丁幼春,朱 凱,王凱陽(yáng),劉曉東,杜超群
?
薄面激光-硅光電池中小粒徑種子流監(jiān)測(cè)裝置研制
丁幼春,朱 凱,王凱陽(yáng),劉曉東,杜超群
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
針對(duì)油菜、小麥等中小粒徑種子在播種過(guò)程中難以兼容監(jiān)測(cè)的問(wèn)題,該文采用光層厚度約為1 mm的薄面激光發(fā)射模組和硅光電池的光伏效應(yīng)原理設(shè)計(jì)了一種中小粒徑種子流監(jiān)測(cè)裝置。根據(jù)薄面激光模組發(fā)射角度與硅光電池對(duì)角線長(zhǎng)度計(jì)算出種子監(jiān)測(cè)區(qū)域大小以及監(jiān)測(cè)區(qū)域的具體位置,明確了監(jiān)測(cè)裝置的導(dǎo)管內(nèi)徑、導(dǎo)管中心線位置、薄面激光發(fā)射模組與硅光電池的相對(duì)位置等結(jié)構(gòu)參數(shù)。對(duì)種子穿越薄面激光層所需時(shí)間進(jìn)行分析,油菜種子的穿越響應(yīng)信號(hào)在3 ms以內(nèi)完成,小麥種子的穿越響應(yīng)信號(hào)在7 ms以內(nèi)完成。對(duì)種子的穿越響應(yīng)信號(hào)進(jìn)行隔直通交、雙級(jí)放大、半波整流、電壓比較、單穩(wěn)態(tài)觸發(fā)轉(zhuǎn)化為單脈沖信號(hào),作為單片機(jī)外部中斷源進(jìn)行計(jì)數(shù),獲得播量信息,實(shí)現(xiàn)了中小粒徑種子流無(wú)碰撞檢測(cè)。油菜精量排種器臺(tái)架試驗(yàn)和小麥數(shù)粒儀試驗(yàn)表明:在排種頻率8.4~32.1 Hz范圍內(nèi),油菜種子的監(jiān)測(cè)準(zhǔn)確率不低于98.1%,在排種頻率21.5~31.2 Hz范圍內(nèi),小麥種子的監(jiān)測(cè)準(zhǔn)確率不低于95.1%。田間播種試驗(yàn)結(jié)果表明:在田間正常排種頻率范圍內(nèi),油菜種子的監(jiān)測(cè)準(zhǔn)確率不低于98.6%,小麥種子的監(jiān)測(cè)準(zhǔn)確率不低于95.8%,光照條件、機(jī)具振動(dòng)對(duì)監(jiān)測(cè)精度無(wú)影響。
農(nóng)業(yè)機(jī)械;激光器;硅光電池;中小粒徑種子流;監(jiān)測(cè)
油菜和小麥?zhǔn)侵袊?guó)重要的油料和糧食作物[1],兩者播種期相鄰,種植面積居世界前列[2]。精量聯(lián)合播種能夠提高作業(yè)效率,降低作業(yè)成本,增加農(nóng)民收益。對(duì)播種過(guò)程的實(shí)時(shí)監(jiān)測(cè)是智能播種機(jī)發(fā)展的趨勢(shì)之一。針對(duì)油菜和小麥播期毗鄰,油麥兼用聯(lián)合直播機(jī)播種過(guò)程處于全封閉狀態(tài),田間各種因素造成的漏播影響播種質(zhì)量無(wú)法得到及時(shí)矯正的問(wèn)題,研究一種油麥兼用的中小粒徑種子流傳感裝置,實(shí)時(shí)監(jiān)測(cè)播種過(guò)程,對(duì)于提升油麥兼用聯(lián)合直播機(jī)信息化水平具有重要的現(xiàn)實(shí)意義。
國(guó)外對(duì)播種監(jiān)測(cè)技術(shù)研究較早,20世紀(jì)80年代西方就將電子技術(shù)用于播種機(jī),精密播種機(jī)監(jiān)測(cè)系統(tǒng)比較先進(jìn)。澳大利亞AEE有限公司為氣力式播種機(jī)設(shè)計(jì)了一種監(jiān)視器[3],采用紅外線傳感器監(jiān)測(cè)每個(gè)輸種管種子的排量,當(dāng)發(fā)現(xiàn)故障時(shí)監(jiān)視器立刻發(fā)出聲音和燈光警報(bào)。美國(guó)Dickey-john公司研制的PM400型[4]大范圍監(jiān)測(cè)系統(tǒng),實(shí)現(xiàn)了無(wú)接觸式檢測(cè),準(zhǔn)確率以及可靠性高,可以同時(shí)對(duì)36路播種進(jìn)行監(jiān)測(cè),檢測(cè)對(duì)象為大中粒徑種子。美國(guó)約翰迪爾公司生產(chǎn)的SeedStar?2監(jiān)測(cè)系統(tǒng)[5-6]能夠?qū)崟r(shí)監(jiān)測(cè)小麥的播種行數(shù)、播種行距、行漏播量、平均播種總量,并以圖表形式實(shí)時(shí)顯示。意大利MC electronic研制的精準(zhǔn)播種系統(tǒng)[7]能夠?qū)?8行的播種和施肥進(jìn)行監(jiān)測(cè),主要針對(duì)大中粒徑種子,對(duì)油菜種子檢測(cè)精度不高。近年來(lái),國(guó)內(nèi)對(duì)播種監(jiān)測(cè)系統(tǒng)的研究逐漸增多,趙立業(yè)等[8-13]利用小燈泡和硅光電池作為發(fā)射端和接收端,基于短路電流和受光面積成正比這一特性[14],能夠準(zhǔn)確檢測(cè)出雙粒大豆種子同時(shí)下落的重播現(xiàn)象,并且能準(zhǔn)確檢測(cè)精密排種器的各項(xiàng)排種性能。周利明等[15-19]利用種子介電特性,針對(duì)玉米播種機(jī)研究了一種基于電容信號(hào)的監(jiān)測(cè)方法,可以檢測(cè)播種工況下排種量、漏播量及重播量等參數(shù)。張霖等[20-23]根據(jù)典型的彈簧-質(zhì)量-阻尼系統(tǒng)的二階傳遞函數(shù)理論,對(duì)系統(tǒng)的阻尼振動(dòng)頻率和阻尼進(jìn)行了分析,選用了合適的材料以及安裝方式,研究了一種綠豆種子計(jì)數(shù)系統(tǒng)。
油菜種子(平均粒徑0.8~2.2 mm)粒徑小,小麥種子(平均長(zhǎng)度6.25 mm、寬度3.33 mm、厚度3.07 mm)粒徑較大[24],兩者排種頻率均較高,要實(shí)現(xiàn)兼容監(jiān)測(cè)存在一定難度。針對(duì)油菜等小粒徑種子的檢測(cè),丁幼春等[25-27]利用壓電薄膜傳感器對(duì)油菜精量排種器的性能監(jiān)測(cè)、漏播監(jiān)測(cè)與補(bǔ)種進(jìn)行了研究,但是這種監(jiān)測(cè)方式主要利用油菜種子與壓電薄膜發(fā)生碰撞而產(chǎn)生壓電效應(yīng)原理設(shè)計(jì)的,種子與壓電薄膜碰撞改變了種子下落的軌跡,一定程度上影響了種子流的有序性,而且對(duì)中小粒徑種子的通用檢測(cè)存在一定限制。
針對(duì)油麥兼用精量集排器[28-30]種子流的實(shí)時(shí)監(jiān)測(cè)問(wèn)題,本文提出利用薄面激光與硅光電池的光伏效應(yīng)[31]原理,設(shè)計(jì)了一種中小粒徑種子流監(jiān)測(cè)裝置,并對(duì)其進(jìn)行了試驗(yàn)。
監(jiān)測(cè)裝置總體結(jié)構(gòu)如圖1所示,主要包括入種口、上導(dǎo)管、下導(dǎo)管、出種口、薄面激光發(fā)射模組、硅光電池、集成電路板、鋰電池等。薄面激光發(fā)射模組由激光二極管、聚焦鏡片、一字波浪鏡片組成,激光發(fā)射角度由一字波浪鏡片決定,經(jīng)過(guò)多次折射的激光最終形成厚度約為1 mm的薄面激光。硅光電池受光面積為10 mm×10 mm(隨著面積增大,成本會(huì)急劇增加),當(dāng)照度為100 lx時(shí),開路電壓為300 mV。薄面激光從上導(dǎo)管與下導(dǎo)管之間的空隙穿過(guò)照射在硅光電池上,空隙的縱向長(zhǎng)度稱為通光層厚度,監(jiān)測(cè)裝置總體結(jié)構(gòu)和性能參數(shù)如表1。
1.入種口 2.上導(dǎo)管 3.薄面激光發(fā)射模組 4.硅光電池 5.薄面激光 6.下導(dǎo)管 7.出種口 8.支架 9.無(wú)線收發(fā)模塊 10.集成電路板 11.鋰電池 12.電路板定位柱 13.排種狀態(tài)指示燈 14.電源開關(guān) 15.電源指示燈
表1 監(jiān)測(cè)裝置總體結(jié)構(gòu)和性能參數(shù)
種子經(jīng)由上導(dǎo)管下落,穿越薄面激光層,由于種子對(duì)激光的遮擋改變了照射在硅光電池表面的光強(qiáng)度,使硅光電池兩端電壓隨之發(fā)生變化,這種電壓信號(hào)的變化一直伴隨著種子從進(jìn)入至離開激光層的整個(gè)過(guò)程,稱為穿越響應(yīng)。穿越響應(yīng)經(jīng)信號(hào)調(diào)理環(huán)節(jié)即隔直通交、雙級(jí)放大、半波整流、電壓比較、單穩(wěn)態(tài)觸發(fā),最終作為單片機(jī)外部中斷源,實(shí)現(xiàn)種子的計(jì)數(shù)。
硅光電池受光面為10 mm×10 mm的正方形,在實(shí)際使用時(shí),為了使導(dǎo)管內(nèi)徑盡可能大,采用正方形的斜對(duì)角線區(qū)域作為接收區(qū)域,斜對(duì)角線長(zhǎng)度=14.1 mm,為了確定激光發(fā)射角度,建立圖2所示的幾何模型。
a. 監(jiān)測(cè)裝置局部示意圖b. 薄面激光平面示意圖 a. Partial schematic diagram of monitoring deviceb. Flat schematic diagram of thin surface laser
1.硅光電池 2.種子 3.上導(dǎo)管 4.薄面激光 5.薄面激光發(fā)射模組
1.Silicon photocell 2.Seeds 3.Upper tube 4.Thin surface laser 5.Thin surface laser emitting module
注:為梯形腰邊延長(zhǎng)線交點(diǎn);為激光發(fā)射角度,(°);為最大內(nèi)切圓半徑,mm;為硅光電池受光面斜對(duì)角線長(zhǎng)度,mm;為薄面激光發(fā)射模組與硅光電池水平距離,mm;為種子下落起始點(diǎn)至檢測(cè)區(qū)的距離,mm。
Note:is intersection of trapezoidal waist extension line.is laser emission angle, (°).is radius of maximum inscribed circle, mm.is the length of a silicon photovoltaic cell subjected to a smooth oblique diagonal, mm.is the horizontal distance between the laser emission module and the silicon photocell, mm.is the distance from the starting point of seed falling to the detection area, mm.
圖2 激光發(fā)射角度計(jì)算幾何模型
Fig.2 Geometric model for calculation of laser emission angle
設(shè)計(jì)時(shí)為了使得上導(dǎo)管內(nèi)徑1最大,根據(jù)圖2幾何模型建立與1的數(shù)學(xué)關(guān)系式,如式(1)。
根據(jù)公式(1)可知,在0~180°范圍內(nèi),值越大,1的值越小,理論上1值越大越好,但是當(dāng)1過(guò)于大時(shí),使得硅光電池與薄面激光發(fā)射模組距離增大,會(huì)增加裝置的整體尺寸,并且會(huì)增加制造成本。根據(jù)1的理論值范圍0~14.1 mm,綜合考慮導(dǎo)管內(nèi)徑、裝置大小及成本的因素后,選擇發(fā)射角度為30°的一字波浪鏡片構(gòu)成薄面激光發(fā)射模組。
導(dǎo)管內(nèi)徑的設(shè)計(jì)依據(jù)是激光面內(nèi)最大內(nèi)切圓半徑,只有當(dāng)種子從半徑為1的內(nèi)切圓內(nèi)穿越薄面激光時(shí)才可能被檢測(cè)出來(lái),將=30°代入式(1),解得1=5.4,因?qū)Ч軆?nèi)徑≤10.8。為了消除種子從內(nèi)切圓切點(diǎn)處穿越發(fā)生遮擋信號(hào)過(guò)小導(dǎo)致監(jiān)測(cè)失效,確定導(dǎo)管內(nèi)徑為10 mm。基于薄面激光層厚度為1 mm,考慮到薄面激光發(fā)射模組本身制造誤差,通光層厚度確定為2 mm。
為了準(zhǔn)確有效的分析和處理光電信號(hào),利用示波器采集種子下落過(guò)程中產(chǎn)生的原始電壓信號(hào)并記錄,發(fā)現(xiàn)在自然光照條件下,當(dāng)所使用的激光穩(wěn)定照射到硅光電池表面時(shí),硅光電池受光會(huì)產(chǎn)生300 mV的偏置電壓。種子下落穿越薄面激光層的過(guò)程中,會(huì)使硅光電池的偏置電壓瞬間減小,之后恢復(fù)常態(tài)。偏置電壓的減小值與種子粒徑、通過(guò)監(jiān)測(cè)區(qū)的位置有關(guān),通過(guò)試驗(yàn)測(cè)試得油菜種子下落產(chǎn)生的偏置電壓變化范圍為0.8~10 mV,小麥種子為3~48 mV。根據(jù)光伏效應(yīng)原理,這種變化是由照射到硅光電池的激光強(qiáng)度決定的。圖3為不同粒徑種子、不同位置穿越激光層時(shí)對(duì)激光遮擋長(zhǎng)度的示意圖。
注:O1,O2表示2粒不同粒徑大小的種子,在相同位置經(jīng)過(guò)監(jiān)測(cè)區(qū);O3,O4表示2粒相同粒徑大小的種子,在不同的位置經(jīng)過(guò)檢測(cè)區(qū);C1,C2,C3,C4分別表示4粒種子對(duì)激光遮擋的長(zhǎng)度。
穿越響應(yīng)時(shí)間定義為種子從剛進(jìn)入激光層至種子完全離開激光層所用的時(shí)間,根據(jù)自由落體運(yùn)動(dòng)規(guī)律對(duì)種子穿越響應(yīng)時(shí)間進(jìn)行計(jì)算,如式(2)。
式中為重力加速度,9.8 m/s2,激光層的厚度約為1 mm,為種子的整體長(zhǎng)度,mm;為種子下落起始點(diǎn)至檢測(cè)區(qū)的距離,mm;為種子穿越響應(yīng)時(shí)間,ms。根據(jù)傳感裝置與精量排種器安裝位置關(guān)系設(shè)定=57 mm,根據(jù)油菜種子、小麥種子粒徑范圍,式中的取最大值2.2和6.25 mm,計(jì)算得出油菜種子穿越響應(yīng)時(shí)間為2.98 ms、小麥種子穿越響應(yīng)時(shí)間為6.65 ms,當(dāng)增大時(shí)會(huì)減小,即種子穿越響應(yīng)時(shí)間會(huì)隨著下落高度的增大而減小。在實(shí)際播種過(guò)程中,因精量排種器投種口處種子向下的初速度不完全為0,因此油菜種子和小麥種子穿越響應(yīng)時(shí)間小于2.98 和6.65 ms。
根據(jù)光電信號(hào)的特性分析,設(shè)計(jì)了信號(hào)處理電路,包括隔直通交、雙級(jí)放大、半波整流、電壓比較、單穩(wěn)態(tài)觸發(fā)。通過(guò)隔直通交電路消除硅光電池常態(tài)下的偏置電壓使常態(tài)電壓歸0,以便后續(xù)僅對(duì)穿越響應(yīng)信號(hào)進(jìn)行放大處理,同時(shí)可以消除因長(zhǎng)時(shí)間工作硅光電池表面的浮塵對(duì)偏置電壓的影響。為了放大電路能夠適應(yīng)所有種子穿越響應(yīng)信號(hào)的放大要求,采用雙極放大電路,以期將所有微小信號(hào)全部放大至飽和狀態(tài)。后續(xù)利用二極管對(duì)飽和雙極性信號(hào)進(jìn)行半波整流處理,保留正向電壓,濾除負(fù)向電壓,之后通過(guò)電壓比較處理形成方波信號(hào),再經(jīng)過(guò)單穩(wěn)態(tài)觸發(fā)電路產(chǎn)生時(shí)長(zhǎng)可調(diào)節(jié)的規(guī)整方波信號(hào),并作為單片機(jī)外部中斷源實(shí)現(xiàn)種子計(jì)數(shù),信號(hào)處理電路如圖4。
注:AD620為實(shí)際電路的放大器;LM393為實(shí)際電路的電壓比較器; 74HC123E為實(shí)際電路的單穩(wěn)態(tài)觸發(fā)器;JX2為信號(hào)接入端。
為了優(yōu)化電路功能與關(guān)鍵參數(shù)如放大倍數(shù)、比較電壓,利用Multisim電路仿真軟件對(duì)信號(hào)處理電路進(jìn)行仿真,仿真模型中AD620AN為實(shí)際電路板中采用的精密儀表放大芯片(AD620),10 k電位器為放大倍數(shù)調(diào)整電阻,通過(guò)改變電阻的大小來(lái)調(diào)節(jié)放大倍數(shù),放大電路設(shè)計(jì)時(shí)兩級(jí)放大倍數(shù)保持一致,以期達(dá)到最佳的放大效果。模型中LM393P為實(shí)際電路板中采用的比較器芯片,50 k電位器為比較電壓調(diào)整電阻,通過(guò)改變電阻值大小來(lái)調(diào)節(jié)比較電壓大小。仿真電路原理圖如圖5。
注:AD62AN代表實(shí)際電路的放大器;LM393P代表實(shí)際電路的電壓比較器; XSC1為示波器;U4為電壓指示器;V1為模擬輸入信號(hào);Key=A和Key=B分別表示通過(guò)鍵盤A和B調(diào)節(jié)電位器比例值。
進(jìn)行電路仿真時(shí),種子穿越響應(yīng)信號(hào)最小幅值為0.8 mV,為使所有信號(hào)均能達(dá)到放大要求,采用幅值為0.8 mV的正弦信號(hào)模擬輸入信號(hào),并且仿真信號(hào)頻率需高于排種頻率,設(shè)置頻率為1 kHz,電位器量程10 k,電位器初始值為10 k,逐步減小電阻值,放大倍數(shù)逐漸增大,直至達(dá)到飽和狀態(tài),對(duì)應(yīng)的飽和電壓為3.9 V。放大器的輸出電壓取決于供電電壓,供電電壓范圍越寬,輸出電壓的線性區(qū)越寬,電路中供電電壓為±5 V,飽和電壓只能達(dá)到3.9 V。飽和狀態(tài)時(shí)2個(gè)電位器的阻值為680 Ω,放大倍數(shù)為70倍。
放大信號(hào)經(jīng)過(guò)二極管之后,由于二極管正向?qū)ㄗ饔?,?fù)向電壓會(huì)被濾去,且正向電壓會(huì)產(chǎn)生0.7 V左右的壓降,經(jīng)過(guò)二極管后的電壓信號(hào)峰值均在3.2 V左右,根據(jù)比較器的工作原理,將3.2 V作為閾值參考,設(shè)置比較電壓為3 V,即所有幅值大于3 V的電壓信號(hào)均會(huì)被轉(zhuǎn)換為方波脈沖信號(hào)。
單穩(wěn)態(tài)觸發(fā)電路的作用是通過(guò)調(diào)整其外圍電阻對(duì)方波信號(hào)產(chǎn)生指定寬度的脈沖信號(hào)。脈沖寬度的設(shè)置依據(jù)為油菜種子、小麥種子的穿越響應(yīng)時(shí)間,穿越響應(yīng)時(shí)間由式(2)計(jì)算得到,利用時(shí)間約束使種子個(gè)數(shù)與波形數(shù)一一對(duì)應(yīng),根據(jù)前期試驗(yàn),油菜種子的穿越響應(yīng)時(shí)間設(shè)置為3 ms,小麥種子的穿越響應(yīng)時(shí)間設(shè)置為7 ms,即可實(shí)現(xiàn)油菜和小麥種子的兼容監(jiān)測(cè),無(wú)需調(diào)節(jié)其他參數(shù)。利用單穩(wěn)態(tài)觸發(fā)電路為種子設(shè)置對(duì)應(yīng)的脈沖寬度,可以消除1次穿越響應(yīng)信號(hào)通過(guò)比較電路后產(chǎn)生2個(gè)方波信號(hào),繼而影響計(jì)數(shù)的準(zhǔn)確性。利用四通道示波器(GDS-3154)對(duì)一級(jí)放大信號(hào)、二級(jí)放大信號(hào)、比較信號(hào)、單穩(wěn)態(tài)觸發(fā)信號(hào)進(jìn)行實(shí)時(shí)采集,結(jié)果如圖6。
1.一級(jí)放大信號(hào)(100 mV·格?1) 2.二級(jí)放大信號(hào)(5 V·格?1) 3.比較信號(hào)(5 V·格?1) 4.單穩(wěn)態(tài)觸發(fā)信號(hào)(5 V·格?1)
1.Primary amplification signal(100 mV·scale?1) 2.Secondary amplification signal(5 V·scale?1) 3.Comparison signal(5 V·scale?1) 4.Monostable trigger signal(5 V·scale?1)
a. 油菜種子信號(hào)波形圖
a. Signal waveform of rape seed
1.一級(jí)放大信號(hào)(100 mV·格?1) 2.二級(jí)放大信號(hào)(5 V·格?1) 3.比較信號(hào)(5 V·格?1) 4.單穩(wěn)態(tài)觸發(fā)信號(hào)(5 V·格?1)
1.Primary amplification signal(100 mV·scale?1) 2.Secondary amplification signal(5 V·scale?1) 3.Comparison signal(5 V·scale?1) 4.Monostable trigger signal(5 V·scale?1)
b. 小麥種子信號(hào)波形圖
b. Signal waveform of wheat seed
圖6 油菜和小麥種子的電壓信號(hào)波形圖
Fig.6 Voltage signal waveform of rape and wheat seed
根據(jù)制作的集成電路板尺寸以及電源模塊尺寸,綜合關(guān)鍵結(jié)構(gòu)參數(shù)設(shè)計(jì)并制作了中小粒徑種子流監(jiān)測(cè)裝置,種子流穿越薄面激光層產(chǎn)生的信號(hào)經(jīng)過(guò)處理電路后形成脈沖序列信號(hào),脈沖序列信號(hào)作為MSP430F149單片機(jī)系統(tǒng)的外部中斷,經(jīng)計(jì)數(shù)程序獲得種子量信息,在OLED屏上實(shí)時(shí)顯示。監(jiān)測(cè)裝置軟件程序采用C語(yǔ)言編寫,主要包括系統(tǒng)參數(shù)設(shè)置初始化、計(jì)數(shù)中斷程序、OLED顯示屏初始化等。
3.1.1 試驗(yàn)材料與設(shè)備
試驗(yàn)使用華油雜62油菜種子和鄭麥9023小麥種子,在試驗(yàn)前人工挑選分離出破損開裂的種子,試驗(yàn)所用主要儀器和設(shè)備為油菜精量排種器,氣力式精量排種器試驗(yàn)臺(tái)架,轉(zhuǎn)速表,中小粒徑種子流監(jiān)測(cè)裝置,接種袋,計(jì)時(shí)器,SLY-C微電腦自動(dòng)數(shù)粒儀(浙江托普儀器有限公司),整體試驗(yàn)裝置如圖7。
1.中小粒徑種子流監(jiān)測(cè)裝置 2.油菜精量排種器 3.氣力式精量排種器試驗(yàn)臺(tái)架 4.接種袋 5.電機(jī) 6.變頻器 7.轉(zhuǎn)速表 8.風(fēng)機(jī) 1.Monitoring device for medium and small size seed flow 2.Rapeseed precision metering device 3.Test platform for pneumatic precision metering device 4.Seeds collecting bag 5.Motor 6.Frequency converter 7.Tachometer 8.Fan
3.1.2 試驗(yàn)方法
試驗(yàn)?zāi)康脑谟谠u(píng)估中小粒徑種子流監(jiān)測(cè)裝置對(duì)不同排種頻率種子流監(jiān)測(cè)的準(zhǔn)確率性及可靠性。臺(tái)架試驗(yàn)中,油菜種子的監(jiān)測(cè)精度測(cè)試在氣力式精量排種器試驗(yàn)臺(tái)架上進(jìn)行,更高排種頻率的試驗(yàn)在自動(dòng)數(shù)粒儀上進(jìn)行;小麥種子的監(jiān)測(cè)精度測(cè)試在自動(dòng)數(shù)粒儀上進(jìn)行。
將監(jiān)測(cè)裝置入種口通過(guò)軟管與油菜精量排種器排種口對(duì)接,并用接種袋收集從排種器落下的種子,試驗(yàn)在排種器不同工作轉(zhuǎn)速下進(jìn)行,包括高中低轉(zhuǎn)速,高轉(zhuǎn)速為24 r/min,中轉(zhuǎn)速為18 r/min,低轉(zhuǎn)速為13 r/min,每個(gè)轉(zhuǎn)速狀態(tài)下重復(fù)試驗(yàn)3次,每次當(dāng)監(jiān)測(cè)顯示端計(jì)數(shù)為1 000粒左右時(shí),停止排種,記錄排種時(shí)間以及監(jiān)測(cè)裝置檢測(cè)數(shù),采用人工數(shù)種獲得實(shí)際排種粒數(shù)。為了進(jìn)一步驗(yàn)證監(jiān)測(cè)裝置的監(jiān)測(cè)效果,利用SLY-C微電腦自動(dòng)數(shù)粒儀(此數(shù)粒儀在低速排種狀態(tài)下計(jì)數(shù)精度為4‰,排種速度高時(shí),精度會(huì)下降)模擬高頻排種,結(jié)合GDS-3154數(shù)字存儲(chǔ)示波器采集種子波形并記錄。通過(guò)調(diào)整數(shù)粒儀振動(dòng)擋位進(jìn)行測(cè)試,調(diào)整擋位為3檔、4檔、5檔(各檔對(duì)應(yīng)的頻率分別為20、25和30 Hz),每個(gè)排種頻率狀態(tài)下重復(fù)試驗(yàn)3次。在監(jiān)測(cè)小麥種子時(shí),調(diào)節(jié)監(jiān)測(cè)裝置上控制單穩(wěn)態(tài)脈沖寬度的電位器,使脈沖寬度為7 ms。試驗(yàn)結(jié)果如表2。
表2 排種器不同轉(zhuǎn)速和數(shù)粒儀高頻排種的試驗(yàn)結(jié)果
由表2可知,監(jiān)測(cè)裝置在8.4~32.1 Hz的排種頻率范圍內(nèi),油菜種子監(jiān)測(cè)誤差最大不超過(guò)1.9%,監(jiān)測(cè)準(zhǔn)確率不低于98.1%,在21.5~31.2 Hz的排種頻率范圍內(nèi),小麥種子監(jiān)測(cè)誤差最大不超過(guò)4.9%,監(jiān)測(cè)準(zhǔn)確率不低于95.1%。試驗(yàn)過(guò)程中監(jiān)測(cè)裝置沒(méi)有出現(xiàn)堵塞現(xiàn)象,工作穩(wěn)定,在充滿電之后可以持續(xù)工作8 h。
檢測(cè)粒數(shù)與實(shí)際粒數(shù)存在一定的偏差,整體偏小,利用高速攝影(本文采用Pco.dimaxHD高速攝影儀,曝光時(shí)間為1.5s,幀速為2 128幀/s,焦距為2.8 mm,采集的圖像為1 920×1 080像素,攝像機(jī)距離排種平面距離為300 mm)觀察油菜和小麥種子下落的過(guò)程,并且結(jié)合數(shù)字式示波器采集種子產(chǎn)生的比較信號(hào)和單穩(wěn)態(tài)信號(hào)波形,發(fā)現(xiàn)存在多粒種子同時(shí)落下的情形,在這種情形下,數(shù)字式示波器采集的單穩(wěn)態(tài)脈沖數(shù)只有1個(gè),監(jiān)測(cè)裝置計(jì)數(shù)1次。分析其原因,主要是由于監(jiān)測(cè)裝置對(duì)種子流的監(jiān)測(cè)時(shí)間分辨率油菜為3 ms,小麥為7 ms,當(dāng)多粒種子在分辨率時(shí)間內(nèi)同時(shí)穿越光層時(shí),只會(huì)被計(jì)數(shù)1次,這樣會(huì)使監(jiān)測(cè)結(jié)果偏低。圖8為在20 Hz的排種頻率下高速攝影儀拍下的種子運(yùn)動(dòng)狀態(tài)。
a. 油菜、小麥運(yùn)動(dòng)狀態(tài)高速攝影試驗(yàn)
a. High speed photography test of rapeseed and wheat in motion state
1.Pco.dimaxHD高速攝影儀 2.中小粒徑種子流監(jiān)測(cè)裝置 3.SLY-C微電腦自動(dòng)數(shù)粒儀
1.Pco.dimaxHD high speed camera 2.Monitoring device for medium and small size seed flow 3.SLY-C microcomputer automatic counting instrument
b. 油菜種子流高速攝影記錄c. 小麥種子流高速攝影記錄 a. High speed photography record of rape seed flowb. High speed photography record of wheat seed flow
為了考察裝置的穩(wěn)定性以及復(fù)雜田間作業(yè)環(huán)境(包括光照、振動(dòng)、粉塵)對(duì)監(jiān)測(cè)效果的影響,于2018年9月在華中農(nóng)業(yè)大學(xué)稻坂田開展油麥精量播種試驗(yàn)。
在試驗(yàn)前首先考察光照對(duì)中小粒徑種子流監(jiān)測(cè)裝置的影響。將監(jiān)測(cè)裝置入種口通過(guò)軟管與排種器排種口對(duì)接(種箱內(nèi)不放種子,即沒(méi)有種子經(jīng)過(guò)傳感裝置),在路面上直播機(jī)不工作的狀態(tài)下進(jìn)行測(cè)試,將傳感裝置開啟,在太陽(yáng)光照、人為打光、人為遮擋自然光條件下的測(cè)試結(jié)果表明:排種總量始終為0,沒(méi)有發(fā)生誤計(jì),田間各種光照條件對(duì)監(jiān)測(cè)裝置工作性能無(wú)影響。進(jìn)一步考察振動(dòng)對(duì)監(jiān)測(cè)效果的影響,種箱內(nèi)不放種子,直播機(jī)在田間前進(jìn)30 m,重復(fù)3次,模擬振動(dòng)條件的測(cè)試結(jié)果表明:排種總量始終為0,沒(méi)有發(fā)生誤計(jì),田間機(jī)具振動(dòng)對(duì)監(jiān)測(cè)裝置工作性能無(wú)影響。
為了進(jìn)一步考察中小粒徑種子流傳感裝置在田間工作狀態(tài)下的監(jiān)測(cè)精度,將種箱內(nèi)放入適量種子,使用接種帶收集從輸種管出口排出的種子,試驗(yàn)現(xiàn)場(chǎng)如圖9。
試驗(yàn)之前先啟動(dòng)監(jiān)測(cè)裝置,顯示端數(shù)據(jù)清零,油麥兼用型精量直播機(jī)田間正常工作速度在1.8~5.4 km/h之間,太慢或者太快均會(huì)影響播種效果,因此設(shè)定直播機(jī)在3個(gè)適宜速度下進(jìn)行試驗(yàn),分別為慢Ⅰ檔、慢Ⅱ檔、慢Ⅲ檔,對(duì)應(yīng)的作業(yè)速度分別為2.7、4.0和4.9 km/h,每個(gè)檔位的播種距離為30 m,分別開展油菜、小麥播種試驗(yàn),每個(gè)檔位試驗(yàn)1次,每次試驗(yàn)完成記錄中小粒徑種子流監(jiān)測(cè)裝置顯示的播種總量,取下接種袋,采用人工數(shù)種的方法得到實(shí)際播種總量,田間試驗(yàn)結(jié)果如表 3。
1.油麥兼用型精量直播機(jī) 2.東方紅-LX954拖拉機(jī) 3.導(dǎo)種管 4.中小粒徑種子流監(jiān)測(cè)裝置 5.接種袋 6.播種信息顯示端
表3 田間油麥播量監(jiān)測(cè)試驗(yàn)結(jié)果
由表3可知,在3個(gè)工作速度下,監(jiān)測(cè)裝置對(duì)油菜播量的監(jiān)測(cè)準(zhǔn)確率不超過(guò)98.6%,誤差不超過(guò)1.4%,對(duì)小麥播量的監(jiān)測(cè)準(zhǔn)確率不超過(guò)95.8%,誤差不超過(guò)4.2%,工作性能穩(wěn)定。
監(jiān)測(cè)裝置激光發(fā)射模組與硅光電池相距23 mm,發(fā)射端只有直徑為2.5 mm的圓形小孔暴露于空氣中,通過(guò)對(duì)硅光電池受光面進(jìn)行密封結(jié)構(gòu)設(shè)計(jì),使硅光電池暴露面積僅為2 mm×14.1 mm。裝置工作時(shí)處于封閉狀態(tài),田間浮沉難以進(jìn)入裝置,浮塵的主要影響是改變照射在硅光電池上的光強(qiáng),進(jìn)而使硅光電池偏置電壓發(fā)生變化,通過(guò)隔直通交電路可以消除硅光電池的偏置電壓使電壓歸零,不會(huì)對(duì)計(jì)數(shù)產(chǎn)生干擾;在機(jī)具應(yīng)用中,搭載該裝置監(jiān)測(cè)播種過(guò)程,觀察3個(gè)工作日,未發(fā)現(xiàn)故障情況。
在氣力式精量播種過(guò)程中,種子從排種口下落,向下的初始速度并不全為0,因此實(shí)際穿越響應(yīng)時(shí)間會(huì)更短,穿越響應(yīng)時(shí)間與種子下落的速度緊密相關(guān),下落的初始速度越大,穿越響應(yīng)時(shí)間越短。為了使裝置適應(yīng)各種排種狀況,本文按照最長(zhǎng)的穿越響應(yīng)時(shí)間設(shè)計(jì),這樣即使種子向下的初始速度為0也不影響監(jiān)測(cè)。放大倍數(shù)是基于最小信號(hào)進(jìn)行設(shè)計(jì),關(guān)鍵難點(diǎn)為小粒徑種子,此類型種子產(chǎn)生的信號(hào)微小,因此在設(shè)計(jì)放大倍數(shù)時(shí),關(guān)鍵依據(jù)是從大量測(cè)試中找準(zhǔn)最小信號(hào),最小信號(hào)能達(dá)到放大要求,那么所有種子產(chǎn)生的信號(hào)都能達(dá)到放大要求,否則會(huì)產(chǎn)生漏檢。種子穿越薄面激光層的過(guò)程中,由于種子自身的位姿改變,對(duì)激光遮擋的面積也發(fā)生改變,穿越響應(yīng)信號(hào)可能會(huì)出現(xiàn)2個(gè)或者更多尖峰波,在二級(jí)放大后穿越響應(yīng)時(shí)間內(nèi)穿越信號(hào)并不是全段被放大至飽和,導(dǎo)致電壓比較環(huán)節(jié)后存在多個(gè)方波信號(hào)的情況,影響計(jì)數(shù)精度,因此在電壓比較之后加入單穩(wěn)態(tài)觸發(fā)電路對(duì)信號(hào)進(jìn)行脈沖寬度的設(shè)置,利用種子穿越激光層的時(shí)間約束,使種子個(gè)數(shù)與波形數(shù)一一對(duì)應(yīng),提高計(jì)數(shù)精度,但一定程度上降低了時(shí)間分辨率,在相同高度以相同初始速度落下,小麥種子的穿越響應(yīng)時(shí)間比油菜種子時(shí)間長(zhǎng),在穿越響應(yīng)時(shí)間內(nèi)同時(shí)下落2?;蛘叨嗔7N子的可能性小麥種子比油菜種子大,因此小麥種子監(jiān)測(cè)準(zhǔn)確率會(huì)低于油菜種子。
本文設(shè)計(jì)了中小粒徑種子流監(jiān)測(cè)裝置用于解決中小粒徑種子播種監(jiān)測(cè)的難題,對(duì)中小粒徑種子流監(jiān)測(cè)裝置的準(zhǔn)確率、抗光照干擾和抗振性進(jìn)行了性能試驗(yàn)。
1)利用光伏效應(yīng)原理設(shè)計(jì)了中小粒徑種子流監(jiān)測(cè)裝置。該監(jiān)測(cè)裝置包括入種口、上導(dǎo)管、薄面激光發(fā)射模組、硅光電池、感應(yīng)光層、下導(dǎo)管、出種口、信號(hào)調(diào)理電路,結(jié)構(gòu)緊湊、體積小巧,適合于中小粒徑種子精量排種器田間作業(yè)環(huán)境播量監(jiān)測(cè)。
2)采用1 mm薄面激光發(fā)射模組作為發(fā)射端,種子之間的縱向距離大于1 mm時(shí)均能被檢測(cè)出來(lái),一定程度上提高了種子流監(jiān)測(cè)的時(shí)間分辨率。設(shè)計(jì)了穿越響應(yīng)信號(hào)的隔直通交電路、雙極放大電路、半波整流電路、比較電路、單穩(wěn)態(tài)觸發(fā)電路,實(shí)現(xiàn)油菜、小麥種子流脈沖序列的轉(zhuǎn)化,實(shí)現(xiàn)了中小粒徑種子流的計(jì)數(shù)。
3)中小粒徑種子流監(jiān)測(cè)裝置臺(tái)架及高頻數(shù)粒儀試驗(yàn)結(jié)果表明:在8.4~32.1 Hz的排種頻率范圍內(nèi),油菜種子監(jiān)測(cè)準(zhǔn)確率不低于98.1%,在21.5~31.2 Hz的排種頻率范圍內(nèi),小麥種子監(jiān)測(cè)準(zhǔn)確率不低于95.1%,試驗(yàn)過(guò)程沒(méi)有出現(xiàn)堵塞的現(xiàn)象。田間試驗(yàn)結(jié)果表明:中小粒徑種子流監(jiān)測(cè)裝置能夠?qū)崟r(shí)監(jiān)測(cè)中小粒徑種子的田間播量,且田間光照和機(jī)具振動(dòng)對(duì)監(jiān)測(cè)精度無(wú)影響。
該監(jiān)測(cè)裝置可為中小粒徑精量播種過(guò)程的播量監(jiān)測(cè)、漏播檢測(cè)提供有效支撐。
[1] 沈金雄,傅廷棟. 我國(guó)油菜生產(chǎn)、改良與食用油供給安全[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2011,13(1):1-8. Shen Jinxiong, Fu Tingdong. Rape production, improvemengt and edible oil supply safety in China[J]. Review of China Agricultural Science and Technology, 2011, 13(1): 1-8. (in Chinese with English abstract)
[2] 殷艷,王漢中. 我國(guó)油菜生產(chǎn)現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)生產(chǎn)展望,2011(1):43-45. Yin Yan, Wang Hanzhong.Current situation and development trend of rapeseed production in China[J]. Prospect of Agricultural Production 2011(1): 43-45. (in Chinese with English abstract)
[3] 農(nóng)牧與食品機(jī)械雜志社編. 國(guó)外農(nóng)機(jī)產(chǎn)品手冊(cè)[M]. 北京:機(jī)械工業(yè)出版社,1992.
[4] 石金剛. 美制約翰·迪爾播種機(jī)電子監(jiān)測(cè)器簡(jiǎn)介[J]. 農(nóng)業(yè)機(jī)械,1999 (3):36-37.
[5] John D. Monitoring and documentation [EB/OL]. (2015-08-04) [2016-01-08]. http://www.deere.com/en_US/parts/parts_by_ industry/ag/seeding/monitoring/monitoring. page.
[6] 車宇,偉利國(guó),劉婞韜,等. 免耕播種機(jī)播種質(zhì)量紅外監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):11-16. Che Yu, Wei Liguo, Liu Xingtao, et al. Design and experiment of seeding quality infrared monitoring system for no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 11-16. (in Chinese with English abstract)
[7] M C Electronics. Sistema full semina [EB/OL].(2018-04-11)
[2016-01-08] https://www.mcelettronica.it/it/prodotti/semina/ semina-di-precisione/full-semina_272c28.html.
[8] 趙立業(yè),蹇興東. 排種性能檢測(cè)傳感器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,36(7):41-43. Zhao Liye, Jian Xingdong. Design and test of seed metering performance sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 36(7): 41-43. (in Chinese with English abstract)
[9] 劉洪強(qiáng),馬旭,袁月明,等. 基于光電傳感器的精密排種器性能檢測(cè)[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2007,29(3):347-349. Liu Hongqiang, Ma Xu, Yuan Yueming, et al. Performance detection of precision seed-metering device based on optoelectronic sensor[J]. Journal of Jilin Agricultural University, 2007, 29(3): 347-349. (in Chinese with English abstract)
[10] 余以道,文澤軍,羅善明,等. 高速光電反射式轉(zhuǎn)矩轉(zhuǎn)速傳感器及其試驗(yàn)研究[J]. 儀器儀表學(xué)報(bào),2009,30(3):610-614. Yu Yidao, Wen Zejun,Luo Shanming, et al. Study on high speed photo electric reflective torque speed sensor[J]. Chinese Journal of Scientific Instrument, 2009, 30(3): 610-614. (in Chinese with English abstract)
[11] 付興蘭,張兆國(guó),安曉飛,等. 光電漫反射式聯(lián)合收割機(jī)谷物產(chǎn)量計(jì)量系統(tǒng)研發(fā)與性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):24-30. Fu Xinglan, Zhang Zhaoguo, An Xiaofei, et al. Development and performance experiment on grain yield monitoring system of combine harvester based on photoelectric diffuse reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 24-30. (in Chinese with English abstract)
[12] 安曉飛,付興蘭,孟志軍,等. 光電信號(hào)與收割機(jī)谷物產(chǎn)量數(shù)據(jù)轉(zhuǎn)換模型的構(gòu)建與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):36-41. An Xiaofei, Fu Xinglan, Meng Zhijun, et al. Grain yield data transformation model based on photoelectric principle and its validation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 36-41. (in Chinese with English abstract)
[13] 劉鵬,李小昱,王為,等. 基于光電傳感器和示蹤法的徑流流速測(cè)量系統(tǒng)的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(5):116-120. Liu Peng, Li Xiaoyu, Wang Wei, et al. Runoff flow velocity measurement system using photoelectric sensor and tracing method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(5): 116-120. (in Chinese with English abstract)
[14] Zhang Xiaoqian, Li Hanshan. Research on target capture probability calculation model of composite photoelectricdetection imaging sensor system[J]. Original Reasearch Article, 2018, 166(8): 161-168.
[15] 周利明,王書茂,張小超,等. 基于電容信號(hào)的玉米播種機(jī)排種性能監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):16-21. Zhou Liming, Wang Shumao, Zhang Xiaochao, et al. Seed monitoring system for corn planter based on capacitance signal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 16-21. (in Chinesewith English abstract)
[16] 劉志壯,呂貴勇. 基于電容法的稻谷含水率檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(7):179-182. Liu Zhizhuang, Lü Guiyong. Moisture content detection of paddy rice based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 179-182. (in Chinese with English abstract)
[17] 高志濤,劉衛(wèi)平,趙燕東. 基于電容法的非接觸式土壤水分傳感器設(shè)計(jì)與性能分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11): 185—191.Gao Zhitao, Liu Weiping, Zhao Yandong. Design and performance analysis of soil moisture sensor based on capacitance technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 185-191. (in Chinesewith English abstract)
[18] 周利明,李樹君,張小超,等. 基于電容法的棉管籽棉質(zhì)量流量檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):47-52. Zhou Liming, Li Shujun, Zhang Xiaochao, et al. Detection of seedcotton mass flow based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 47-52. (in Chinese with English abstract)
[19] 周利明,馬明,苑嚴(yán)偉,等. 基于電容法的施肥量檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):44-51. Zhou Liming, Ma Ming, Yuan Yanwei, et al. Design and test of fertilizer mass monitoring system based on capacitance method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 44-51. (in Chinese with English abstract)
[20] 張霖,趙祚喜,可欣榮,等. 壓電式種子計(jì)數(shù)系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(8):42-45. Zhang Lin, Zhao Zuoxi, Ke Xinrong, et al. Piezoelectric seed counting system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 42-45. (in Chinese with English abstract).
[21] 陳書法,張石平,李耀明,等. 壓電型振動(dòng)氣吸式穴盤育苗精量播種機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(增刊1):15-20. Chen Shufa, Zhang Shiping, Li Yaoming, et al. Design and experiment of piezoelectric type vibration air-suction precision seeder with holey tray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 15-20. (in Chinese with English abstract)
[22] 黃東巖,賈紅雷,祁悅,等. 基于聚偏二氟乙烯壓電薄膜的播種機(jī)排種監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(33):15-22. Huang Dongyan, Jia Honglei, Qi Yue, et al. Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(33): 15-22. (in Chinese with English abstract)
[23] 鄭永軍,馬超,張艷超,等. 基于PVDF壓電傳感器的水滴沖擊力檢測(cè)系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(增刊1):142-147. Zheng Yongjun, Ma Chao, Zhang Yanchao, et al. Detection system of droplet impact force based on PVDF sensor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(Supp.1): 142-147. (in Chinese with English abstract)
[24] 雷小龍,廖宜濤,李兆東,等. 油麥兼用型氣送式集排器供種裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):10-18. Lei Xiaolong, Liao Yitao, Li Zhaodong, et al. Design and experiment of a feeding deVice for air powered double row air collector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 10-18. (in Chinese with English abstract)
[25] 丁幼春,楊軍強(qiáng),朱凱,等. 油菜精量排種器種子流傳感裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):29-36. Ding Youchun, Yang Junqiang, Zhu Kai, et al. Design and experiment on seed flow sensing device for rapeseed precision metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 29-36. (in Chinese with English abstract)
[26] 丁幼春,王雪玲,廖慶喜,等. 基于時(shí)變窗口的油菜精量排種器漏播實(shí)時(shí)檢測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):11-21. Ding Youchun, Wang Xueling, Liao Qingxi, et al. Method of real-time loss sowing detection for rapeseed precision metering device based on time changed window[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 11-21. (in Chinese with English abstract)
[27] 丁幼春,王雪玲,廖慶喜,等. 基于時(shí)間間隔的多路精量排種器性能檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):11-18.Ding Youchun, Wang Xueling, Liao Qingxi, et al. Design and experiment of performance testing system of multi-channel seed-metering device based on time intervals[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 11-18. (in English with Chinese abstract)
[28] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用排種盤的排種器充種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):30-39.Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)
[29] 雷小龍,廖宜濤,叢錦玲,等. 油菜小麥兼用氣送式直播機(jī)集排器參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(12):16-26. Lei Xiaolong, Liao Yitao, Cong Jinling, et al. Parameter optimization and experiment of air-assisted centralized seed-metering device of direct seeding machine for rape and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 16-26. (in Chinese with English abstract)
[30] 雷小龍,廖宜濤,李兆東,等. 油菜小麥兼用氣送式集排器攪種裝置設(shè)計(jì)及充種性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):26-34. Lei Xiaolong, Liao Yitao, Li Zhaodong, et al. Design of seed churning device in air-assisted centralized metering device for rapeseed and wheat and experiment on seed filling performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 26-34. (in Chinese with English abstract)
[31] Lauren M Cruz, George L Shillinger, Nathan J Robinson, et al. Effect of light intensity and wavelength on the in-water orientation of olive ridley turtle hatchlings[J]. Journal of Experimental Marine Biology and Ecology, 2018, 505: 52-56.
Development of monitoring device for medium and small size seed flow based on thin surface laser-silicon photocell
Ding Youchun, Zhu Kai, Wang Kaiyang, Liu Xiaodong, Du Chaoqun
(1.,,430070,; 2.,,430070,)
Rapeseed and wheat are important oil and food crops in china, the sowing dates of them are adjacent, and planting area ranks in the forefront of the world. Precision combined seeding can improve working efficiency, reduce operating costs, increase farmer's income. Monitoring the sowing process is one of the trends in the development of intelligent seeders. The sowing process of the precision planter for rapeseed and wheat is completely closed, miss seeding caused by various factors in the field can not be corrected in time. It is of great practical significance to study a seed flow monitoring device for medium and small particle size monitoring the sowing process real time, so as to improve the intelligence level of the precision planter for rapeseed and wheat. In recent years, domestic and foreign scholars carried out many related studies on miss seeding and reseeding detection system mainly for potato, corn, wheat and other large and medium seeds. Few studies have focused on miss seeding and reseeding detection system for rapeseed and other small seeds because of its small size, light weight and high seeding frequency. Rapeseed and wheat are both seeding at high frequencies, but the rapeseed size is small(average particle size 0.8-2.2 mm), wheat size is larger(average length 6.25 mm, width 3.33 mm, thickness 3.07 mm), it is difficult for them to achieve compatible detection. In order to solve the above problems, a small and medium size seed flow monitoring device was designed based on the principle of photovoltaic effect of thin surface laser and silicon photocell in this paper. A thin surface laser emitting module with a thickness of about 1 mm and a photovoltaic effect produced by a silicon photocell were used. According to the emission angle of thin laser module and the diagonal length of silicon photocell, the size of seed monitoring area and the specific location of monitoring area were calculated, the structure parameters of the monitoring device, such as the inner diameter of the catheter, the position of the catheter center line, the relative position of thin laser module and silicon photocell, were defined. The time required for seeds to pass through the thin laser layer was analyzed. The response signal of rapeseed was completed within 3 ms and that of wheat seeds was completed within 7 ms. The response signal of seed crossing was transformed into single pulse signal by means of isolated direct traffic, double-stage amplification, half-wave rectification, voltage comparison and monostable trigger, and as an external interrupt source of single chip computer, thus the seeding information was counted, and the collision-free detection of small and medium sized seed flow was realized. Testing results of seed metering device metering at different revolving speed and counting instrument metering with high frequency showed that in the seeding frequency range of 8.4 to 32.1 Hz, the monitoring accuracy of rapeseed was not less than 98.1%, in the seeding frequency range of 21.5 to 31.2 Hz, the monitoring accuracy of wheat was not less than 95.1%. The results of field experiments showed that the device could monitor the seeding amount of small and medium sized seeds in real time, and the field light and vibration of machine had no effects on the monitoring accuracy.
agricultural machinery; lasers; silicon batteries; medium and small size seed flow; monitoring
2018-11-29
2018-12-25
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0200600、2016YFD0200606);湖北省技術(shù)創(chuàng)新專項(xiàng)重大項(xiàng)目(2016ABA094)
丁幼春,教授,博士生導(dǎo)師,主要從事油菜機(jī)械化生產(chǎn)智能化技術(shù)與裝備研究。Email:kingbug163@163.com
10.11975/j.issn.1002-6819.2019.08.002
S223.2+5
A
1002-6819(2019)-08-0012-09
丁幼春,朱 凱,王凱陽(yáng),劉曉東,杜超群. 薄面激光-硅光電池中小粒徑種子流監(jiān)測(cè)裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):12-20. doi:10.11975/j.issn.1002-6819.2019.08.002 http://www.tcsae.org
Ding Youchun, Zhu Kai, Wang Kaiyang, Liu Xiaodong, Du Chaoqun. Development of monitoring device for medium and small size seed flow based on thin surface laser-silicon photocell[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 12-20. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.002 http://www.tcsae.org