区三区不卡| 亚洲av无码乱码国产精品| 国产人碰人摸人爱视频| 免费国产黄片视频在线观看| 如何看色黄视频中文字幕| 最近中文字幕一区二区三区| 国产毛片精品av一区二区| 美艳善良的丝袜高跟美腿|