亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        灌溉制度對(duì)膜下滴灌甜菜產(chǎn)量及水分利用效率的影響

        2019-05-24 07:29:18王振華楊彬林謝香文王則玉楊洪澤董心久
        關(guān)鍵詞:甜菜利用效率灌水

        王振華,楊彬林,謝香文,王則玉,楊洪澤,董心久

        ?

        灌溉制度對(duì)膜下滴灌甜菜產(chǎn)量及水分利用效率的影響

        王振華1,2,楊彬林1,2,謝香文3,4※,王則玉4,楊洪澤5,董心久5

        (1. 石河子大學(xué)水利建筑工程學(xué)院,石河子 832000;2. 石河子大學(xué)現(xiàn)代節(jié)水灌溉兵團(tuán)重點(diǎn)實(shí)驗(yàn)室,石河子 832000; 3. 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083;4. 新疆農(nóng)業(yè)科學(xué)院土壤肥料與農(nóng)業(yè)節(jié)水研究所,烏魯木齊 830091; 5. 新疆農(nóng)業(yè)科學(xué)院經(jīng)濟(jì)作物研究所,烏魯木齊 830091)

        為制定新疆合理的甜菜膜下滴灌制度,設(shè)置3個(gè)灌水次數(shù)(8、9和10次)和2個(gè)灌水定額(45和60 mm)兩因素全組合試驗(yàn),于2016—2017年在新疆瑪納斯縣農(nóng)科院甜菜改良中心開展田間試驗(yàn)。結(jié)果表明,灌水次數(shù)增加時(shí)甜菜葉面積指數(shù)與產(chǎn)量增加,含糖率降低,對(duì)甜菜的水分利用效率、耗水量無(wú)明顯影響(>0.05),甜菜葉綠素值隨灌水次數(shù)與定額增加呈下降趨勢(shì);在灌水次數(shù)與定額交互作用下,灌水8次時(shí)由于土壤相對(duì)含水率低于50%,甜菜會(huì)減產(chǎn);當(dāng)灌水9次,灌水定額為45 mm時(shí),增加15 mm灌水定額土壤相對(duì)含水率達(dá)50%以上,此時(shí)甜菜增產(chǎn)7.4%~7.7%,糖產(chǎn)增加9.4%~9.7%;而繼續(xù)增加灌水次數(shù)時(shí),會(huì)導(dǎo)致甜菜含糖率降低而降低糖產(chǎn)。因此針對(duì)新疆膜下滴灌甜菜以60 mm灌水定額灌水9次為宜,可獲得高產(chǎn)與糖產(chǎn),較傳統(tǒng)新疆膜下滴灌甜菜制度節(jié)水10%。該研究對(duì)指導(dǎo)新疆膜下滴灌甜菜灌溉制度具有一定意義。

        灌溉;作物;土壤水分;甜菜產(chǎn)量;甜菜產(chǎn)糖量;水分利用效率

        0 引 言

        水資源是農(nóng)業(yè)的保障,當(dāng)前中國(guó)農(nóng)業(yè)用水量占總用水量的60%以上[1],而新疆農(nóng)業(yè)灌溉用水占到總用水量95%左右[2],如何有效利用水資源是當(dāng)下研究熱點(diǎn)。膜下滴灌既能提高田間水分利用效率,避免深層滲漏,減少棵間蒸發(fā),同時(shí)又具備增溫保墑作用[3],在中國(guó)西北干旱區(qū)特別是新疆農(nóng)業(yè)灌溉上得到廣泛應(yīng)用[4-5]。膜下滴灌與傳統(tǒng)灌溉模式相比可減少灌溉用水50%以上,顯著提高作物水分利用效率[6-7]。甜菜(L.)屬于需水量大的藜科經(jīng)濟(jì)作物,灌水量對(duì)甜菜產(chǎn)量影響顯著[8],而在膜下滴灌條件下甜菜產(chǎn)量與產(chǎn)糖量均高于溝灌和噴灌[9]。

        灌溉制度直接影響土壤含水率,對(duì)作物產(chǎn)量影響顯著[10-12]。目前,國(guó)內(nèi)外學(xué)者對(duì)甜菜適宜灌溉制度及土壤含水率做了大量研究:Kosobryukhov等提出適當(dāng)減少甜菜灌水量可以提高水分利用效率[13]。Fabeiro等在半干旱氣候條件下試驗(yàn)表明甜菜最適宜的需水量為6 898 m3/hm2,同時(shí)也能達(dá)到較高的產(chǎn)量117.64 t/hm2,水分利用效率提高到170.55 kg/(mm·hm2)[14]。李智通過(guò)不同灌水試驗(yàn)表明:甜菜葉面積指數(shù)、干物質(zhì)積累量、凈光合速率和氣孔導(dǎo)度均隨灌水量增加而增加,在耗水量為545.15 mm時(shí),塊根產(chǎn)量達(dá)到8.6′104kg/hm2,水分利用效率為160.71 kg/(mm·hm2)[15]。馮澤洋等通過(guò)滴灌甜菜虧缺試驗(yàn)表明:葉叢繁茂期與塊根膨大期適宜灌水量為1 147.78和635.54 m3/hm2[16]。董心久等試驗(yàn)表明新疆膜下滴灌甜菜適宜灌溉定額為360 m3/667m2[17]。孫烏日娜提出在膜下滴灌條件下甜菜生長(zhǎng)所需土壤含水率占田間持水量的69%,低于此值時(shí)可以考慮田間灌溉[18]。李陽(yáng)陽(yáng)對(duì)甜菜進(jìn)行虧缺試驗(yàn),表明在甜菜葉叢快速生長(zhǎng)期,0~40 cm土層含水量下降至田間持水量50%時(shí)應(yīng)及時(shí)補(bǔ)充灌溉;在甜菜塊根膨大期, 0~40 cm土層含水量下降至田間持水量的30%時(shí)應(yīng)補(bǔ)充灌溉;在糖分積累期,0~40 cm土層含水量保持在田間持水量30%時(shí)甜菜產(chǎn)量及含糖量最高[19-21]。Topak等在不同膜下滴灌方案下證明調(diào)虧灌溉可節(jié)約25%的灌水量[22]。

        以上研究結(jié)果顯示,不同地區(qū)和不同試驗(yàn)條件下,得出適宜甜菜生長(zhǎng)灌水量及土壤含水率存在一定差異,多偏重于甜菜產(chǎn)量、適宜灌水量及土壤含水率的研究,缺乏對(duì)于膜下滴灌甜菜高糖產(chǎn)量灌溉制度研究。同時(shí),不同灌溉次數(shù)與灌水定額對(duì)作物生長(zhǎng)及土壤水分布影響顯著[23-26],而對(duì)甜菜產(chǎn)糖量的影響鮮有報(bào)道。新疆是典型干旱區(qū)氣候,少雨蒸發(fā)量大,日照充足,是中國(guó)最大的甜菜生產(chǎn)基地,甜菜種植面積在8.6′104hm2,產(chǎn)糖量占全國(guó)的50%以上[27]。而不同灌水次數(shù)及定額對(duì)新疆膜下滴灌甜菜耗水規(guī)律研究及甜菜高糖產(chǎn)量還有待研究。本文在此基礎(chǔ)上,以優(yōu)化新疆膜下滴灌甜菜灌溉制度提高甜菜糖產(chǎn)量為目標(biāo),對(duì)不同灌水次數(shù)與灌水定額對(duì)甜菜生長(zhǎng)、糖產(chǎn)量及水分利用效率進(jìn)行為期2 a的試驗(yàn)研究,為新疆膜下滴灌甜菜灌溉制度制定提供理論依據(jù)。

        1 材料與方法

        1.1 試驗(yàn)區(qū)概況

        試驗(yàn)分別于2016年4—10月和2017年4—10月在新疆農(nóng)科院瑪納斯甜菜改良中心試驗(yàn)基地進(jìn)行。試驗(yàn)區(qū)位于新疆維吾爾自治區(qū)瑪納斯縣城東北方向5 km處,地理坐標(biāo)為86°5¢~87°8¢E,43°7¢~45°20¢N。7—9月平均氣溫為21.8 ℃,有效積溫為2 000 ℃,無(wú)霜期150~204 d,生長(zhǎng)期(4—9月)日照時(shí)數(shù)為1 780 h,多年平均蒸發(fā)量為1 691 mm,2016年生育期降水量為182 mm,2017年為108 mm。試驗(yàn)采用甜菜品種為ST15140。土壤類型為灰漠土,土壤養(yǎng)分狀況見表1。0~30 cm土壤質(zhì)地良好,30~70 cm土壤質(zhì)地較黏重。田間持水量均為36.1%(體積),平均容重均為1.42 g/cm3。

        表1 土壤養(yǎng)分狀況

        1.2 試驗(yàn)設(shè)計(jì)

        2 a試驗(yàn)采用膜下滴灌方式,按新疆甜菜基肥與出苗水標(biāo)準(zhǔn)在播種前施67.5 kg/hm2氮肥,112.5 kg/hm2磷肥,40.5 kg/hm2鉀肥,播種后出苗灌水量為450 m3/hm2,4月中旬播種,10月上旬收獲。當(dāng)?shù)赝扑]灌水定額為60 mm,頻率為10次,經(jīng)前期土壤入滲試驗(yàn)及灌水定額公式計(jì)算得出60 mm灌水定額下β=28.89%,計(jì)算公式如下[28]:

        1 000=ρH(ββ)(1)

        式中為灌水定額,mm,取60 mm;ρ為該時(shí)段土壤計(jì)劃濕潤(rùn)層內(nèi)土壤容重,g/cm3,取1.42 g/cm3;為計(jì)劃濕潤(rùn)層深度,cm,本試驗(yàn)計(jì)劃濕潤(rùn)層深度為90 cm;β為目標(biāo)含水量(田間持水率乘以目標(biāo)相對(duì)含水率),%;β為灌前土壤含水率,%,取21.72%;為土壤濕潤(rùn)比,%,取65.41%。

        故本試驗(yàn)灌水定額設(shè)I1(45 mm),I2(60 mm)2個(gè)水平,灌水頻率設(shè)F8(8次)、F9(9次)、F10(10次)3個(gè)水平,按不同灌溉定額不同次數(shù)灌溉布設(shè)6個(gè)灌水單因素處理,每個(gè)處理3組重復(fù)(表2)。采用隨機(jī)區(qū)組排列,小區(qū)面積10 m×3 m(3個(gè)膜幅),試驗(yàn)區(qū)兩側(cè)設(shè)有6膜保護(hù)行。種植行距50 cm,株距20 cm,采用一膜兩行一管種植模式;采用單翼迷宮式滴灌帶,滴頭間距30 cm,流量1.5 L/h,灌水量由水表控制。

        表2 試驗(yàn)設(shè)計(jì)方案

        1.3 測(cè)定方法

        1.3.1 土壤含水率測(cè)定

        分別在各處理第一次灌水前一天(6月4日、6月14日、6月19日)以及收獲前一天(10月10日)用Trime水分測(cè)試儀分層測(cè)定土壤含水率,測(cè)試深度90 cm,每10 cm為1層。各處理在距甜菜種植行0、±0.125 m處垂直種植行方向共布設(shè)3根探管(圖1),為評(píng)價(jià)灌溉制度對(duì)土壤含水率影響,考慮在測(cè)定水分前降雨對(duì)土壤含水率臨時(shí)影響,利用以下公式對(duì)土壤含水率進(jìn)行折算。公式(2)用于計(jì)算影響區(qū)域降雨總質(zhì)量[29]:

        =10-3 F·R·ρ(2)

        式中為降雨量,mm;為降雨計(jì)算區(qū)域土壤面積,取1 m2;ρ為降雨密度,取1′103kg/m3;為計(jì)算區(qū)域降雨總質(zhì)量,kg;10-3為雨量換算系數(shù)。

        由公式(3)得出土壤體積含水率為[30]

        式中θ為土壤體積含水率,%;θ為土壤質(zhì)量含水率,%;ρ為土壤容重,為1.42g/cm3。

        土壤質(zhì)量含水率計(jì)算公式采用國(guó)家GB 7172-1987標(biāo)準(zhǔn),為

        式中m為烘干空鋁盒質(zhì)量,g;1為烘干前鋁盒及土樣質(zhì)量,g;m為烘干后鋁盒及土樣質(zhì)量,g。

        由公式(5)得出土壤折算質(zhì)量含水率計(jì)算公式為

        將公式(5)帶入(3)中得出土壤折算后體積含水率為

        (6)

        式中θ為土壤折算后體積含水率,%。

        土壤相對(duì)含水率計(jì)算公式為[31]

        式中θ為土壤相對(duì)含水率,%;為計(jì)算時(shí)段內(nèi)土壤平均含水率,%;θ為土壤田間持水率,%。

        注:?jiǎn)挝粸閙

        Note:Unit is m

        圖1 Trime埋設(shè)位置圖

        Fig.1 Location of Trime

        1.3.2 生長(zhǎng)指標(biāo)測(cè)定

        2 a的甜菜生長(zhǎng)指標(biāo)均于7月30日測(cè)定,選取小區(qū)中行具有代表性6棵植株定點(diǎn)觀測(cè)甜菜株高、葉面積、塊根質(zhì)量。用直尺測(cè)量各處理甜菜株高、葉長(zhǎng)寬,葉面積指數(shù)=(Σ0.7)/750(為葉長(zhǎng),為葉寬),塊根質(zhì)量用電子秤稱量(精度0.05 g)。

        1.3.3 葉片SPAD值測(cè)定

        采用便攜式葉綠素儀每次灌水前測(cè)定SPAD值,每處理選擇同方向同位置的10片葉觀測(cè),取各處理生育期所測(cè)葉綠素值的平均值。

        1.3.4 作物耗水量測(cè)定

        作物生育期間耗水量采用水量平衡法計(jì)算,本試驗(yàn)區(qū)地下水埋深低于8 m,地下水對(duì)作物用水補(bǔ)給忽略不計(jì);滴頭灌水強(qiáng)度小于土壤入滲率,無(wú)地表徑流與深層滲漏,即[32]:

        式中ETc為作物耗水量,mm;R為時(shí)段內(nèi)計(jì)劃土壤有效降雨量(圖2),mm;I為時(shí)段內(nèi)灌水量,mm;Ds為0~90 cm深度土壤儲(chǔ)水量變化量,mm。

        1.3.5 產(chǎn)量、含糖率及產(chǎn)糖量測(cè)定

        甜菜產(chǎn)量于10月上旬收獲,由小區(qū)中間行去除頭尾1.5 m后全部采收稱量測(cè)產(chǎn);含糖率采用垂度計(jì)測(cè)定甜菜的可溶性固形物含量:取樣并切取1/2甜菜塊根,沿塊根直立45°角方向切取1.0 cm厚、中心條狀塊根,去除表皮,搗碎成汁,采用錘度計(jì)監(jiān)測(cè)不同處理甜菜的可溶性固形物含量,含糖率(%)=可溶性固形物含量(%)′0.82;糖產(chǎn)量為甜菜產(chǎn)量與含糖率乘積。

        1.3.6 水分利用效率計(jì)算

        水分利用效率計(jì)算公式[33]為

        式中WUE為作物水分利用效率,kg/(mm·hm2);為單位面積產(chǎn)量,kg/hm2;ETc為作物耗水量,mm。

        產(chǎn)糖水分利用效率公式[33]為

        式中SWUE為作物產(chǎn)糖水分利用效率,kg/(mm·hm2);為單位面積糖產(chǎn)量,kg/hm2;ETc為作物耗水量,mm。

        1.4 數(shù)據(jù)分析

        采用SPSS20.0和Excle2013軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)及相關(guān)分析,差異顯著性分析采用Duncan法(極顯著<0.01,顯著<0.05)。

        2 結(jié)果與分析

        2.1 灌溉制度對(duì)甜菜形態(tài)指標(biāo)的影響

        不同灌水次數(shù)與定額處理的甜菜株高、葉面積指數(shù)(LAI, leaf area index)、塊根質(zhì)量及灌前土壤含水率與相對(duì)含水率見表3。由表3知,2 a內(nèi),不同灌水次數(shù)處理的灌前土壤相對(duì)含水率表現(xiàn)為灌水8次小于50%,灌水9次介于50%~60%,灌水10次在60%以上。

        灌水次數(shù)對(duì)甜菜株高、LAI、塊根質(zhì)量影響極顯著(<0.01),灌水定額對(duì)甜菜塊根質(zhì)量影響顯著(<0.05)。在2016年,F(xiàn)8水平下不同灌水定額對(duì)甜菜LAI影響顯著(<0.05),在2017年影響極顯著(<0.01)。2 a內(nèi),灌水定額與次數(shù)交互作用對(duì)甜菜株高、LAI、塊根質(zhì)量影響極顯著(<0.01)。

        2 a內(nèi)灌水10次(I1F10與I2F10)處理的甜菜株高超過(guò)70 cm,顯著高于其他處理(<0.05),灌水8次與9次無(wú)明顯差異(>0.05);不同灌水定額水平下灌水次數(shù)對(duì)甜菜LAI影響顯著表現(xiàn)為:I1F10> I1F9> I1F8,I2F10> I2F9> I2F8(<0.05),表明灌水次數(shù)增加能促進(jìn)甜菜葉叢生長(zhǎng),而灌水定額對(duì)甜菜株高與葉面積指數(shù)無(wú)明顯影響。

        I1灌水定額下,2016年甜菜塊根質(zhì)量隨灌水次數(shù)增加呈增大趨勢(shì),表現(xiàn)為I1F10>I1F9>I1F8,(<0.05);2017年I1F10的塊根質(zhì)量較I1F9、I1F8分別增加40.01%、78.5%(<0.05),I1F8與I1F9無(wú)明顯差異(>0.05)。在I2水平下,2 a內(nèi)I2F10處理塊根質(zhì)量顯著高于I2F8、I2F9處理(<0.05),保持在800 g以上,I2F8與I2F9無(wú)明顯差異(>0.05)。2 a數(shù)據(jù)表明,相同灌水次數(shù)下I2水平下甜菜塊根質(zhì)量顯著高于I1,表現(xiàn)為,I2F8>I1F8,I2F9>I1F9,I2F10>I1F10,表明灌水定額增加能增加甜菜塊根質(zhì)量。

        表3 不同灌溉制度對(duì)甜菜形態(tài)指標(biāo)的影響

        注:表中土壤含水率為灌前測(cè)定值,測(cè)定日期分別為6月4日(F10)、6月14日(F9)、6月19日(F8);*表示差異顯著(<0.05),**表示差異極顯著(<0.01);a、b、c等分別表示=0.05水平下差異顯著,下同。

        Note:Soil water content was measured before irrigation in the table, which were measured in 6/4(F10), 6/14(F9), 6/19(F8), respectively; * means significant difference (<0.05), while ** means extremely significant difference (<0.01). a, b and c means significant difference at=0.05 level, the same below.

        2.2 不同灌溉制度對(duì)甜菜葉綠素值的影響

        葉綠素含量是衡量植物養(yǎng)分狀況、光合能力以及植物生長(zhǎng)發(fā)育階段的良好指示器[34]。2 a內(nèi)不同灌溉制度對(duì)甜菜SPAD值影響見圖3。由圖知,在2 a內(nèi),SPAD值隨灌水次數(shù)增加呈降低趨勢(shì);不同灌水次數(shù)下I1處理SPAD值顯著高于I2處理(<0.05)。I1F8與I1F9處理SPAD值顯著高于其他處理(<0.05),I2F10處理顯著小于其他處理(<0.05)。表明甜菜SPAD值隨灌水定額與次數(shù)增加呈降低趨勢(shì)。

        注:I1表示45 mm灌水定額,I2表示60 mm灌水定額。

        2.3 不同灌溉制度對(duì)甜菜產(chǎn)量、產(chǎn)糖量的影響

        不同灌溉制度對(duì)甜菜產(chǎn)量、含糖率、產(chǎn)糖量的影響見表4。由表4知,2 a內(nèi),灌水次數(shù)對(duì)甜菜的產(chǎn)量、含糖率影響極顯著(<0.01),對(duì)產(chǎn)糖量無(wú)明顯影響(>0.05);I1與I2灌水定額在F8水平下對(duì)甜菜產(chǎn)量影響顯著(< 0.05),F(xiàn)9水平下對(duì)甜菜產(chǎn)量影響極顯著(<0.01),F(xiàn)10水平對(duì)產(chǎn)量無(wú)明顯影響(>0.05)。I1與I2灌水定額在F8水平下對(duì)甜菜含糖率無(wú)明顯影響(>0.05);在F9水平下甜菜產(chǎn)糖量影響極顯著(<0.01);在F10水平下甜菜產(chǎn)糖量無(wú)明顯影響(>0.05)。2 a內(nèi),灌水定額與灌水次數(shù)交互作用對(duì)甜菜產(chǎn)量、含糖率、產(chǎn)糖量影響極顯著(<0.01)。

        于收獲前測(cè)定土壤含水率折算后知,2 a內(nèi)F8處理的土壤相對(duì)含水率降至50%以下;F10的土壤相對(duì)含水率保持在50%~60%之間;F9的土壤相對(duì)含水率在I1灌水定額下分別降至46.13%、49.63%,在I2灌水定額下分別降至53.12%、52.58%。

        2 a內(nèi)在I1水平下,I1F10處理的甜菜產(chǎn)量顯著高于I1F8與I1F9(<0.05),2016年I1F8與I1F9無(wú)明顯差異(>0.05),2017年I1F8與I1F9差異顯著(<0.05)。在I2水平下,2 a內(nèi)I2F10與I2F9無(wú)明顯差異(>0.05),顯著高于I2F8處理(<0.05);I2F8與I1F8無(wú)明顯差異(>0.05,除2016年)I2F9產(chǎn)量較I1F9增加7.7%、7.4%(<0.05),I1F10與I2F10處理的甜菜產(chǎn)量無(wú)明顯差異(>0.05)。

        2 a內(nèi),I1水平下甜菜含糖率隨灌水次數(shù)增加呈顯著減小趨勢(shì),表現(xiàn)為:I1F8>I1F9>I1F10。在I2水平下,2016年甜菜含糖率表現(xiàn)為:I2F8>I2F9>I2F10(<0.05);2017年I2F8與I2F9無(wú)明顯差異(>0.05),I2F10處理的甜菜含糖率顯著小于其他處理(<0.05)。2 a內(nèi)不同灌水定額水平下甜菜含糖率無(wú)明顯差異(>0.05)。

        在I1水平下,2 a內(nèi)F9的產(chǎn)糖量顯著小于F8(<0.05),F(xiàn)8與F10無(wú)明顯差異(>0.05)。在I2水平下,2016年F8與F9糖產(chǎn)量顯著高于F10(<0.05),F(xiàn)8與F9無(wú)明顯差異(>0.05),I2F9的甜菜產(chǎn)糖量達(dá)到1.92×104kg/hm2;在2017年I2F9的甜菜產(chǎn)糖量達(dá)到1.97×104kg/hm2,較I2F8與I2F10增加6.48%(<0.05),I2F8與I2F10無(wú)明顯差異(>0.05)。2 a內(nèi)不同灌水定額下,I2F9較I1F9分別增加糖產(chǎn)9.7%、9.4%(<0.05),I1F8與I2F8、I1F10與I2F10無(wú)明顯差異(>0.05)。

        表4 不同灌溉制度對(duì)甜菜產(chǎn)量、含糖率及產(chǎn)糖量的影響

        注:表中土壤含水率為收獲前測(cè)定值,測(cè)定日期為10月10日

        Note: Soil water content was measured before harvest in the table, which measured in 10/10

        總體看來(lái),灌水9次時(shí)增加15 mm灌水定額能顯著提高甜菜產(chǎn)量與糖產(chǎn)量;而灌水次數(shù)增加會(huì)導(dǎo)致甜菜含糖率降低,灌水定額增加對(duì)含糖率無(wú)明顯影響。

        2.4 不同灌溉制度對(duì)甜菜耗水量、水分利用效率的影響

        不同灌溉制度對(duì)甜菜耗水量(ETc,evapotranspiration)、水分利用效率(WUE,water use efficiency)、產(chǎn)糖水分利用效率(SWUE,sugar water use efficiency)的影響見表5。分析表5知,ETc隨灌溉定額增加呈增大趨勢(shì),WUE隨灌溉定額增加呈減小趨勢(shì)。2 a內(nèi),灌水次數(shù)對(duì)甜菜ETc、WUE無(wú)明顯影響(>0.05),灌水定額對(duì)ETc、WUE、SWUE有極顯著影響(<0.01);2016年灌水次數(shù)增加對(duì)SWUE影響顯著(<0.05),在2017年無(wú)明顯影響(>0.05);在2 a內(nèi)灌水次數(shù)與灌水定額交互作用對(duì)甜菜ETc、WUE、SWUE影響極顯著(<0.01)。

        表5 不同灌溉制度對(duì)甜菜耗水量、水分利用效率及產(chǎn)糖水分利用效率的影響

        2 a內(nèi),I2處理的甜菜ETc明顯大于I1處理(<0.05)。在I1水平下,F(xiàn)8與F9的ETc無(wú)明顯差異(>0.05),F(xiàn)10處理的ETc顯著大于其他處理(<0.05)。在I2處理下,2016年甜菜ETc隨灌水次數(shù)增加呈明顯增大趨勢(shì),表現(xiàn)為I2F10>I2F9>I2F8(<0.05),2017年I2F8與I2F9無(wú)明顯差異(>0.05),I2F10處理的ETc為669.45 mm,顯著大于其他處理(<0.05)。

        水分利用效率是指作物消耗單位水量生產(chǎn)出的同化量。由表6知,在2 a內(nèi)I1灌水定額下各處理無(wú)明顯差異(>0.05);在I2水平下,2016年F8與F9處理的WUE顯著大于F10(<0.05),F(xiàn)8與F9無(wú)明顯差異(>0.05),在2017年無(wú)明顯差異(>0.05)。在2 a內(nèi)I1處理的WUE顯著大于I2(<0.05),表明灌水定額增加會(huì)減小WUE。

        產(chǎn)糖水分利用效率是評(píng)價(jià)甜菜產(chǎn)糖能力的指標(biāo)。I1水平下,在2016年隨灌水次數(shù)增加SWUE呈顯著下降趨勢(shì)(<0.05);2017年F8與F9處理的SWUE無(wú)明顯差異(>0.05),F(xiàn)10處理SWUE較F8、F9減小5.5、3 kg/(mm·hm2)。在I2水平下,2 a內(nèi)F8與F9無(wú)明顯差異,F(xiàn)10處理顯著小于F8、F9(<0.05)。2 a內(nèi)相同灌水次數(shù)下I2處理的甜菜SWUE明顯小于I1(<0.05),表明灌水定額增加同時(shí)也會(huì)減小SWUE。

        總之,ETc隨灌溉定額增大呈增大趨勢(shì),灌水次數(shù)對(duì)甜菜WUE無(wú)明顯影響,灌水定額增加會(huì)明顯降低WUE與SWUE。灌水10次會(huì)明顯降低SWUE。

        3 討 論

        前人通過(guò)新疆膜下滴灌甜菜方法測(cè)得甜菜株高介于50~60 cm之間,LAI均在4.0以上[35]。本次試驗(yàn)F8與F9處理的甜菜株高與前人相似,F(xiàn)10處理的甜菜株高均在70 cm以上。作物對(duì)土壤含水率反應(yīng)較為敏感[36-37],土壤含水率是前期制約甜菜生長(zhǎng)重要因素,本試驗(yàn)灌水前1 d測(cè)得F8、F9、F10土壤相對(duì)含水率分別位于50%以下、50%~60%、60%以上,2 a試驗(yàn)表明灌水次數(shù)對(duì)甜菜株高、LAI影響極顯著,這與Radin等提出灌水頻率對(duì)棉花植株生殖生長(zhǎng)期影響顯著的結(jié)論相吻合[38],說(shuō)明灌水次數(shù)對(duì)前期土壤含水率及甜菜生長(zhǎng)起決定性作用;陳凱麗等通過(guò)小麥滴灌試驗(yàn)表明52.5與60 mm灌水定額對(duì)冬小麥生長(zhǎng)與產(chǎn)量無(wú)明顯影響[39],本次研究表明在2 a內(nèi)F9、F10水平下灌水定額對(duì)甜菜株高、LAI無(wú)明顯影響,這與陳凱麗呈相同規(guī)律,但F8水平下灌溉定額對(duì)甜菜LAI影響顯著,說(shuō)明灌水8次時(shí)土壤含水率位于50%以下時(shí),甜菜生長(zhǎng)受到影響,應(yīng)該增加灌水定額。

        王唯逍等研究表明適度減少灌水量有利于水稻葉片葉綠素形成[40],李智等通過(guò)試驗(yàn)表明過(guò)多水分供應(yīng)不會(huì)增加葉綠素含量[41]。而本次試驗(yàn)說(shuō)明甜菜葉綠素隨灌水定額與次數(shù)增加呈下降趨勢(shì),與王唯逍等結(jié)果相似。

        Doorenbos等研究表明土壤相對(duì)含水率保持在50%~60%時(shí)甜菜可獲得高產(chǎn)[42]。Tognetti等表明當(dāng)缺水程度達(dá)到田間持水量50%時(shí),甜菜減產(chǎn)25%[43]。樊福義等通過(guò)膜下滴灌甜菜試驗(yàn)表明灌水8次時(shí)產(chǎn)量最高為9.07′104kg/hm2[44]。本次試驗(yàn)表明灌水8次時(shí)產(chǎn)量較低,與樊福義結(jié)論不同,因?yàn)榉Ax試驗(yàn)?zāi)杲涤炅繛?50 mm,為豐雨年,而灌水次數(shù)增加能提高甜菜產(chǎn)量,這與灌水次數(shù)增加能增加作物產(chǎn)量[45-47]結(jié)論吻合,土壤含水率介于51%~56%產(chǎn)量較高,這與Doorenbos等[42]研究結(jié)果吻合。李智試驗(yàn)表明甜菜產(chǎn)量隨甜菜LAI與土壤含水率增加而增加,含糖率與土壤含水率呈負(fù)相關(guān)[15,41]。本次試驗(yàn)I2F9處理獲得雙高產(chǎn),2 a內(nèi)產(chǎn)糖量較I2F10分別增加4.3%、6.5%,I2F9的甜菜LAI小于與I1F10、I2F10,但同時(shí)獲得高產(chǎn),說(shuō)明土壤含水率是影響甜菜LAI與產(chǎn)量的根本原因,當(dāng)土壤相對(duì)含水率達(dá)到50%以上時(shí)獲得高產(chǎn);土壤含水率對(duì)含糖率影響主要體現(xiàn)在灌水次數(shù)上,隨灌水次數(shù)增加而降低。

        Yildirim在安卡拉對(duì)甜菜進(jìn)行充分灌溉后測(cè)得甜菜耗水量為865 mm[48];Barbanti等對(duì)甜菜進(jìn)行虧缺與充分灌溉處理后得出甜菜耗水量在567~1 262 mm之間[49];Katerji等在黏土與壤土上充分灌溉后測(cè)得甜菜耗水量在731~836 mm之間[50]。本次試驗(yàn)在2 a不同灌溉制度下測(cè)得甜菜耗水量在475~721 mm之間,耗水量隨灌溉定額增加而增大,2 a內(nèi)I2F10處理耗水量分別為669、721 mm,與前人結(jié)果相似。孫烏日娜通過(guò)試驗(yàn)表明甜菜ETc隨灌水量增加而增大,WUE隨灌水量增加而減小[18]。本次試驗(yàn)表明I2灌水定額的WUE明顯低于I1處理,與前人結(jié)果相符,但灌水次數(shù)對(duì)ETc、WUE無(wú)明顯影響。李智研究表明甜菜產(chǎn)量與耗水量呈正比[41],本次試驗(yàn)與李智結(jié)論相符,而WUE與ETc呈反比,證明WUE隨甜菜產(chǎn)量增加而呈減小趨勢(shì)。甜菜屬于經(jīng)濟(jì)作物,應(yīng)在保證高產(chǎn)量與產(chǎn)糖量前提下提高WUE與SWUE,因此以60 mm灌水定額灌水9次為更適宜新疆膜下滴灌甜菜制度,此外,新疆傳統(tǒng)膜下滴灌甜菜灌溉定額為600 mm,該灌溉制度相比傳統(tǒng)灌溉模式可節(jié)水10%。

        4 結(jié) 論

        1)在新疆膜下滴灌甜菜制度下,灌水次數(shù)增加能增加甜菜葉面積指數(shù)、產(chǎn)量,但會(huì)降低含糖率與產(chǎn)糖水分利用效率,對(duì)甜菜的耗水量、水分利用效率無(wú)顯著影響(>0.05);基于45 mm灌水定額增加15 mm灌水定額會(huì)增加甜菜產(chǎn)量、耗水量、降低水分利用效率與產(chǎn)糖水分利用效率,對(duì)含糖率與葉面積指數(shù)無(wú)明顯影響。甜菜SPAD值隨灌水次數(shù)與定額增加呈下降趨勢(shì)。

        2)甜菜產(chǎn)量增加會(huì)導(dǎo)致水分利用效率降低,甜菜屬經(jīng)濟(jì)作物,從經(jīng)濟(jì)高產(chǎn)及新疆典型干旱區(qū)地域特征角度分析,灌水9次土壤相對(duì)含水率低于50%時(shí),增加15 mm灌水定額2 a的糖產(chǎn)分別為1.92×104和1.97×104kg/hm2,能增加糖產(chǎn)量9.4%~9.7%左右,產(chǎn)量與灌水10次無(wú)明顯差異(>0.05),但對(duì)含糖率無(wú)明顯影響(>0.05),因此灌水9次,60 mm灌水定額更適應(yīng)新疆膜下滴灌甜菜制度。

        [1] 金巍,劉雙雙,張可,等. 農(nóng)業(yè)生產(chǎn)效率對(duì)農(nóng)業(yè)用水量的影響[J]. 自然資源學(xué)報(bào),2018,33(8):1326-1339. Jin Wei, Liu Shuangshuang, Zhang Ke, et al. Influence of agricultural production efficiency on agricultural water consumption[J]. Journal of Natural Resources, 2018, 33(8): 1326-1339. (in Chinese with English abstract)

        [2] 謝文寶,陳彤,劉國(guó)勇. 新疆農(nóng)業(yè)水資源利用與經(jīng)濟(jì)增長(zhǎng)脫鉤關(guān)系及效應(yīng)分解[J]. 節(jié)水灌溉,2018(4):69-72,77. Xie Wenbao, Chen Tong, Liu Guoyong. Decoupling relationship and effect decomposition of agricultural water resources utilization and economic Growth in Xinjiang[J]. Water Saving Irrigation, 2018(4), 69-72, 77. (in Chinese with English abstract)

        [3] 李明思,鄭旭榮,賈宏偉,等. 棉花膜下滴灌灌溉制度試驗(yàn)研究[J]. 中國(guó)農(nóng)村水利水電,2001(11):13-15. Li Mingsi, Zheng Xurong, Jia Hongwei, et al. Experimental research on under mulch drip irrigation regime for cotton[J]. China Rural Nater and Hydropower, 2001(11): 13-15. (in Chinese with English abstract)

        [4] 劉新永,田長(zhǎng)彥. 棉花膜下滴灌鹽分動(dòng)態(tài)及平衡研究[J]. 水土保持學(xué)報(bào),2005,19(6):82-85. Liu Yongxin, Tian Changyan. Study on dynamic and balance of salt for cotton under plastic mulch in south Xinjiang[J]. Journal of Soil and Water Conservation, 2005, 19(6): 82-85. (in Chinese with English abstract)

        [5] 張偉,呂新,李魯華,等. 新疆棉田膜下滴灌鹽分運(yùn)移規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(8):15-19. Zhang Wei, Lü Xin, Li Luhua, et al. Salt transfer law cotton field with drip irrigation under the plastic mulch in Xinjiang region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(8): 15-19. (in Chinese with English abstract)

        [6] 王昱,趙廷紅,李波,等. 西北內(nèi)陸干旱地區(qū)農(nóng)戶采用節(jié)水灌溉技術(shù)意愿影響因素分析[J]. 節(jié)水灌溉,2012(11):50-54 Wang Yu. Zhao Tinghong, Li Bo, et al. Affecting factors of farmers willingness to adopt water-saving technology in northwest arid region of China[J]. Water Saving Irrigation, 2012(11): 50–54. (in Chinese with English abstract)

        [7] 王敏,王海霞,韓清芳,等. 不同材料覆蓋的土壤水溫效應(yīng)及對(duì)玉米生長(zhǎng)的影響[J]. 作物學(xué)報(bào),2011,37(7):1249-1258. Wang Ming, Wang Haixia, Han Qiangfang, et al. Effects of different mulching materials on soil water, temperature, and corn growth[J]. Acta Agronomica Sinica, 2011, 37(7): 1249-1258. (in Chinese with English abstract)

        [8] Hassanli A M, Ahmadirad S, Beecham S. Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency[J]. Agric. Water Manage, 2011, 97(2): 357-362.

        [9] 冶軍,陳軍,朱新在. 不同灌溉方式對(duì)新疆甜菜生長(zhǎng)發(fā)育的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,2009(7):15-16. Ye Jun, Chen Jun, Zhu Xinzai. Effects of different irrigation ways on the growth and development of sugarbeet in Xinjiang[J]. Modern Agricultural Science and Technology. 2009(7):15-16. (in Chinese with English abstract)

        [10] 趙長(zhǎng)星,馬東輝,王月福,等. 施氮量和花后土壤含水量對(duì)小麥旗葉衰老及粒重的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2008(11):2388-2393. Zhao Changxin, Ma Donghui, Wang Yuefu, et al. Effects of nitrogen application rate and post-anthesis soil moisture content on the flag leaf se- nescence and kernel weight of wheat[J]. Chinese Journal of Applied Ecology. 2008(11): 2388-2393. (in Chinese with English abstract)

        [11] 馬東輝,趙長(zhǎng)星,王月福,等. 施氮量和花后土壤含水量對(duì)小麥旗葉光合特性和產(chǎn)量的影響[J]. 生態(tài)學(xué)報(bào),2008(10):4896-4901. Ma Donghui, Zhao Changxin, Wang Yuefu, et al. Effects of nitrogen application and soil moisture content after flowering on photosynthetic characteristics and yield of flag leaves of wheat[J]. Chinese Journal of Applied Ecology. 2008(10): 4896-4901. (in Chinese with English abstract)

        [12] 侯玉虹,尹光華,劉作新,等. 土壤含水量對(duì)玉米出苗率及苗期生長(zhǎng)的影響[J]. 安徽農(nóng)學(xué)通報(bào),2007(1):70-73. Hou Yuhong, Yi Guanghua, Liu Zuoxin, et al. Effects of soil water contents on seedlings emergence rate and seeding growth of maize[J]. Anhui Agricultural Science Bulletin. 2007(1): 70-73. (in Chinese with English abstract)

        [13] Kosobryulchov A A, Bil K Y, Nishio J N. Sugar beet photosynthesis under conditions of increasing water defcciency in soil and protective effects of a low- molecular-weight alcohol[J]. Applied Biochemistry and Microbiology, 2004, 40(1):668-674.

        [14] Fabeiro C, Martin d S O F, Lopez R, et al. Production and quality of the sugar beet () cultivated under controlled deficit irrigation conditions in a semi-arid climate[J]. Agricultural Water Management, 2003, 62(3): 215-227.

        [15] 李智. 膜下滴灌條件下甜菜水分代謝特點(diǎn)的研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2015 Li Zhi. The Physiological Effects on Coupling of Water and Nitrogen in Sugar Beets With Drip Irrigation under Plastic Mulch[D]. Hohhot: Inner Mongolla Agricultural University, 2015. (in Chinese with English abstract)

        [16] 馮澤洋,李國(guó)龍,李智,等. 調(diào)虧灌溉對(duì)滴灌甜菜生長(zhǎng)和產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào),2017,36(11):7-12. Feng Zeyang, Li Guolong, Li Zhi, et al. Effects of regulated deficit drip irrigation on growth and yield of sugar beet[J]. Journal of Irrigation and Drainage. 2017, 36(11): 7-12. (in Chinese with English abstract)

        [17] 董心久,楊洪澤,高衛(wèi)時(shí),等. 灌水量對(duì)滴灌甜菜生長(zhǎng)發(fā)育及產(chǎn)質(zhì)量的影響[J]. 中國(guó)糖料,2013(4):37-38,41. Dong Xinjiu, Yang Hongze, Gao Weishi, et al. Effect of drip irrigation amount on sugar beet growth, yield and quality[J]. Sugar Crops of China. 2013(4): 37-38,41. (in Chinese with English abstract)

        [18] 孫烏日娜. 膜下滴灌甜菜水分利用效率的研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2013. Sun Wurina. Study on Water Use Efficiency of Sugar Beet with Drip Irrigation under Mulch[D]. Hohhot: Inner Mongolla Agricultural University,2013. (in Chinese with English abstract)

        [19] 李陽(yáng)陽(yáng),費(fèi)聰,崔靜,等. 滴灌甜菜對(duì)糖分積累期水分虧缺的生理響應(yīng)[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(3):373-380. Li Yangyang, Fei Cong, Cui Jing, et al. Physiological response of sugar beet() to water deficit at sugar accumulation stage under drip irrigation[J]. Chinese Journal of Eco-Agriculture. 2017, 25(3): 373-380. (in Chinese with English abstract)

        [20] 李陽(yáng)陽(yáng),費(fèi)聰,崔靜,等. 滴灌甜菜對(duì)塊根膨大期水分虧缺的補(bǔ)償性響應(yīng)[J]. 作物學(xué)報(bào),2016,42(11):1727-1732. Li Yangyang, Fei Cong, Cui Jing, et al. Compesation response of drip-irrigated sugar beets () to different water deficits during storage root development[J]. Acta Agronomica Sinica. 2016, 42(11): 1727-1732. (in Chinese with English abstract)

        [21] 李陽(yáng)陽(yáng),耿青云,費(fèi)聰,等. 滴灌甜菜葉叢生長(zhǎng)期對(duì)干旱脅迫的生理響應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(1):201-206. Li Yangyang, Geng Qingyun, Fei Cong, et al. Physiological responses of sugar beet () to drought stress during vegetative development period under drip irrigation[J]. Chinese Journal of Applied Ecology. 2016, 27(1): 201-206. (in Chinese with English abstract)

        [22] Topak R, Su Heri S, Acar B. Effect of different drip irrigation regimes on sugar beet) yield, quality and water use efficiency in Middle Anatolian, Turkey [J]. Irrigation Science, 2011, 29(1): 79-89.

        [23] 董平國(guó),王增麗,溫廣貴,等.不同灌溉制度對(duì)制種玉米產(chǎn)量和階段耗水量的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2014,32(9):822-828. Dong Pingguo, Wang Zengli, Wen Guanggui, et al. Effects of irrigation schedule on water consumption and yield of seed maize[J]. Journal of Drainage and Irrigation Machinery Engineering. 2014, 32(9): 822-828. (in Chinese with English abstract)

        [24] 王振華,楊培嶺,鄭旭榮,等. 新疆現(xiàn)行灌溉制度下膜下滴灌棉田土壤鹽分分布變化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(8):149-159. Wang Zhenhua, Yang Peiling, Zheng Xurong, et al. Soil salt dynamics in cotton fields with mulched drip irrigation under the existing irrigation system in Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery. 2014, 45(8): 149-159. (in Chinese with English abstract)

        [25] 王峰,孫景生,劉祖貴,等. 不同灌溉制度對(duì)棉田鹽分分布與脫鹽效果的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(12):120-127. Wang Feng, Sun Jingsheng, Liu Zugui, et al. Effect of different irrigation scheduling on salt distribution and leaching in cotton field[J]. Transactions of the Chinese Society for Agricultural Machinery. 2013, 44(12): 120-127. (in Chinese with English abstract)

        [26] Collins W. Remote sensing of crop type and maturity [J]. Photogrammetric Engineering and emote Sensing, 1978, 44(1): 43-55.

        [27] 劉升廷,王燕飛,高衛(wèi)時(shí),等. 對(duì)我國(guó)甜菜種業(yè)發(fā)展的思考[J]. 中國(guó)糖料,2017,39(2):71-74. Liu Shengting, Wang Yanfei, Gao Weishi, et al. Research progress of proteomics in sugar beet[J]. Sugar Crops of China. 2017, 39(2): 71-74. (in Chinese with English abstract)

        [28] 李明思,康紹忠,孫海燕. 點(diǎn)源滴灌滴頭流量與濕潤(rùn)體關(guān)系研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(4):32-35. Li Mingsi, Kang Shaozhong, Sun Haiyan. Relationships between dripper discharge and soil wetting pattern for drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE). 2006, 22(4): 32-35. (in Chinese with English abstract)

        [29] 張國(guó)輝,江行久. 利用土壤含水量資料估算區(qū)域降水滲透量[J]. 東北水利水電,2005(8):53-54. Zhang Guohui, Jiang Xingjiu. Estimation of regional precipitation infiltration using soil water content data[J]. Water Resources & Hydropower of Northeast China. 2005(8): 53-54. (in Chinese with English abstract)

        [30] 龔元石,廖超子,李保國(guó). 土壤含水量和容重的空間變異及其分形特征[J]. 土壤學(xué)報(bào),1998,35(1):10-15. Gong Yuanshi, Liao Chaozi, Li Baoguo. Spatial varibility and fractal dimension for soil water content and bulk density[J]. Acta Pedologica Sinica. 1998, 35(1): 10-15. (in Chinese with English abstract)

        [31] 柴紅敏,蔡煥杰,王健,等. 虧缺灌溉試驗(yàn)中土壤水分脅迫水平設(shè)置新指標(biāo)[J]. 中國(guó)農(nóng)村水利水電,2009(6):14-17. Chai Hongmin, Cai Huanjie, Wang Jian, et al. A new index for setting level of soil water in deficit irrigation experimentation[J]. China Rural Water and Hydropower. 2009(6): 14-17.(in Chinese with English abstract)

        [32] James L G. Principles of farm irrigation system design[J]. Cab International Wallingford Uk Pp, 1988. 12(4): 279-291.

        [33] He J. Best Management Practice Development with the Ceres-Maize Model for Sweet Corn Production in North Florida[D].Florida: University of Florida. 2008.

        [34] 宮兆寧,趙雅莉,趙文吉,等. 基于光譜指數(shù)的植物葉片葉綠素含量的估算模型[J]. 生態(tài)學(xué)報(bào),2014,34(20):5736-5745. Gong Zhaoning, Zhao Yali, Zhao Wenji, et al. Estimation model for plant leaf chlorophyll content based on the spectral index content[J]. Acta Ecologica Sinica. 2014, 34(20): 5736-5745. (in Chinese with English abstract)

        [35] 胡華兵. 新疆甜菜高產(chǎn)高效種植技術(shù)研究[D]. 石河子:石河子大學(xué),2014. Hu Huabin. Study of Yield and High Efficiency Cultivation Technology of Sugar Beet in Xinjiang[D]. Shihezi: Shihezi University, 2014. (in Chinese with English abstract)

        [36] 鄭國(guó)保,張?jiān)磁妫椎陆埽? 不同灌水次數(shù)對(duì)日光溫室番茄土壤水分動(dòng)態(tài)變化規(guī)律的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2011,27(22):192-196. Zheng Guobao, Zhang Yuanpei, Sun Dejie, et al. Research on soil water dynamics of greenhouse tomato by different irrigation frequency[J]. Chinese Agricultural Science Bulletin. 2011, 27(22): 192-196. (in Chinese with English abstract)

        [37] 霍東亮,孔維萍. 調(diào)虧灌溉對(duì)作物土壤含水量及生長(zhǎng)特性的影響[J]. 農(nóng)業(yè)科技與信息,2017(22):73-74. Huo Dongliang, Kong Weiping. Effects of regulated deficit irrigation on soil water content and growth characteristics of crops[J]. Agricultural Science-Technology and Information,2017(22): 73-74. (in Chinese with English abstract)

        [38] Radin J W, Mauney J R, Kerridge P C, et al, Water up take by cotton roots during fruit filling In relation to irrigation frequency[J]. Crop Sci. 1989(4): 1000-1005.

        [39] 陳凱麗,趙經(jīng)華,馬亮,等. 不同灌水定額對(duì)北疆小麥生長(zhǎng)和產(chǎn)量的影響[J]. 節(jié)水灌溉,2016(5):19-22. Chen Kaili, Zhao Jinghua, Ma Liang, et al. Effects of different irrigation quota of drip irrigation in the northern Xinjiang region of the growth and yield of wheat[J]. Water Saving Irrigation. 2016(5): 19-22. (in Chinese with English abstract)

        [40] 王唯逍,劉小軍,朱艷,等. 不同土壤水分處理對(duì)水稻光合特性及產(chǎn)量的影響[J]. 生態(tài)學(xué)報(bào),2012,32(22):7053-7060. Wang Weixiao, Liu Xiaojun, Zhu Yan, et al. Effects of different soil water treatments on photosynthetic characteristics and grain yield in rice[J]. Acta Ecologica Sinica. 2012, 32(22): 7053-7060. (in Chinese with English abstract)

        [41] 李智,李國(guó)龍,劉蒙,等. 膜下滴灌條件下甜菜水分代謝特點(diǎn)的研究[J]. 節(jié)水灌溉,2015(9):52-56. Li Zhi, Li Guolong, Liu Meng, et al. Study on water metabolism characteristics of sugar beet under plastic mulching drip irrigation[J]. Water Saving Irrigation. 2015(9): 52-56. (in Chinese with English abstract)

        [42] Doorenbos Y, Kassam A H. Yield response to water[J]. Irrigation & Agricultural Development, 1986, 33(6): 257-280.

        [43] Tognetti R, Palladino M, Minnocci A, et al. The response of sugar beet to drip and low-pressure sprinkler irrigation in Southern Italy[J]. Agricultural Water Management, 2003, 60(2): 135-155.

        [44] 樊福義,蘇文斌,宮前恒,等. 高寒干旱區(qū)膜下滴灌甜菜灌溉制度的研究[J]. 中國(guó)糖料,2017,39(6):37-39,42. Fan Fuyi, Su Wenbin, Gong Qianheng, et al. Effects of active organic calcium-magnesium-silicon fertilizer on yield, quality and benefits of sugarcane[J]. Sugar Crops of China, 2017, 39(6): 37-39, 42. (in Chinese with English abstract)

        [45] 朱文新,孫繼穎,高聚林,等. 深松和灌水次數(shù)對(duì)春玉米耗水特性及產(chǎn)量的影響[J]. 玉米科學(xué),2016,24(5):75-82. Zhu Wenxin, Sun Jiying, Gao Julin, et al. Effect of subsoiling and irrigation frequency on water consumption characteristics and yield of super high yield spring maize[J]. Journal of Maize Sciences. 2016, 24(5): 75-82. (in Chinese with English abstract)

        [46] 王偉. 不同灌水次數(shù)下施氮量對(duì)優(yōu)質(zhì)春小麥產(chǎn)量與品質(zhì)的影響[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2013. Wang Wei. The Nitrogen Application Rate on Wheat Yield and Quality of High-quality Spring Wheat under Different Irrigation Times[D]. Urumqi: Xinjiang Agricultural University, 2013. (in Chinese with English abstract)

        [47] 李云,李金霞,李瑞奇,等. 灌水次數(shù)和施磷量對(duì)冬小麥養(yǎng)分積累量和產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào),2010,30(6):1097-1103. Li Yun, Li Jinxia, Li Ruiqi, et al. Effect of irrigation times and phosphorus application rate on nutrient accumulation and grain yield of winter wheat[J]. Journal of Triticeae Crops. 2010, 30(6): 1097-1103. (in Chinese with English abstract)

        [48] Yildirim O. Sugar Beet Yields Response to Surface Drip and Subsurface Irrigation Methods[D]. Wikipedia: University of Ankara, 1990.

        [49] Barbanti L, Monti A, Venturi G. Nitrogen dynamics and fertilizer use efficiency in leaves of different ages of sugar beet (Beta vulgaris) at variable water regimes[J]. Ann Appl Bio. 2010, 150(2): 197–205.

        [50] Katerji N, Mastrorilli M. The effect of soil texture on the water use efficiency of irrigated crops: results of a multi-year experiment carried out in the Mediterranean region[J]. Euro JAgron. 2009, 30(2): 95–100.

        Effects of different irrigation regimes of drip irrigation under plastic film on sugar beet yield and water use efficiency

        Wang Zhenhua1,2, Yang Binlin1,2, Xie Xiangwen3,4※, Wang Zeyu4, Yang Hongze5, Dong Xinjiu5

        (1.832000,; 2.832000,; 3.100083,; 4.830091,; 5.830091,)

        In this study, we analyzed the effects of different drip irrigation regimes under plastic film on sugar beet yield and water use efficiency in Xinjiang of China. Drip irrigation under plastic film had been widely used in the arid areas of northwest China, especially in Xinjiang for saving water and fertilizer, increasing temperature of soil and preservation of soil moisture. The drip irrigation regimes of sugar beet under plastic film had a significant effect on increasing sugar beet root yield compared with traditional irrigation regimes. Two irrigation water quota (45 mm, 60 mm) and three irrigation frequency (eight, nine, ten) were combined to six treatments based on traditional drip irrigation regimes of sugar beet under plastic film in Xinjiang for suitable drip irrigation regimes under plastic film. The experiment was conducted during 2016 and 2017 at the Sugar Beet Improvement Center in Manasi, Xinjiang. The effects of different irrigation treatments on height and weight of sugar beet, leaf area index, root yield, sugar yield, percentage of sugar content, soil water content, evapotranspiration and water use efficiency were investigated. The water consumption of sugar beet was indicated combined with the soil water content and the suitable drip irrigation regimes under plastic film was proposed. The results showed that the increase of irrigation frequency could increase leaf area index, weight of sugar beet root and root yield, decreased percentage of sugar content and had no significant (> 0.05) effect on evapotranspiration and sugar beet water use efficiency. The increase of irrigation water quota were not significant effect on leaf area index and percentage of sugar content, increased weight of sugar beet root and evapotranspiration and decreased water use efficiency of sugar beet. In addition, The SPAD value was decreased as the increase of irrigation water quota and irrigation frequency. By irrigation frequency and water quota interaction, the root yield of 45 mm and 60 mm irrigation water quota at frequency of eight were significant decreased, and percentage of sugar content and water use efficiency of 45 mm and 60 mm irrigation water quota at frequency of eight were decreased for the soil relative water content were under 50%. The soil relative water content was under 50% for 45 mm irrigation water quota at frequency of nine, and was more than 50% when 45 mm irrigation water quota at frequency of nine increased 15 mm. The weight of root yield was increased and root yield was increased by 7.4%-7.7% with the sugar yield increased by 9.4%-9.7% as the increase of 15 mm of 45 mm irrigation water quota at frequency of nine. The height of sugar beet, leaf area index were significant (<0.05) higher than other irrigation frequencies for ten irritation frequency which the soil relative water content was more than 50%. The ten irrigation frequency was not significant (>0.05) compared with nine irrigation frequency at 60 mm irrigation water quota, but the sugar yield of sugar beet was significant (<0.05) less than nine irrigation frequency for 60 mm irrigation water quota. As increased 15 mm irrigation water quota for ten irrigation frequency at 45 mm irrigation water quota, the evapotranspiration was increased, the water use efficiency was decrease and root yield, percentage of sugar content and sugar yield of sugar beet had no significant difference. The results indicated that the nine irrigation frequency at 60 mm water quota was the suitable irrigation regimes of sugar beet under plastic film in Xinjiang for the lack of rain and sufficient sunshine, which saving 10% irrigation water compared with traditional irrigation regimes of sugar beet under plastic film.

        irrigation; crops; soil moisture; root yield of sugar beet; sugar yield of sugar beet; water use efficiency

        2018-07-04

        2019-01-12

        國(guó)家糖料產(chǎn)業(yè)體系水分管理與節(jié)水栽培崗位(CARS-170202);國(guó)家重點(diǎn)研發(fā)計(jì)劃“經(jīng)濟(jì)作物水肥一體化技術(shù)模式研究與應(yīng)用(2017YFD0201506)”

        王振華,河南扶溝人,教授,博士生導(dǎo)師,主要從事干旱區(qū)節(jié)水灌溉理論與技術(shù)研究。Email:wzh2002027@163.com

        謝香文,甘肅民勤人,研究員,研究方向?yàn)檗r(nóng)業(yè)節(jié)水。Email:xiexw@sina.cn

        10.11975/j.issn.1002-6819.2019.08.019

        S275.6;S566.3

        A

        1002-6819(2019)-08-0158-09

        王振華,楊彬林,謝香文,王則玉,楊洪澤,董心久. 灌溉制度對(duì)膜下滴灌甜菜產(chǎn)量及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):158-166. doi:10.11975/j.issn.1002-6819.2019.08.019 http://www.tcsae.org

        Wang Zhenhua, Yang Binlin, Xie Xiangwen, Wang Zeyu, Yang Hongze, Dong Xinjiu. Effects of different irrigation regimes of drip irrigation under plastic film on sugar beet yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 158-166. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.019 http://www.tcsae.org

        猜你喜歡
        甜菜利用效率灌水
        甜菜應(yīng)答鹽脅迫的RING型E3連接酶基因的鑒定與分析
        辣椒甜菜,各有所愛
        灌水取球
        番茄灌水掌握技巧
        冬季棚菜灌水四關(guān)鍵
        避免肥料流失 提高利用效率
        體制改革前后塔里木河流域水資源利用效率對(duì)比分析
        新疆產(chǎn)區(qū)有機(jī)甜菜栽培技術(shù)探討
        灌水秘笈
        二二三團(tuán)甜菜主要病蟲害發(fā)生特點(diǎn)及防治
        毛片在线播放a| 亚洲一区二区三区内裤视| 欧美69久成人做爰视频| 中文字幕人妻丝袜美腿乱| 加勒比日本东京热1区| 亚洲大胆美女人体一二三区| 色翁荡熄又大又硬又粗又动态图| 精品成人av一区二区三区| 一级片久久| 亚洲成人色黄网站久久| 大陆老熟女自拍自偷露脸| 无人视频在线观看免费播放影院| 亚洲美女啪啪| 久久国产精品国产精品久久 | 男男性恋免费视频网站| 亚洲成AⅤ人在线观看无码| 国产精品久久久看三级| 国产成人a级毛片| 囯产精品一品二区三区| 亚洲国产成人资源在线桃色| 96中文字幕一区二区| 无码爆乳护士让我爽| 亚洲成成品网站源码中国有限公司| 日韩肥熟妇无码一区二区三区| 国产精品人伦一区二区三| 成人aaa片一区国产精品| 精品手机在线视频| 最新日韩精品视频免费在线观看| 国产极品视觉盛宴在线观看| 青青草免费在线视频久草| 国产专区一线二线三线码| 五十路熟妇亲子交尾| 九色精品国产亚洲av麻豆一| 人妻精品视频一区二区三区| 亚洲国产精品日韩av专区| 亚洲乱码少妇中文字幕| 日韩在线一区二区三区中文字幕 | 在线亚洲精品中文字幕美乳色| 天堂国产一区二区三区| 精品少妇一区二区三区视频| 日本午夜一区二区视频|