苑 進(jìn),辛振波,牛子孺,李 揚(yáng),劉興華,辛 帥,王建福,汪力衡
?
基于RVM的配比變量排肥摻混均勻度離散元仿真及驗(yàn)證
苑 進(jìn),辛振波,牛子孺※,李 揚(yáng),劉興華,辛 帥,王建福,汪力衡
(山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院,泰安 271018)
采用試驗(yàn)測量或現(xiàn)有的間接標(biāo)定方法很難實(shí)現(xiàn)配比變量排肥離散元仿真的參數(shù)標(biāo)定,針對(duì)此標(biāo)定難題,該文提出一種基于肥料摻混均勻度-仿真參數(shù)相關(guān)向量機(jī)模型主動(dòng)尋優(yōu)的標(biāo)定方法。將配比變量離散元排肥過程看作特定的非線性系統(tǒng),采用相關(guān)向量機(jī)機(jī)器學(xué)習(xí)方法揭示模型參數(shù)與肥料摻混均勻度之間的映射關(guān)系,建立回歸元模型;基于最優(yōu)模型參數(shù)值對(duì)應(yīng)的肥料摻混均勻度值應(yīng)與試驗(yàn)值一致,采用建立的元模型結(jié)合試驗(yàn)統(tǒng)計(jì)結(jié)果構(gòu)建適應(yīng)度函數(shù);基于約束最優(yōu)的數(shù)學(xué)思想建立數(shù)學(xué)模型,通過最優(yōu)參數(shù)值遺傳算法迭代計(jì)算,得到最優(yōu)值。5種排肥轉(zhuǎn)速下(30、40、50、60、70 r/min),排肥器采用碰撞邊緣為外凸曲線形的A型摻混腔時(shí),標(biāo)定模型排肥后肥料摻混均勻度與試驗(yàn)值的相對(duì)誤差均值:氮肥為6.4%,磷肥為4.1%,鉀肥為5.9%;標(biāo)定前氮肥為26.8%,磷肥為28.9%,鉀肥為36.1%。采用碰撞邊緣為直線形的B型摻混腔時(shí),標(biāo)定模型排肥后肥料摻混均勻度與試驗(yàn)值的相對(duì)誤差均值:氮肥為5.8%,磷肥為5.6%,鉀肥為4.9%;標(biāo)定前氮肥為21.9%,磷肥為32.5%,鉀肥為28.9%;采用碰撞邊緣為內(nèi)凹曲線形的C型摻混腔時(shí),標(biāo)定模型排肥后肥料摻混均勻度與試驗(yàn)值的相對(duì)誤差均值:氮肥為5.0%,磷肥為3.7%,鉀肥為8.7%;標(biāo)定前氮肥為36.2%,磷肥為31.6%,鉀肥為24.4%,該方法能夠?qū)崿F(xiàn)配比變量排肥離散元仿真參數(shù)準(zhǔn)確有效的標(biāo)定。
肥料;標(biāo)定;離散元方法;配比變量排肥;相關(guān)向量機(jī);遺傳算法
配比變量施肥技術(shù)[1-5]考慮土壤肥力的非均勻性,實(shí)時(shí)配比調(diào)整不同種類肥料的施肥量,并實(shí)現(xiàn)肥料的均勻摻混,最大程度地滿足各類農(nóng)作物的實(shí)際需求,最大限度減少肥料浪費(fèi)以及過度施肥造成的環(huán)境污染。
采用離散元技術(shù)[6-15](discrete element mothod, DEM)建立顆粒肥料撒肥模型可以實(shí)施與耗時(shí)、費(fèi)力的試驗(yàn)相匹配的排肥仿真,有效揭示試驗(yàn)無法分析的肥料顆粒微觀動(dòng)力學(xué)行為,厘清顆粒之間的動(dòng)態(tài)摻混機(jī)理以及排肥時(shí)滯等特性,達(dá)成從微觀機(jī)理層面提出施肥機(jī)具的最優(yōu)設(shè)計(jì)方案。配比變量排肥離散元模型參數(shù)(物料本征參數(shù):泊松比、密度、剪切模量以及物料接觸參數(shù):碰撞恢復(fù)系數(shù)、靜摩擦系數(shù)、動(dòng)摩擦系數(shù))的標(biāo)定是建模過程中的重點(diǎn)、難點(diǎn)問題。項(xiàng)目組前期建立的配比變量排肥模型[16-17]仿真結(jié)果與真實(shí)排肥試驗(yàn)結(jié)果存在較大差異,分析發(fā)現(xiàn)不正確參數(shù)值的采用導(dǎo)致了仿真不能再現(xiàn)真實(shí)肥料顆粒的流動(dòng)行為,模型發(fā)生了失真現(xiàn)象。
目前,離散元模型參數(shù)標(biāo)定方法主要有試驗(yàn)測量法和間接標(biāo)定法。試驗(yàn)測量法通過開展物理試驗(yàn),直接測定參數(shù)值。黃小毛等[18]采用彈跳試驗(yàn)分別對(duì)不同含水率的小麥和油菜的恢復(fù)系數(shù)進(jìn)行了測定;韓燕龍[19]采用顆粒板法測量了稻谷種間靜摩擦系數(shù);González- Montellano等[20]的研究表明,對(duì)于球形度高、質(zhì)地均勻的顆粒,采用直接測量能夠較精確地獲得微觀參數(shù)值,但是對(duì)于玉米及橄欖核這類外形不規(guī)則的顆粒材料,直接測量值變化很大。針對(duì)肥料顆粒,目前尚未有測量顆粒間滾動(dòng)摩擦系數(shù)的有效方法[21],采用顆粒板法測量肥料顆粒間靜摩擦系數(shù)時(shí),會(huì)出現(xiàn)彈跳、碰撞等無法避免的現(xiàn)象,精度難以保證。
間接標(biāo)定法實(shí)施與試驗(yàn)相匹配的離散元仿真,將模型參數(shù)作為宏觀層面上顆粒團(tuán)特定動(dòng)力學(xué)行為的調(diào)整參數(shù),在待標(biāo)定參數(shù)經(jīng)驗(yàn)取值域中反復(fù)取值,直到仿真顆粒團(tuán)動(dòng)力學(xué)行與試驗(yàn)現(xiàn)象一致,完成標(biāo)定。Coetzee等[22]采用剪切和側(cè)限壓縮試驗(yàn)對(duì)玉米種子的摩擦系數(shù)和剛度系數(shù)進(jìn)行了標(biāo)定;Ucgul等[23]通過休止角和貫入度試驗(yàn)分別標(biāo)定了土壤干、濕顆粒離散元模型的摩擦系數(shù)和恢復(fù)系數(shù);王云霞等[24]通過對(duì)玉米種子堆積角試驗(yàn)數(shù)據(jù)回歸分析,建立數(shù)學(xué)模型求取了種間靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù)。劉凡一等[25]根據(jù)Box-Behnken試驗(yàn)結(jié)果,建立了模型參數(shù)與休止角之間的回歸模型,求解得到小麥顆粒之間的接觸參數(shù)值。上述間接標(biāo)定方法采用“嘗試法”或者二次多項(xiàng)式回歸,不適用于多參數(shù)值待標(biāo)定且非線性程度較高的配比變量排肥離散元模型。
本文針對(duì)配比變量排肥離散元模型參數(shù)標(biāo)定問題,使用EDEM軟件,匹配配比變量排肥試驗(yàn)建立離散元模型;進(jìn)行了參數(shù)敏感度分析,仿真計(jì)算了經(jīng)驗(yàn)值域內(nèi)單一參數(shù)取值變化后對(duì)肥料摻混均勻度值的影響程度,確定了影響較大的主因參數(shù);采用相關(guān)向量機(jī)[26-30](relevance vector machine,RVM)機(jī)器學(xué)習(xí)方法揭示主因參數(shù)與肥料摻混均勻度之間的非線性隱函數(shù)關(guān)系;以試驗(yàn)與仿真排肥摻混均勻度的逼近程度,構(gòu)建適應(yīng)度函數(shù),采用遺傳算法(genetic algorithm,GA)主動(dòng)尋優(yōu)計(jì)算主因參數(shù)的最優(yōu)值;通過試驗(yàn)與仿真誤差分析驗(yàn)證方法的有效性,以期為配比變量排肥離散元模型的參數(shù)標(biāo)定提供參考。
于2018年6月在山東農(nóng)業(yè)大學(xué)農(nóng)業(yè)機(jī)械化及其自動(dòng)化實(shí)驗(yàn)教學(xué)中心進(jìn)行試驗(yàn)。試驗(yàn)輔助設(shè)備為黑龍江省農(nóng)業(yè)機(jī)械研究院研制的JPS-12型綜合性能檢測試驗(yàn)臺(tái),排肥裝置固定在安裝架上,通過試驗(yàn)臺(tái)控制電機(jī)帶動(dòng)傳送帶模擬排肥裝置與地面的相對(duì)運(yùn)動(dòng)(圖1)。
1. 肥箱 2. 外槽輪排肥器 3. 落肥管 4. B型摻混腔 5. 排肥管 6. 肥料傳送帶 7. 控制器
試驗(yàn)用配比變量排肥裝置由3個(gè)肥箱、3個(gè)由直流電機(jī)驅(qū)動(dòng)的外槽輪排肥器、3根落肥管、1個(gè)B型摻混腔[17]、1個(gè)排肥管、肥料傳送帶以及排肥控制器組成,如圖1所示。3根落肥管居中一根的長度為450 mm,內(nèi)徑為36 mm;排肥管為波紋管,軸向截面為三角形波浪紋,三角波紋高度為8 mm,內(nèi)徑為36 mm,外徑為45 mm,長度為480 mm。試驗(yàn)用肥箱、外槽輪排肥器、摻混腔均為亞克力材質(zhì),落肥管和排肥管為PVC材質(zhì),傳送帶材質(zhì)為橡膠。
以山東農(nóng)業(yè)大學(xué)研制的氮磷鉀固體包膜控釋肥作為試驗(yàn)用肥。試驗(yàn)時(shí),3種肥料放置于不同肥箱內(nèi),采用AQMH3615NS直流電機(jī)驅(qū)動(dòng)模塊,控制3個(gè)排肥器外槽輪轉(zhuǎn)速均為50 r/min,排肥器肥舌開度設(shè)定為最小,傳送帶的速度設(shè)定為0.6 m/s,排肥后肥料經(jīng)落肥管下落到達(dá)摻混腔內(nèi),碰撞摻混后的肥料顆粒經(jīng)由排肥管下落到肥料傳送帶,形成排肥帶。試驗(yàn)發(fā)現(xiàn)采用上述工況多次排肥后,肥料摻混均勻度值較為一致,排肥穩(wěn)定性較好,有利于開展模型參數(shù)標(biāo)定。
本文將肥料摻混均勻度作為配比變量排肥效果的評(píng)價(jià)指標(biāo)[17]。在肥料傳送帶上,預(yù)先按照9列多行劃分大小相同的統(tǒng)計(jì)單元格(70 mm×50 mm),將排肥槽輪啟動(dòng)后2 s確定為統(tǒng)計(jì)初始時(shí)刻,將此時(shí)刻后傳送帶上的9列20行統(tǒng)計(jì)單元格為統(tǒng)計(jì)區(qū)域。將統(tǒng)計(jì)單元格內(nèi)某種肥料顆粒數(shù)與總顆粒數(shù)的比值,作為此種肥料當(dāng)前單元格配比P:
式中q為單元格中某種肥料顆粒數(shù),total為單元格中顆??倲?shù)。=0,1,2分別表示氮肥、磷肥及鉀肥。統(tǒng)計(jì)區(qū)域內(nèi)某種肥料顆粒數(shù)與總顆粒數(shù)的比值,作為此種肥料的目標(biāo)配比V:
式中Q為統(tǒng)計(jì)區(qū)域中某種肥料顆粒數(shù),total為統(tǒng)計(jì)區(qū)域中顆粒總數(shù)。某種肥料各個(gè)統(tǒng)計(jì)單元格配比與此種肥料目標(biāo)配比的比值,作為統(tǒng)計(jì)單元格配比偏離度W:
將某種肥料相對(duì)應(yīng)的180個(gè)配比偏離度值取標(biāo)準(zhǔn)差,得到此種肥料的配比標(biāo)準(zhǔn)差,定義為肥料摻混均勻度,表示各統(tǒng)計(jì)單元格肥料配比偏離度與此種肥料目標(biāo)配比的總體偏離程度,其值越小表征肥料的摻混及播撒越均勻。
試驗(yàn)后采用人工計(jì)數(shù),統(tǒng)計(jì)各個(gè)單元格及統(tǒng)計(jì)區(qū)域內(nèi)的3種肥料的顆粒數(shù),按照式(1)~(3)計(jì)算3種肥料的摻混均勻度值;試驗(yàn)重復(fù)5次,取平均值,摻混均勻度統(tǒng)計(jì)結(jié)果為:氮肥為0.431、磷肥為0.758,鉀肥為0.542。
使用Solidwoks建立與試驗(yàn)用配比變量排肥器結(jié)構(gòu)參數(shù)相同的模型后,以.igs格式導(dǎo)入到EDEM中,生成一個(gè)長為2 000 mm、寬為700 mm的幾何平面模擬傳送帶,設(shè)置排肥器外槽輪為旋轉(zhuǎn)運(yùn)動(dòng),設(shè)置傳送帶為直線平動(dòng)。
式中、、分別為肥料顆粒的長、寬、厚,且>>。氮肥顆粒等效直徑分布在2.87~4.43 mm,磷肥顆粒等效直徑分布在3.86~5.41 mm,鉀肥顆粒等效直徑分布在3.52~5.18 mm。3種肥料的平均球形率均在80%以上,較高的球形率適于采用球形顆粒建模。使用EDEM顆粒工廠功能,在3個(gè)肥箱中分別生成3種肥料的球形仿真模型,每個(gè)肥箱中生成30 000粒,直徑設(shè)定為測量得到的3種肥料的平均等效直徑:氮肥3.63 mm、磷肥4.65 mm、鉀肥4.34 mm,通過選擇EDEM中的顆粒Random分布并設(shè)定分布系數(shù)實(shí)現(xiàn)球形仿真模型直徑為一定范圍的隨機(jī)分布,分布系數(shù)上限為肥料中最大等效直徑與等效直徑均值的比值,下限為最小等效直徑與等效直徑均值的比值,分布系數(shù)為:氮肥(0.79~1.22)、磷肥(0.83~1.16)、鉀肥(0.81~1.19)。建立的配比變量排肥離散元模型,如圖1b所示。
肥料顆粒表面無黏附作用,所以模型中肥料之間、肥料與排肥機(jī)具之間以及肥料與傳送帶之間均采用Hertz-Mindlin無滑動(dòng)接觸力學(xué)模型。模型的部分參數(shù)初始值參考前期研究[16-17],其余參數(shù)初始值根據(jù)工程經(jīng)驗(yàn)給出,如表1所示。以20%的Rayleigh時(shí)間步長作為仿真計(jì)算步長。匹配排肥試驗(yàn)摻混均勻度統(tǒng)計(jì)方法,采用EDEM后處理模塊,在虛擬傳送帶上劃分統(tǒng)計(jì)單元格,統(tǒng)計(jì)肥料顆粒數(shù)目,計(jì)算摻混均勻度。
表1 配比變量排肥離散元模型參數(shù)初值、取值域及敏感度值
2.2.1 分析方法
為了降低標(biāo)定難度,需減少待標(biāo)定參數(shù)數(shù)量,首先進(jìn)行參數(shù)的敏感度分析,確定對(duì)肥料摻混均勻度影響較大的主因參數(shù),只對(duì)主因參數(shù)進(jìn)行標(biāo)定。
式中為該參數(shù)在經(jīng)驗(yàn)取值域內(nèi)的任意一個(gè)取值的代號(hào);為肥料種類:0代表氮肥,1代表磷肥,2代表鉀肥;為該參數(shù)的初始值;Δχ為該參數(shù)在其經(jīng)驗(yàn)取值域內(nèi)的任意一個(gè)取值相對(duì)于初始值的變化量;ΔδEDEM()為該參數(shù)經(jīng)驗(yàn)取值域內(nèi)的任意一個(gè)取值對(duì)應(yīng)的某種肥料的摻混均勻度值相對(duì)于該參數(shù)取初始值時(shí)對(duì)應(yīng)的同種肥料的摻混均勻度的變化量,δEDEM()為該參數(shù)取初始值時(shí)對(duì)應(yīng)的某種肥料的摻混均勻度;ω為各種肥料的權(quán)重系數(shù)。
2.2.2 敏感度分析結(jié)果
標(biāo)定的目的是建立精準(zhǔn)的離散元模型,使配比變量排肥模型與真實(shí)排肥器在相同設(shè)計(jì)、作業(yè)參數(shù)下具有相同的肥料顆粒流動(dòng)特征,所以設(shè)計(jì)、作業(yè)參數(shù)在標(biāo)定過程中應(yīng)為常量;進(jìn)一步講標(biāo)定就是尋找最優(yōu)模型參數(shù)值,保證仿真與試驗(yàn)排肥結(jié)果的表征參數(shù)值匹配一致。配比變量排肥結(jié)果的表征參數(shù)為肥料摻混均勻度以及排肥量,仿真中發(fā)現(xiàn)改變模型參數(shù)值后仿真排肥量與同工況下試驗(yàn)排肥量的相對(duì)誤差均小于3%,說明排肥量受參數(shù)值的影響很小,而仿真排肥后的肥料摻混均勻度受模型參數(shù)值的影響很大,所以本文只將摻混均勻度作為配比變量排肥結(jié)果的表征。
為了獲得最優(yōu)參數(shù)值實(shí)現(xiàn)模型標(biāo)定,需首先建立模型參數(shù)與摻混均勻度的映射關(guān)系。并且由上文參數(shù)敏感度分析可知,選定的3個(gè)主因參數(shù)對(duì)摻混均勻度影響最大,所以本文將主因參數(shù)作為輸入量,將肥料摻混均勻度作為輸出量,采用相關(guān)向量機(jī)以及二次多項(xiàng)式構(gòu)建肥料摻混均勻度回歸函數(shù)。
在選定的3個(gè)主因參數(shù)取值域內(nèi),采用MATLAB/ FieldD函數(shù)隨機(jī)抽樣,生成72個(gè)輸入端訓(xùn)練樣本以及24個(gè)輸入端測試樣本,以輸入端測試樣本中的個(gè)體作為離散元模型主因參數(shù)值,其他非主因參數(shù)值仍根據(jù)經(jīng)驗(yàn)設(shè)為初始值,進(jìn)行72組仿真,工況參數(shù)同試驗(yàn)一致,將3種肥料的摻混均勻度值的集合,分別作為該種肥料摻混均勻度回歸模型輸出端訓(xùn)練樣本,采用相同方法生成回歸模型輸出端測試樣本。
2.3.1 RVM回歸模型
采用RVM訓(xùn)練3種肥料的摻混均勻度回歸模型,訓(xùn)練結(jié)果如圖2所示。采用生成的輸入端測試樣本,對(duì)訓(xùn)練后的模型進(jìn)行測試,結(jié)果如圖3所示。
注:訓(xùn)練樣本指在主因參數(shù)取值域內(nèi)隨機(jī)生成的作為離散元模型參數(shù)值的輸入樣本以及采用輸入樣本仿真生成的作為輸出樣本的肥料摻混均勻度值。
圖3 不同肥料摻混均勻度模型測試結(jié)果
2.3.2 二次多項(xiàng)式回歸模型
使用上述RVM回歸模型的訓(xùn)練樣本,建立上述3個(gè)主因參數(shù)與氮磷鉀3種肥料摻混均勻度之間的二次多項(xiàng)式回歸模型
式中1、2、3分別為氮、磷、鉀肥料的摻混均勻度,1、2、3分別為肥料與傳輸帶之間的動(dòng)摩擦系數(shù)、靜摩擦系數(shù)以及肥料顆粒之間的動(dòng)摩擦系數(shù)。采用上述生成的測試樣本,對(duì)建立的3種肥料的二次多項(xiàng)式回歸模型進(jìn)行測試,結(jié)果如圖3所示。
2.3.3 回歸模型性能分析
比較RVM回歸模型、二次多項(xiàng)式回歸模型的預(yù)測值與EDEM模型仿真值的逼近程度,可以很直觀地看出在相同的樣本下采用RVM建立的肥料摻混均勻度回歸模型預(yù)測效果較好。
為了定量分析回歸模型性能,計(jì)算RVM回歸模型以及二次多項(xiàng)式回歸模型的預(yù)測平均相對(duì)誤差(mean relative error, MRE)和決定系數(shù)(2),如圖4所示,MRE和2采用如下公式計(jì)算:
(13)
由圖4分析可知,3種肥料摻混均勻度RVM回歸模型決定系數(shù)為:氮肥0.887、磷肥0.819、鉀肥0.849,平均相對(duì)誤差為:氮肥5.43%、磷肥5.03%、鉀肥6.43%;3種肥料摻混均勻度二次多項(xiàng)式回歸模型決定系數(shù)為:氮肥0.363、磷肥0.123、鉀肥0.260,平均相對(duì)誤差為:氮肥16.35%、磷肥15.61%、鉀肥14.64%。上述結(jié)果表明,由于配比變量排肥離散元模型非線性程度較高,二次多項(xiàng)式回歸不能很好地表征主因參數(shù)和摻混均勻度之間的函數(shù)關(guān)系,RVM回歸主因參數(shù)與摻混均勻度之間的函數(shù)關(guān)系是可行有效的,回歸后的模型具有較高的精度。
2.4.1 數(shù)學(xué)模型
如何有效地獲得最優(yōu)主因參數(shù)值,使得標(biāo)定后的離散元模型的排肥結(jié)果與試驗(yàn)值一致,并且實(shí)現(xiàn)主因參數(shù)標(biāo)定的主動(dòng)尋優(yōu),這是一個(gè)最優(yōu)化問題。GA是解決最優(yōu)化問題的有效方法,本文將一組主因參數(shù)看作一個(gè)染色體,在主因參數(shù)的經(jīng)驗(yàn)取值域內(nèi),隨機(jī)生成多組參數(shù)作為種群,主因參數(shù)適應(yīng)度函數(shù)基于訓(xùn)練好的RVM回歸模型構(gòu)建,對(duì)應(yīng)某一組主因參數(shù),通過回歸模型預(yù)測出的肥料摻混均勻度與試驗(yàn)值越接近,表明這一組主因參數(shù)越優(yōu)良,考慮3種肥料的權(quán)重,主因參數(shù)適應(yīng)度函數(shù)為
式中X為主因參數(shù),Xmin為主因參數(shù)經(jīng)驗(yàn)取值域下限,Xmax為主因參數(shù)經(jīng)驗(yàn)取值域上限。
2.4.2 模型求解
圖5 最優(yōu)主因參數(shù)值計(jì)算流程
圖6 遺傳算法進(jìn)化過程
為了驗(yàn)證標(biāo)定方法及結(jié)果的正確性,進(jìn)行了標(biāo)定后的配比變量排肥離散元仿真與排肥試驗(yàn),仿真與試驗(yàn)同工況,具體為:分別采用A型、B型、C型3種摻混腔(如圖7),每一種摻混腔下,實(shí)施3個(gè)外槽輪排肥器轉(zhuǎn)速相同,且分別為30、40、50、60、70 r/min的5組試驗(yàn),每一組試驗(yàn)中排肥器肥舌開度均設(shè)置為最??;傳送帶的速度設(shè)定為0.6 m/s;3根落肥管居中一根的長度均為850 mm,內(nèi)徑為36 mm;排肥管為波紋管,軸向截面為三角形波浪紋,三角紋高度為2 mm,外徑為45 mm,內(nèi)徑為42 mm,長度為480 mm。
將采用B型摻混腔的3種排肥轉(zhuǎn)速下的仿真與試驗(yàn)結(jié)果進(jìn)行比較,從圖8中可以看出,相同排肥轉(zhuǎn)速下,仿真與試驗(yàn)排肥后的中心肥帶的帶寬較為一致,且仿真排肥后的中心肥帶很好地呈現(xiàn)出與試驗(yàn)相似的由于外槽輪脈動(dòng)排肥造成的局部不均勻現(xiàn)象。試驗(yàn)排肥后有更多的肥料顆粒遠(yuǎn)離中心肥帶,這可能是由于實(shí)際排肥過程中傳送帶的輕微振動(dòng),導(dǎo)致部分顆粒的流動(dòng)性增強(qiáng),產(chǎn)生了更顯著的橫向擴(kuò)散現(xiàn)象。A型和C型摻混腔排肥后的肥帶呈現(xiàn)出與B型摻混腔排肥帶相似的特征。由仿真與試驗(yàn)結(jié)果的相似性,說明本文標(biāo)定方法是有效可行的。
a. A型 a. A typeb. B型 b. B typec. C型 c. C type
注:從左至右排肥轉(zhuǎn)速依次為30、50、70 r?min–1。
為了定量分析,同一排肥轉(zhuǎn)速進(jìn)行5次重復(fù)試驗(yàn),取平均值,作為此排肥轉(zhuǎn)速下的肥料摻混均勻度,仿真及試驗(yàn)排肥后的結(jié)果,如圖9所示。
5種排肥轉(zhuǎn)速下,排肥器采用碰撞邊緣為外凸曲線形的A型摻混腔時(shí),標(biāo)定模型排肥后肥料摻混均勻度與試驗(yàn)值的相對(duì)誤差均值:氮肥為6.4%,磷肥為4.1%,鉀肥為5.9%,模型標(biāo)定前氮肥為26.8%,磷肥為28.9%,鉀肥為36.1%;采用碰撞邊緣為直線形的B型摻混腔時(shí),標(biāo)定模型排肥后肥料摻混均勻度與試驗(yàn)值的相對(duì)誤差均值:氮肥為5.8%,磷肥為5.6%,鉀肥為4.9%,模型標(biāo)定前氮肥為21.9%,磷肥為32.5%,鉀肥為28.9%;采用碰撞邊緣為內(nèi)凹曲線形的C型摻混腔時(shí),標(biāo)定模型排肥后肥料摻混均勻度與試驗(yàn)值的相對(duì)誤差均值:氮肥為5.0%,磷肥為3.7%,鉀肥為8.7%,模型標(biāo)定前氮肥為36.2%,磷肥為31.6%,鉀肥為24.4%。表明該方法能夠?qū)崿F(xiàn)配比變量排肥離散元仿真參數(shù)準(zhǔn)確有效的標(biāo)定。
注:從左至右依次為N、P、K肥均勻度。
本文提出一種采用RVM構(gòu)建肥料摻混均勻度與EDEM排肥模型參數(shù)回歸函數(shù),并通過GA算法求解最優(yōu)參數(shù)值的配比變量排肥離散元模型參數(shù)標(biāo)定方法。由參數(shù)敏感度分析可知,肥料與傳輸帶之間的動(dòng)摩擦系數(shù)及靜摩擦系數(shù)、肥料顆粒之間的動(dòng)摩擦系數(shù)對(duì)仿真排肥后的肥料摻混均勻度影響顯著,為主要被標(biāo)定參數(shù);摻混均勻度對(duì)其余離散元模型參數(shù)(泊松比、剪切模量、恢復(fù)系數(shù)等)不敏感。
1)建立了配比變量排肥離散元模型參數(shù)與仿真排肥后肥料摻混均勻度的回歸模型,3種肥料RVM回歸模型的MRE和2值,氮肥為:5.43%、0.887,磷肥為:5.03%、0.819,鉀肥為:6.43%、0.849;3種肥料二次多項(xiàng)式回歸模型的MRE和2值,氮肥為:16.35%、0.363,磷肥為:15.61%、0.123,鉀肥為:14.64%、0.260;結(jié)果表明RVM回歸模型具有較高的預(yù)測精度。
2)依據(jù)RVM回歸模型預(yù)測的肥料摻混均勻度值與試驗(yàn)值的偏離程度,構(gòu)建了適應(yīng)度函數(shù),采用遺傳算法迭代生成了主因參數(shù)最優(yōu)值;試驗(yàn)結(jié)果表明,標(biāo)定后模型較標(biāo)定前模型排肥誤差有大幅降低,說明了本文方法標(biāo)定配比變量排肥離散元模型參數(shù)的正確性。
[1] Torbett J C, Roberts R K, Larson J A, et al. Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming[J]. Computers and Electronics in Agriculture, 2008, 64(2): 140-148.
[2] 陳賢友,吳良?xì)g,韓科峰,等. 包膜尿素和普通尿素不同摻混比例對(duì)水稻產(chǎn)量與氮肥利用率的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2010,16(4):918-923. Chen Xianyou, Wu Lianghuan, Hang Kefeng, et al. Effects of different mixture rates of coated urea and prilled urea on rice grain yield and nitrogen use efficiency[J]. Acta Metallurgica Sinica, 2010, 16(4): 918-923. (in Chinese with English abstract)
[3] 吳巍. 科學(xué)施肥技術(shù)[M]. 北京:科學(xué)出版社,1998.
[4] 何勇. 精細(xì)農(nóng)業(yè)[M]. 杭州:浙江大學(xué)出版社,2003.
[5] 苑進(jìn),劉雪美. 肥量配比全變量施肥裝置及其控制方法中國:CN102487644A [P].2012-06-13.
[6] 韓丹丹,張東興,楊麗,等. 基于EDEM-CFD耦合的內(nèi)充氣吹式排種器優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(11):43-51. Han Dandan, Zhang Dongxing, Yang Li, et al. Optimization and experiment of inside-filling air-blowing seed metering device based on EDEM-CFD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 43-51. (in Chinese with English abstract)
[7] 韓丹丹,張東興,楊麗,等. 內(nèi)充氣吹式玉米排種器工作性能EDEM-CFD模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(13):23-31. Han Dandan, Zhang Dongxing, Yang Li, et al. EDEM-CFD simulation and experiment of working performance of inside-filling air-blowing seed metering device in maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 23-31. (in Chinese with English abstract)
[8] 朱德泉,李蘭蘭,文世昌,等. 滑片型孔輪式水稻精量排種器排種性能數(shù)值模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):17-26. Zhu Dequan, Li Lanlan, Wen Shichang, et al. Numerical simulation and experiment on seeding performance of slide hole-wheel precision seed-metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 17-26. (in Chinese with English abstract)
[9] 廖慶喜,張朋玲,廖宜濤,等.基于EDEM的離心式排種器排種性能數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):109-114. Liao Qingxi, Zhang Pengling, Liao Yitao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109-114. (in Chinese with English abstract)
[10] 張濤,劉飛,趙滿全,等.基于離散元的排種器排種室內(nèi)玉米種群運(yùn)動(dòng)規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):27-35. Zhang Tao, Liu Fei, Zhao Manquan, et al. Movement law of maize population in seed room of seed metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 27-35. (in Chinese with English abstract)
[11] Elvis López Bravo, Engelbert Tijskens, Miguel Herrera Suárez, et al. Prediction model for non-inversion soil tillage implemented on discrete element method[J]. Computers and Electronics in Agriculture, 2014, 106: 120-127.
[12] Salar M R, Esehaghbeygi A, Hemmat A. Soil loosening characteristics of a dual bent blade subsurface tillage implement[J]. Soil & Tillage Research, 2013, 134: 17-24.
[13] Korné l Tamás, István J Jóri, Abdul M Mouazen. Modelling soil–sweep interaction with discrete element method[J]. Soil & Tillage Research, 2013, 134: 223-231.
[14] Franck Bourrier, Franc ois Kneib, Bruno Chareyre, et al. Discrete modeling of granular soils reinforcement by plant roots[J]. Ecological Engineering, 2013, 61: 646-657.
[15] Leblicq Tom, Smeets Bart, Ramon Herman, et al. A discrete element approach for modelling the compression of crop stems[J]. Computers and Electronics in Agriculture, 2016, 123: 80-88.
[16] 苑進(jìn),劉勤華,劉雪美,等. 多肥料變比變量施肥過程模擬與排落肥結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(11):81-87. Yuan Jin, Liu Qinhua, Liu Xuemei, et al. Simulation of multi-fertilizers blending process and optimization of blending cavity structure in nutrient proportion of variable rate fertilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 81-87. (in Chinese with English abstract)
[17] 苑進(jìn),劉勤華,劉雪美,等. 配比變量施肥中多肥料摻混模擬與摻混腔結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):125-132. Yuan Jin, Liu Qinhua, Liu Xuemei, et al. Granular multi- flows fertilization process simulation and tube structure optimization in nutrient proportion of variable rate fertilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 125-132. (in Chinese with English abstract)
[18] 黃小毛,查顯濤,潘海兵,等. 油菜籽粒點(diǎn)面接觸碰撞中恢復(fù)系數(shù)的測定及分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):22-29. Huang Xiaomao, Zha Xiantao, Pan Haibing, et al. Measurement and analysis of rapeseeds’ restitution coefficient in point-to-plate collision model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 22-29. (in Chinese with English abstract)
[19] 韓燕龍. 碾米機(jī)內(nèi)米粒運(yùn)動(dòng)特征及碾白特性[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2017. Han Yanlong. Study on the Movement Characteristics and the Whitening Behavior of Rice Grains in a Friction Type Mill[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese with English abstract)
[20] González-Montellano C, Fuentes J M, Ayuga-Téllez E, et al. Determination of the mechanical properties of maize grains and olives required for use in DEM simulations[J]. Journal of Food Engineering, 2012, 111(4): 553-562.
[21] 賈富國,韓燕龍,劉揚(yáng),等. 稻谷顆粒物料堆積角模擬預(yù)測方法[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(11):254-260. Jia Fuguo, Han Yanlong, Liu Yang, et al. Simulation prediction method of repose angle for rice particle materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 254-260. (in Chinese with English abstract)
[22] Coetzee C J, Els D N J. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling[J]. Computers & Electronics in Agriculture, 2009, 65(2): 198-212.
[23] Ucgul M, Fielke J M, Sarnders C. Three-dimensional discrete element modeling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014, 121(2): 105-117.
[24] 王云霞,梁志杰,張東興,等. 基于離散元的玉米種子顆粒模型種間接觸參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2016, 32(22):36-42. Wang Yunxia, Liang Zhijie, Zhang Dongxing, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 36-42. (in Chinese with English abstract)
[25] 劉凡一,張艦,李博,等. 基于堆積試驗(yàn)的小麥離散元參數(shù)分析及標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2016, 32(12):247-253. Liu Fanyi, Zhang Jian, Li Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 247-253. (in Chinese with English abstract)
[26] 苑進(jìn),劉成良,古玉雪,等. 基于相關(guān)向量機(jī)的雙變量施肥控制序列優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2011, 42(增刊1):184-189,171. Yuan Jin, Liu Chengliang, Gu Yuxue, et al. Bivariate fertilization control sequence optimization based on relevance vector machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 41(Supp.1): 184-189,171. (in Chinese with English abstract)
[27] 苑進(jìn). 貝葉斯學(xué)習(xí)框架下非線性制造過程建模及多目標(biāo)優(yōu)化關(guān)鍵技術(shù)研究[D]. 上海:上海大學(xué),2008. Yuan Jin. Research on Some Key Issues of Bayesian Learning Framework Based Nonlinear Manufacturing Process Modeling and Multiobjective Optimization[D]. Shanghai: Shanghai University, 2008. (in Chinese with English abstract)
[28] Liu Xuemei, Zhang Xiaohui, Yuan Jin. Relevance vector machine and fuzzy system based multi-objective dynamic design optimization: A case study[J]. Expert Systems with Applications, 2010, 37: 3598-3604.
[29] 劉雪美,張曉輝,劉豐樂,等. 噴桿噴霧機(jī)風(fēng)助風(fēng)筒相關(guān)向量機(jī)多目標(biāo)優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(6):75-80. Liu Xuemei, Zhang Xiaohui, Liu Fengle, et al. Multi- objective dynamic design optimization for air duct of air-assisted boom sprayer based on RVM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 75-80. (in Chinese with English abstract)
[30] Yuan J, Wang K S, Yu T, et al. Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process[J]. Engineering Applications of Artificial Intelligence, 2007, 20(7): 970-979.
[31] Coetzee C J, Lombard S G. Discrete element method modelling of a centrifugal fertilizer spreader[J]. Biosystems Engineering, 2011, 109(4): 308-325.
[32] Ding Shangpeng, Bai Lu, Yao Yuxiang, et al. Discrete element modelling (DEM) of fertilizer dual-banding with adjustable rates[J]. Computers and Electronics in Agriculture, 2018, 152: 32-39.
[33] Holland J. Searching nonlinear functions for high values[J]. Applied Mathematics and Computation, 1989, 32(23): 255-274.
Discrete element model simulation and verification of fertilizer blending uniformity of variable rate fertilization based on relevance vector machine
Yuan Jin, Xin Zhenbo, Niu Ziru※, Li Yang, Liu Xinghua, Xin Shuai, Wang Jianfu, Wang Liheng
(271018,)
With the development of computer simulation technology, the model establishment of variable rate fertilization with EDEM, demonstrates effectively the microcosmic dynamics behavior of fertilizer particles which can’t be analyzed by experiments. The calibration of discrete element model parameters mainly includes experimental determination and indirect calibration. When method of particle board is used to measure the static friction coefficient between particles, particle bounce and collision are inevitable and accuracy is difficult to pursue. The method of indirect calibration, using try-and-error method or quadratic polynomial regression, isn’t appropriate for the discrete element model of variable rate fertilization with nonlinear as well as multiple parameter values to be calibrated. Aiming at the problem above, a calibration method based on relevance vector machine is proposed. The discrete element simulation process of variable rate fertilization is a nonlinear system regarding model parameters as input and uniformity of fertilizer blending as output (when a group of parameters are given, certain uniformity value of fertilizer blending can be gotten by fertilization simulation). Firstly, the model parameter influencing the fertilization outcome of the discrete element simulation most can be defined as the main parameters by sensitivity analysis. The value domain of each main parameters are found and then the sample of parameters are got. The sample of parameters and the corresponding uniformity of fertilizer blending are regarded as training and test sample. The relevance vector machine is used to reveal mapping relationship between model parameters and the uniformity, and the regression model is established. The uniformity based on the optimal model parameters should be consistent with the that in experiment, the model parameters fitness function is constructed combined the established models with experimental statistical results. Based on the mathematical thought of the constraint optimization, the mathematical model of optimal parameters calculating is established, and the optimal parameters are generated by the genetic algorithm. For A-type mixing cavity whose the collision edge is the outer convex curve, the mean relative error of uniformity between test values and simulation values from model calibrated: for nitrogen fertilizer is 6.4%, phosphate fertilizer of 4.1%, and potash fertilizer of 5.9%. While nitrogen fertilizer is 26.8%, phosphate fertilizer is 28.9% and potash fertilizer is 36.1% for the model before calibration. For B-type mixing cavity whose the collision edge is the straight-line, the mean relative error of uniformity from model calibrated: nitrogen fertilizer is 5.8%, phosphate fertilizer of 5.6% and potash fertilizer of 4.9%. While nitrogen fertilizer is 21.9%, phosphate fertilizer is 32.5% and potash fertilizer is 28.9% for the model before calibration. For C-type mixing cavity whose the collision edge is the concave curve, the mean relative error of uniformity from model calibrated: for nitrogen fertilizer is 5.0%, phosphate fertilizer of 3.7%, potash fertilizer of 8.7%. While nitrogen fertilizer is 36.2%, phosphate fertilizer is 31.6% and potash fertilizer is 24.4% for the model before calibration. The above results show that the method can be used to realize accurate calibration of discrete element model parameters of variable rate fertilization.
fertilizers; calibration; discrete element method; variable rate fertilization; relevance vector machine; genetic algorithm
2018-09-03
2019-02-24
山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018GNC112017);國家重點(diǎn)研發(fā)計(jì)劃資助(2017YFD0701103-3);國家自然科學(xué)基金資助項(xiàng)目(51475278、51675317);山東省“雙一流”獎(jiǎng)補(bǔ)資金資助(SYL2017XTTD14)
苑 進(jìn),教授,博士,主要從事智能農(nóng)機(jī)裝備相關(guān)研究。 Email:jyuan@sdau.edu.cn
牛子孺,副教授,博士,主要從事智能農(nóng)機(jī)裝備、數(shù)字設(shè)計(jì)與制造相關(guān)研究。Email:cherokeesaab@163.com
10.11975/j.issn.1002-6819.2019.08.005
S220.1
A
1002-6819(2019)-08-0037-09
苑 進(jìn),辛振波,牛子孺,李 揚(yáng),劉興華,辛 帥,王建福,汪力衡.基于RVM的配比變量排肥摻混均勻度離散元仿真及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):37-45. doi:10.11975/j.issn.1002-6819.2019.08.005 http://www.tcsae.org
Yuan Jin, Xin Zhenbo, Niu Ziru,Li Yang, Liu Xinghua, Xin Shuai, Wang Jianfu, Wang Liheng.Discrete element model simulation and verification of fertilizer blending uniformity of variable rate fertilization based on relevance vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 37-45. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.005 http://www.tcsae.org