段驊 佟卉 劉燕清 許慶芬 馬駿 王春敏
?
高溫和干旱對水稻的影響及其機制的研究進展
段驊*佟卉 劉燕清 許慶芬 馬駿 王春敏
(天津市農(nóng)作物研究所 天津市農(nóng)作物遺傳育種重點實驗室,天津 300384;*通訊聯(lián)系人,E-mail: duanhua2004@gmail.com)
高溫和干旱是影響水稻生長、發(fā)育、產(chǎn)量和品質(zhì)的兩個最重要的環(huán)境因子,全面理解高溫和干旱脅迫對評價氣候變化對水稻生產(chǎn)的影響至關(guān)重要。概述了高溫、干旱及其復(fù)合脅迫對水稻生長發(fā)育、產(chǎn)量形成和稻米品質(zhì)的影響;從光合作用、抗氧化系統(tǒng)、內(nèi)源激素、蔗糖-淀粉代謝途徑關(guān)鍵酶活性、分子機制等方面闡述其生理機制;提出減輕水稻高溫干旱脅迫的調(diào)控措施;對未來深入開展水稻高溫干旱逆境的研究提出建議。
水稻;高溫;干旱;高溫干旱復(fù)合脅迫;產(chǎn)量;品質(zhì);生理機制
氣候變化是21世紀(jì)中國乃至全球農(nóng)業(yè)面臨的嚴(yán)峻挑戰(zhàn)之一,對農(nóng)業(yè)的影響直接關(guān)系到糧食安全和經(jīng)濟安全。水稻是我國最主要的糧食作物之一,生殖生長期遇35℃以上的高溫就會對水稻產(chǎn)生危害[1]。全球氣候變化報告[2]指出,近130年(1880-2012年)全球平均地表溫度上升了0.85℃,預(yù)計2016-2035年全球平均地表溫度將繼續(xù)升高0.3℃~0.7℃,水稻遭受干旱脅迫的面積將擴大一倍。而氣候變化造成糧食產(chǎn)量和品質(zhì)的降低,主要原因在于高溫和干旱脅迫[2]。近年來國內(nèi)外學(xué)者針對高溫或干旱單一因子影響水稻的特征和機理進行了大量研究,涉及生長發(fā)育[3-5]、生理生態(tài)[6, 7]、產(chǎn)量與品質(zhì)[8, 9]等方面。但在大田生產(chǎn)中,高溫和干旱同時發(fā)生的幾率逐年增加[10],加重了高溫或干旱對水稻產(chǎn)量和品質(zhì)形成的危害。筆者就高溫和干旱對水稻產(chǎn)量和品質(zhì)的影響及其生理機制進行綜述,以期進一步認(rèn)識高溫和干旱與水稻產(chǎn)量和品質(zhì)形成的關(guān)系,為指導(dǎo)水稻高溫干旱育種、抗熱節(jié)水栽培,保障我國糧食安全提供理論參考。
在不同發(fā)育時期,水稻對高溫的響應(yīng)表現(xiàn)不同,敏感程度依次為抽穗開花期>幼穗發(fā)育期>灌漿期[11, 12]。在抽穗開花期遇到高溫,能使開花期提前[13, 14],致使花藥開裂不良、花粉萌發(fā)率低和花粉活力下降,最終造成水稻籽粒敗育[15-17];幼穗發(fā)育期遇到高溫,會抑制穎花分化,導(dǎo)致穎花退化;在灌漿期遇到高溫,會縮短灌漿期,阻礙籽粒充實[18]。營養(yǎng)生長期遇到高溫會促進水稻的生長,株高、莖蘗數(shù)、葉面積和地上部干物質(zhì)量明顯增加[19]。
水稻營養(yǎng)生長期遇到干旱脅迫,光合作用受到限制,葉面積減小、分蘗減少[20],葉片易卷曲[21];水稻生殖生長期對干旱脅迫高度敏感,干旱不僅導(dǎo)致葉面積減小,株高和收獲指數(shù)降低,還會阻礙水稻的生殖器官發(fā)育,如降低可育花粉數(shù)量、延長開花期、致使花藥異常開裂等[12, 22];灌漿中后期干旱導(dǎo)致葉片早衰,灌漿持續(xù)時間縮短,同化物供應(yīng)受限,粒重降低。
有關(guān)高溫和干旱復(fù)合脅迫對水稻生長發(fā)育的影響,已有學(xué)者進行了初步研究[17, 23]。多數(shù)研究認(rèn)為,大氣溫度和土壤溫度的升高會提高作物蒸騰耗水量和農(nóng)田蒸散量,增加作物總耗水量,造成干旱缺水或進一步加劇干旱脅迫的危害[24-26],如Lawas等[10]發(fā)現(xiàn),水稻抽穗灌漿期間,高溫干旱復(fù)合脅迫顯著降低株高和生物量;但Rang等[17]利用不同基因型水稻品種為材料,在開花期設(shè)置高溫、干旱和高溫干旱復(fù)合脅迫,通過花藥開裂、花粉萌發(fā)和主穗結(jié)實率等指標(biāo),觀察不同品種對高溫、干旱的響應(yīng)。結(jié)果表明,雖然高溫、干旱和高溫干旱雙重脅迫均導(dǎo)致主穗敗育,但高溫脅迫造成的空粒率在不同處理中最高。高溫干旱復(fù)合脅迫對主穗發(fā)育的影響并沒有遠(yuǎn)大于高溫或干旱單一脅迫的影響,這體現(xiàn)了高溫和干旱復(fù)合脅迫的獨特性和復(fù)雜性。
水稻減數(shù)分裂期和抽穗開花期是對高溫和水分脅迫最敏感的時期[27-29]。在水稻開花當(dāng)日,如果田間遭遇高溫或水分脅迫,就會導(dǎo)致花藥異常開裂[30, 31],傳粉受阻[32, 33]和花粉發(fā)育異常[34],造成小穗不育,易形成空秕粒,從而導(dǎo)致結(jié)實率和粒重降低,進而使水稻減產(chǎn)[35]。營養(yǎng)生長期高溫或干旱影響分蘗發(fā)生,進而降低有效穗數(shù)[21, 36]。
現(xiàn)有較多報道證明[37-39],水稻抽穗開花期高溫干旱雙重脅迫會導(dǎo)致產(chǎn)量下降,高溫干旱雙重脅迫的影響大于單一高溫或干旱脅迫。在產(chǎn)量構(gòu)成要素中,結(jié)實率降幅最為明顯,而對于千粒重,則有不同的結(jié)論。多數(shù)研究認(rèn)為[33, 37, 39],高溫干旱會顯著降低千粒重,但也有研究發(fā)現(xiàn)[38],在脅迫環(huán)境下光合產(chǎn)物集中供應(yīng)少數(shù)籽粒,會引起千粒重在一定幅度上的增加,但粒重之增遠(yuǎn)不足以彌補結(jié)實率和實粒數(shù)之失,最終還是會導(dǎo)致產(chǎn)量大幅下降。
稻米品質(zhì)形成是品種遺傳特性和環(huán)境條件綜合作用的結(jié)果[11]。在環(huán)境因子中,溫度升高對稻米品質(zhì)影響的研究和進展最多[11, 35, 40]。雖然對水稻品質(zhì)的影響尚存在諸多不確定性,這可能與品質(zhì)分析和研究比較復(fù)雜有關(guān),但研究結(jié)果多為不利的影響。灌漿結(jié)實期是環(huán)境影響稻米品質(zhì)的關(guān)鍵時期,特別是灌漿前、中期高溫對品質(zhì)的影響最大[41]。高溫通過縮短灌漿持續(xù)期,降低光合產(chǎn)物積累和運轉(zhuǎn)、籽粒中蔗糖-淀粉代謝酶活性以及胚乳細(xì)胞發(fā)育和淀粉體的充實等生理過程,造成整精米率降低和直鏈淀粉含量降低[42, 43]、堊白粒率和堊白度增加、蛋白質(zhì)含量和糊化溫度升高[11],導(dǎo)致稻米品質(zhì)變劣[11, 35, 44]。
干旱對稻米品質(zhì)的影響與基因型和水分脅迫程度有關(guān)。結(jié)實期土壤適度干旱,可以顯著提高籽粒內(nèi)蔗糖-淀粉代謝途徑中關(guān)鍵酶活性和灌漿速率,降低內(nèi)源乙烯水平,顯著提高稻米的最高黏度和崩解值,降低堊白度和消減值,改善品質(zhì),而重度干旱的結(jié)果則相反[45]。
關(guān)于高溫干旱復(fù)合脅迫下稻米品質(zhì)的變化,相關(guān)研究報道較少。筆者[33, 39]曾觀察到,抽穗灌漿早期高溫、干旱或高溫干旱雙重脅迫顯著降低了稻米的精米率、整精米率和崩解值,增加了堊白米率、堊白度和消減值,但在品種間存在很大差異,高溫及高溫干旱雙重脅迫對高溫干旱敏感型品種的影響大于耐熱耐旱型品種,稻米品質(zhì)在高溫干旱雙重脅迫下變劣的幅度大于單一脅迫。高煥曄等[46]研究也表明,在相同脅迫時間內(nèi),高溫干旱復(fù)合脅迫導(dǎo)致稻米直鏈淀粉含量降低和蛋白質(zhì)含量增高的效應(yīng)遠(yuǎn)大于單一高溫脅迫和干旱脅迫。表1總結(jié)了高溫和干旱對水稻不同生育階段生長發(fā)育及產(chǎn)量和品質(zhì)的影響。
水稻遭遇高溫或干旱單一脅迫會導(dǎo)致光合作用速率下降[35],一種原因是氣孔限制,即脅迫促使氣孔關(guān)閉,降低氣孔導(dǎo)度,導(dǎo)致CO2供應(yīng)受阻,進而降低光合作用和物質(zhì)生產(chǎn)[54];另一種是非氣孔限制,即脅迫通過影響植株內(nèi)Rubisco活性和光系統(tǒng)PSⅡ結(jié)構(gòu)而抑制光合作用[55]?,F(xiàn)有研究均表明,水稻在高溫干旱復(fù)合脅迫下光合作用速率較單一脅迫下大幅降低[56-60]。然而,水稻在高溫干旱復(fù)合脅迫下光合作用速率降低的原因,究竟是由氣孔因素還是非氣孔因素引起,尚無定論。趙鳳云等[60]認(rèn)為,葉綠素含量及其比例是高溫干旱復(fù)合脅迫下水稻光合作用降低的原因;劉照等[59]發(fā)現(xiàn),氣孔因素和非氣孔因素均會導(dǎo)致高溫干旱復(fù)合脅迫下水稻光合速率下降;高煥曄等[56]雖然比較了水稻在高溫、干旱單一脅迫與雙重脅迫間的光合生理差異,包括葉綠素含量和氣孔導(dǎo)度等參數(shù)的變化,但是不同脅迫下影響光合作用的氣孔限制與非氣孔限制的比重如何,并未詳細(xì)闡述;Perdomo等[58]研究觀察到,水稻在干旱下光合速率降低的原因是氣孔因素,而在高溫下以及在高溫干旱復(fù)合脅迫下,光合降低的原因與水稻植株內(nèi)Rubisco活性降低顯著相關(guān)。
表1 高溫和干旱對水稻不同生育階段生長發(fā)育及產(chǎn)量和品質(zhì)的影響
活性氧(reactive oxygen species,ROS)在調(diào)控生物進程(如生長、發(fā)育和響應(yīng)逆境脅迫)中作為信號分子起關(guān)鍵作用[61]。在干旱或高溫等逆境脅迫下,活性氧的積累會導(dǎo)致大量細(xì)胞氧化損傷,抑制水稻光合作用[62]。為防止植物體受損,活性氧會被抗氧化機制清除。植物內(nèi)的抗氧化系統(tǒng)可分為酶促系統(tǒng)和非酶促系統(tǒng)兩大類,酶促系統(tǒng)主要包括超氧化物歧化酶(SOD)、谷胱甘肽還原酶(GR)、過氧化物酶(POD)和過氧化氫酶(CAT)等,非酶促系統(tǒng)主要由抗壞血酸(ASA)和還原性谷胱甘肽(GSH)構(gòu)成。抗氧化系統(tǒng)也會受到逆境脅迫的影響[61]。
現(xiàn)有研究均表明,高溫脅迫或干旱脅迫下,水稻抗氧化酶活性下降,清除能力降低,活性氧積累增加,膜脂過氧化作用加劇,細(xì)胞膜結(jié)構(gòu)和功能受到破壞,質(zhì)膜透性增加,劍葉生理生化機能受到傷害,光合速率降低[21, 49, 63, 64]。而高溫或干旱脅迫對抗氧化系統(tǒng)的影響程度因品種的耐熱性不同而存在差別[52, 65]。最近,Lai等[66]發(fā)現(xiàn)生物鐘調(diào)控基因在晝夜節(jié)律條件下表現(xiàn)出特定的表達(dá)階段,白天ROS清除系統(tǒng)的效率較高。Byeon和Back[67]觀察到,夜間高溫對水稻的影響與褪黑素的產(chǎn)生密切相關(guān),褪黑素作為一種有效的抗氧化劑,能有效清除夜間高溫下植物細(xì)胞中的ROS。因此,夜間ROS清除系統(tǒng)效率較低可能是水稻生產(chǎn)對夜間溫度升高更敏感的原因之一。
有研究報道[37, 68],高溫干旱復(fù)合脅迫下,水稻葉片中的抗氧化酶SOD和POD的活性降低,丙二醛、脯氨酸及超氧陰離子含量增加,降低了水稻的抗氧化能力;但也有研究發(fā)現(xiàn)[69],在高溫脅迫、干旱脅迫及高溫與干旱的復(fù)合脅迫下,水稻葉片的SOD、POD、CAT的活性總體上均顯著高于對照,但SOD在高溫與嚴(yán)重干旱的長期復(fù)合脅迫下,其活性比對照顯著下降。
根據(jù)植物激素對植物生長發(fā)育的調(diào)控作用可以將其分為抑制型植物激素和促進型植物激素兩類。通常將脫落酸(abscisic acid,ABA)和乙烯稱為抑制型植物激素,將生長素(indole-3-acetic acid,IAA)、細(xì)胞分裂素(cytokinins,CTK)和赤霉素(gibberellin,GA)稱為促進型植物激素。楊建昌等[70]研究表明,在減數(shù)分裂期遭受水分脅迫,穎花中ABA、乙烯和1-氨基環(huán)丙烷-1-羧酸(ACC)濃度顯著增加。Yang等[71]發(fā)現(xiàn),結(jié)實期適度土壤干旱,導(dǎo)致水稻籽粒激素平衡發(fā)生改變,特別是赤霉素減少和ABA增加,促進了莖鞘中貯藏性14C的運轉(zhuǎn),加快了籽粒灌漿速率。還有一些研究表明,適度干旱后的復(fù)水灌溉可以顯著提高葉片[72]和籽粒[73]中的CTK含量,這將有助于提高作物的光合能力和對氮素的吸收利用[74],加速胚乳細(xì)胞增殖,提高籽粒產(chǎn)量[75]。Tang等[76]發(fā)現(xiàn),高溫降低水稻花藥中IAA、赤霉素含量,但增加ABA含量。
植物體內(nèi)的多胺,最常見的有腐胺(putrescine,Put)、亞精胺(spermidine,Spd)和精胺(spermine,Spm),被普遍認(rèn)為是生長調(diào)節(jié)物質(zhì)或激素的第二信使,調(diào)節(jié)植物的生長、發(fā)育、形態(tài)建成和對環(huán)境逆境的響應(yīng)[77-79]。曹云英等[3, 80]報道,灌漿期高溫脅迫引起劍葉多胺積累,耐熱性強的品種積累得更多,說明多胺積累能增強水稻對高溫的適應(yīng)性。Yang等[81]觀察到,水稻具有較強的增強葉片多胺生物合成能力,以響應(yīng)水分脅迫。多胺在植物防御水分脅迫中的作用因多胺形式和脅迫階段而異。具有更高水平的游離型Spd/Spm和非溶性結(jié)合Put以及早期游離多胺積累的生理特性,對水稻適應(yīng)干旱更有利。
李鈺等[68]研究表明,高溫干旱復(fù)合脅迫下,水稻內(nèi)源激素中IAA、玉米素(ZT)和 GA 含量下降,而ABA和水楊酸(SA)含量上升,但作者并未比較高溫或干旱單一脅迫下的內(nèi)源激素變化。高溫干旱復(fù)合脅迫如何影響水稻籽粒內(nèi)源激素和多胺水平,目前尚缺乏充分的試驗證據(jù)。
稻米胚乳中的淀粉約占糙米質(zhì)量的90%以上[82],籽粒灌漿實質(zhì)上是淀粉合成與累積的過程。源器官光合同化物(含莖鞘儲存的非結(jié)構(gòu)性碳水化合物)以蔗糖的形式經(jīng)韌皮部運輸?shù)阶蚜?,之后在一系列酶作用下形成淀粉[83, 84]。據(jù)報道[84],水稻胚乳發(fā)育期參與籽粒蔗糖-淀粉代謝途徑的酶有33種,但5種酶在其中起關(guān)鍵作用[84-86]。這些酶包括蔗糖合酶(sucrose synthase,EC 2.4.1.13,SuS)、腺苷二磷酸葡萄糖焦磷酸化酶(ADP glucose pyrophosphorylase, EC 2.7.7.27, AGP)、淀粉合酶(starch synthase,EC 2.4.1.21, StS)、淀粉分支酶(starch branching enzyme,EC 2.4.1.18, SBE)和淀粉脫支酶(starch debranching enzyme,EC 3.2.1.70, DBE)。其中,淀粉合酶又分為可溶性淀粉合酶(soluble starch synthase,EC 2.4.1.18, SSS)和顆粒結(jié)合型淀粉合酶(granule bound starch synthase, EC 2.4.1.242, GBSS),每組酶有幾種同工型[87]。在灌漿期水稻籽粒里,這5種酶活性與籽粒灌漿速率和淀粉積累速率正相關(guān)[83, 84, 88]。
高溫脅迫會影響這些酶的活性,進而影響籽粒中淀粉的生成[43, 89]。Jiang等[89]觀察到,花后高溫下SBE和GBSS活性降低,SSS活性增加,導(dǎo)致支鏈淀粉的分支頻率下降,從而導(dǎo)致胚乳支鏈淀粉長鏈的比例增加。Cheng等[90]則發(fā)現(xiàn),高溫下AGP活性和蔗糖濃度增加,而淀粉積累和SuS活性降低。
Yang等[88]研究表明,在適度土壤干旱條件下,水稻籽粒灌漿過程中SuS、SSS和SBE活性顯著增強,與淀粉積累速率呈正相關(guān)。土壤干旱使AGP活性增強,但與淀粉積累速率相關(guān)性較小。GBSS及酸性轉(zhuǎn)化酶活性受土壤干旱的影響較小。結(jié)果表明,水稻在籽粒灌漿期遭遇土壤干旱,可以通過調(diào)節(jié)蔗糖-淀粉代謝途徑關(guān)鍵酶活性增大庫強,從而加快籽粒灌漿速率。
針對水稻抽穗開花期遭遇高溫、干旱單因子脅迫影響籽粒淀粉積累和酶活性的研究已較多,但高溫干旱復(fù)合脅迫研究較少。筆者[91]發(fā)現(xiàn),水稻遭遇高溫和干旱雙重脅迫時,SuS、AGP、StS、SBE和DBE活性降低,淀粉中長鏈比例上升,短鏈比例下降,說明高溫干旱脅迫通過淀粉合成關(guān)鍵酶而影響籽粒淀粉的合成與積累,最終影響水稻品質(zhì)。
逆境脅迫會使植物改變自身的生理生化、分子細(xì)胞水平來順應(yīng)不利的生存環(huán)境。對不同逆境脅迫下植物的不同組織器官、不同生長發(fā)育階段、不同環(huán)境脅迫因子響應(yīng)時的差異表達(dá)的功能基因進行分析篩選,獲取關(guān)鍵功能基因和抗性之間的聯(lián)系,將有助于從轉(zhuǎn)錄水平上了解脅迫因子的傷害機理及植物適應(yīng)逆境脅迫的分子機制[92]。
Shen等[93]最近報道,類受體蛋白激酶ERECTA基因(簡稱“ER基因”)可以通過調(diào)控細(xì)胞死亡,提高轉(zhuǎn)基因作物的耐熱性。研究還發(fā)現(xiàn),ER基因在水稻和番茄中也有相同的功能,它能使轉(zhuǎn)基因植物在正常氣溫下保證不減產(chǎn),高溫條件下,產(chǎn)量優(yōu)勢明顯。其主要原因在于ER基因能促進植物細(xì)胞數(shù)量增多,細(xì)胞體積增大,導(dǎo)致各器官與生物量的增大。Li等[94]成功發(fā)掘出水稻抗熱數(shù)量性狀基因(Thermo-tolerance 1),并揭示了作物抗熱新機制,能增強包括水稻、草坪草和十字花科等在內(nèi)的多種植物的抗熱性,在水稻、小麥、玉米、大豆和蔬菜等作物抗熱育種中有廣泛的應(yīng)用前景。Li等[95]研究了耐熱型水稻品種(N22)和熱敏感品種(Moroberekan)的花藥、授粉前雌蕊和授粉后雌蕊的代謝組學(xué)和轉(zhuǎn)錄組學(xué)變化,發(fā)現(xiàn)復(fù)合脅迫下N22編碼糖轉(zhuǎn)運蛋白基因()和細(xì)胞壁轉(zhuǎn)化酶基因()的表達(dá)量增高,而敏感型品種表現(xiàn)出和基因表達(dá)量降低、CSA(Carbon Starved Anther)基因表達(dá)量增高。
近年來,水稻抗逆分子機制的研究主要集中在轉(zhuǎn)錄因子及其分子調(diào)控機制方面。在水稻中,目前研究較多的轉(zhuǎn)錄因子類型主要有bZIP[96, 97]、MYB/MYC[98]、WRKY[99]、AP2/EREBP[100]和NAC[101],它們的結(jié)構(gòu)通常由DNA結(jié)合結(jié)構(gòu)域、轉(zhuǎn)錄活化結(jié)構(gòu)域、寡聚化位點和核定位信號組成[102]。例如,當(dāng)、和在水稻中過表達(dá)時,其通過調(diào)節(jié)脫水蛋白、膜轉(zhuǎn)運蛋白的表達(dá),增強水稻抗旱性[103-105]。過表達(dá)能增強谷氨酰胺合成酶()、谷氨酰胺轉(zhuǎn)移酶()和谷氨酸脫羧酶3()等靶基因的表達(dá),并調(diào)節(jié)其他氨基酸代謝基因,從而提高水稻的耐熱性[98]。如受熱處理誘導(dǎo),在熱激誘導(dǎo)啟動子的驅(qū)動下,的超量表達(dá)顯著提高轉(zhuǎn)基因水稻幼苗的高溫和干旱抗性[106];被絲裂原活化蛋白激酶(MAP)激活,過量表達(dá)顯著提高水稻的耐旱性[107]。ERF類轉(zhuǎn)錄因子SUB1A不僅能增強水稻的耐澇性,而且能提高水稻的抗旱性[108]。關(guān)于DREB類轉(zhuǎn)錄因子的研究報道較多,Chen等[109]從水稻中分離到3個與擬南芥同源的基因、和,其中過量表達(dá)和均可顯著提高水稻耐旱性。同樣,已證明NAC家族的轉(zhuǎn)錄因子在水稻的耐旱性中起關(guān)鍵作用,例如,、、和的過表達(dá)通過增加水稻根數(shù)和直徑來改善耐旱性[101, 110-113]。過表達(dá)的轉(zhuǎn)基因水稻通過調(diào)節(jié)氣孔減少水分流失,在營養(yǎng)和生殖階段均表現(xiàn)出抗旱性[114]。
現(xiàn)有研究已經(jīng)明確,不同品種間耐熱、耐旱的能力差異較大,選用耐高溫和抗旱品種可在一定程度上減輕高溫或干旱的危害。長期以來,我國的作物育種的方向以高產(chǎn)(含抗病蟲)和優(yōu)質(zhì)為主,但未來應(yīng)確立抗逆、廣適性的育種目標(biāo),以此作為解決高溫、干旱等非生物逆境脅迫的主要技術(shù)途徑之一。由于耐熱和耐旱性狀是兩個有區(qū)別但又密切相關(guān)的性狀,至今雖已獲得一批具有較強耐熱或耐旱性的水稻品系,但既耐熱、又耐旱、還高產(chǎn)的品系較少,且尚未獲得商業(yè)用品種。因此,采用常規(guī)育種與分子育種緊密結(jié)合的技術(shù)路線可能是盡快獲得可在大面積上應(yīng)用的耐熱耐旱新類型品種的一個關(guān)鍵環(huán)節(jié)。
利用耕作、栽培和化控技術(shù)減輕高溫干旱等逆境對作物的傷害,特別是減少逆境對作物產(chǎn)量與品質(zhì)的不利影響,是水稻生產(chǎn)主要的措施之一。如根據(jù)高溫天氣規(guī)律和水稻高溫、干旱敏感期,通過調(diào)整播種期,使開花結(jié)實期避開高溫和干旱,已經(jīng)成為緩解開花期高溫和干旱危害的主要對策之一[115]。
合理施肥和適宜的水分管理也可有效提高水稻的抗熱抗旱能力。抽穗結(jié)實期遭受高溫脅迫,在穗分化期[116]和開花期[117]適當(dāng)施用氮肥,以及在抽穗期采用輕干濕交替灌溉[118],可以提高根系性能和地上部植株生理活性,從而獲得較高的產(chǎn)量和較好的稻米品質(zhì)。也有研究報道,通過配合施用生物炭和磷肥,在高溫脅迫發(fā)生時,可以減輕或減緩高溫脅迫帶來的產(chǎn)量損失[119]。
前人為了緩解逆境對水稻帶來的不利影響,利用化控技術(shù)做了大量的嘗試,如噴施維生素C、維生素E、油菜素內(nèi)酯、茉莉酸甲酯、水楊酸等植物生長調(diào)節(jié)劑[120-122],以及噴施吡唑醚菌酯[123]等化學(xué)制劑,都取得了較好的效果。今后在深入闡明水稻耐高溫、耐干旱機理的基礎(chǔ)上,需從多途徑選擇栽培調(diào)控措施,突出作物生理調(diào)控作用,即利用作物本身或給作物創(chuàng)造環(huán)境發(fā)揮作物對逆境的適應(yīng)能力和抵抗能力,以促進不同技術(shù)途徑的深入發(fā)展,在實際生產(chǎn)中得到更廣泛的應(yīng)用。
隨著基因工程的深入,篩選和培育耐熱、耐旱新品種已從簡單的生理生化研究拓展到分子生物學(xué)領(lǐng)域當(dāng)中。目前可通過調(diào)節(jié)抗性蛋白表達(dá)、選擇耐性基因載體和遺傳改良等多種方法進一步提高植物的抗逆性。中國科學(xué)院遺傳與發(fā)育生物學(xué)研究所薛勇彪研究組與程祝寬研究組合作,成功克隆了1個耐熱基因(Thermotolerant Growth Required 1)。該基因編碼細(xì)胞核定位的DEAD-box RNA解旋酶。作為pre-rRNA的分子伴侶保證了高溫下細(xì)胞分裂所需的rRNA有效加工,從而增強了水稻的耐熱能力[124]。該研究不僅闡明了水稻耐高溫的分子機制,而且為分子培育耐高溫水稻品種提供了基因資源。
隨著分子生物學(xué)和生物化學(xué)的不斷進步和完善,利用現(xiàn)代生物技術(shù),諸如生物信息學(xué)分析、蛋白互作分析、組學(xué)分析、基因芯片技術(shù)、高通量RNA測序(RNA-Seq)技術(shù)以及全基因組關(guān)聯(lián)分析(GWAS)技術(shù)等,對這些問題進行深入地探索與分析,有望全面系統(tǒng)地理解水稻逆境相關(guān)轉(zhuǎn)錄因子的詳細(xì)調(diào)控機理,為水稻抗逆機理研究提供更多的理論依據(jù)。圖1總結(jié)了高溫干旱對水稻的影響及其調(diào)控模式。
水稻對高溫和干旱脅迫的響應(yīng)是一個復(fù)雜的、但又是有序的生理生化過程,這一過程涉及水稻逆境下生長發(fā)育規(guī)律和養(yǎng)分吸收規(guī)律、根系形態(tài)建成和生理機制、酶學(xué)機制和激素機理、源庫協(xié)調(diào)機制和物質(zhì)運轉(zhuǎn)分配機理、品質(zhì)形成特點與機理。要充分認(rèn)識其機理還要進行大量艱苦的工作。今后建議從群體、個體、組織、器官、細(xì)胞和分子等不同水平上研究水稻對高溫和干旱及其復(fù)合脅迫的響應(yīng)機制,揭示水稻對單一及復(fù)合脅迫響應(yīng)和適應(yīng)性機理;將水稻的產(chǎn)量和品質(zhì)作為抗逆性的評定指標(biāo)。研究并應(yīng)用耕作、栽培、化控技術(shù)減輕高溫和干旱對作物的傷害,特別是減少高溫和干旱對作物產(chǎn)量與品質(zhì)的不利影響。突出作物生理調(diào)控作用,即利用作物本身或給作物創(chuàng)造環(huán)境發(fā)揮作物對逆境的適應(yīng)能力和抵抗能力。
目前的研究多集中在高溫或干旱單因子對水稻的影響,但雙因子乃至高溫、干旱、高CO2濃度或高O3濃度等多因子耦合作用的研究甚少。未來氣候變化對水稻產(chǎn)量和品質(zhì)的最終影響取決于所有環(huán)境因子間的協(xié)同作用,多因子的共同作用才能代表大田條件下水稻生長發(fā)育的真實情景。因此,水稻生殖生長期不同氣候變化因子單獨和耦合影響有待加強研究。另外,充分利用各種研究手段,如大田控制試驗、遮雨棚、土培池、玻璃溫室、人工氣候室等模擬水稻的生長環(huán)境,綜合分析溫度、水分等多種環(huán)境因子的作用,是揭示水稻對高溫、干旱等多重脅迫響應(yīng)的基礎(chǔ)。
近年來,我國在水稻生物學(xué)、進化與基因組學(xué)和激素生物學(xué)等領(lǐng)域表現(xiàn)尤為突出,并取得了許多突破性的研究成果[125, 126],標(biāo)志著中國在該領(lǐng)域居于引領(lǐng)地位。如李家洋團隊率先提出并踐行“分子設(shè)計育種”的理念,在系統(tǒng)研究作物產(chǎn)量、品質(zhì)、耐逆性、營養(yǎng)高效、抗病蟲等復(fù)雜農(nóng)藝性狀調(diào)控機理的基礎(chǔ)上,挖掘關(guān)鍵基因的有利變異,通過品種設(shè)計進行多基因的配組優(yōu)化,實現(xiàn)復(fù)雜性狀的定向改良,達(dá)到綜合性狀優(yōu)異的目標(biāo),為我國水稻分子設(shè)計育種與生產(chǎn)的跨越式發(fā)展奠定了開創(chuàng)性基礎(chǔ)[127]?;蚪M編輯是近年來生命科學(xué)領(lǐng)域的突破性技術(shù),能夠精確改造生物基因組DNA,從而在不改變其目標(biāo)基因組整體穩(wěn)定性的基礎(chǔ)上直接對目的基因進行分子設(shè)計改良,其終產(chǎn)品無任何外源DNA成分,具有廣闊的應(yīng)用前景。我國科學(xué)家在作物基因組編輯技術(shù)領(lǐng)域取得多項突破性進展,使我國成為作物基因組編輯研究的國際領(lǐng)跑者[128, 129]。未來開展水稻高溫、干旱抗性的改良研究,需要首先鑒定和了解控制抵抗高溫、干旱脅迫的關(guān)鍵基因,解析其表達(dá)調(diào)控機制、作用機理、信號途徑和不同基因組合形成的調(diào)控網(wǎng)絡(luò)。然后,根據(jù)需要改良的耐熱、抗旱等農(nóng)藝性狀進行針對性的設(shè)計,選擇最適宜的等位基因組,最終培育出抗高溫、干旱以及高溫干旱復(fù)合脅迫的水稻新品種,是水稻育種的發(fā)展方向。
圖1 高溫和干旱對水稻的影響及其調(diào)控模式
Fig. 1. Mode chart in the effect of heat and drought on rice and its regulation.
[1] Jagadish S, Murty M, Quick W. Rice responses to rising temperatures–challenges, perspectives and future directions., 2015, 38(9): 1686-1698.
[2] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 1535.
[3] Cao Y Y, Chen Y H, Chen M X, Wang Z Q, Wu C F, Bian X C, Yang J C, Zhang J H. Growth characteristics and endosperm structure of superior and inferior spikelets ofrice under high-temperature stress., 2016, 60(3): 532-542.
[4] Sánchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: A review., 2014, 20(2): 408-417.
[5] Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil., 1991, 42(1): 55-76.
[6] Zhang C X, Fu G F, Yang X Q, Yang Y J, Zhao X, Chen T T, Zhang X F, Jin Q Y, Tao L X. Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity., 2016, 202(5): 394-408.
[7] Ouyang W, Struik P C, Yin X, Yang J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought., 2017, 68(18): 5191-5205.
[8] Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming., 2004, 101(27): 9971-9975.
[9] Zhang H, Zhang S, Yang J, Zhang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield., 2008, 100(3): 726-734.
[10] Lawas L M F, Shi W, Yoshimoto M, Hasegawa T, Hincha D K, Zuther E, Jagadish S K. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions., 2018, 229: 66-77.
[11] Krishnan P, Ramakrishnan B, Reddy K R, Reddy V. High-temperature effects on rice growth, yield, and grain quality., 2011, 111: 87-206.
[12] Wassmann R, Jagadish K, Heuer S, Ismail A M, Redona E, Serraj R, Singh R, Howell G, Pathak D S, Sumfleth K. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies., 2009, 101: 59-122.
[13] Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina., 2006, 99(2): 136-146.
[14] Barnabás B, J?ger K, Fehér A. The effect of drought and heat stress on reproductive processes in cereals., 2008, 31(1): 11-38.
[15] Jagadish S V K, Cairns J, Lafitte R, Wheeler T R, Price A H, Craufurd P Q. Genetic analysis of heat tolerance at anthesis in rice., 2010, 50(5): 1633-1641.
[16] Jagadish S V K, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (L.)., 2007, 58(7): 1627-1635.
[17] Rang Z W, Jagadish S V K, Zhou Q M, Craufurd P Q, Heuer S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice., 2011, 70(1): 58-65.
[18] 成臣, 曾勇軍, 程慧煌, 譚雪明, 商慶銀, 曾研華, 石慶華. 齊穗至乳熟期不同溫度對水稻南粳 9108 籽粒激素含量, 淀粉積累及其合成關(guān)鍵酶活性的影響. 中國水稻科學(xué), 2019, 33(1): 57-67.
Cheng C, Zeng Y J, Cheng H H, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108., 2019, 33(1): 57-67. (in Chinese with English abstract)
[19] 王啟梅, 李巖, 劉明, 李剛?cè)A, 劉正輝, 唐設(shè), 丁承強, 王紹華, 丁艷鋒. 營養(yǎng)生長期高溫對水稻生長及干物質(zhì)積累的影響. 中國稻米, 2015, 21(4): 33-37.
Wang Q M, Li Y, Liu M, Li G H, Liu Z H, Tang S, Ding C Q, Wang S H, Ding Y F. Effects of high temperature at vegetative stage on rice growth and dry weight., 2015, 21(4): 33-37. (in Chinese with English abstract)
[20] Lipiec J, Doussan C, Nosalewicz A, Kondracka K. Effect of drought and heat stresses on plant growth and yield: a review., 2013, 27(4): 463-477.
[21] Pandey V, Shukla A. Acclimation and Tolerance Strategies of Rice under Drought Stress., 2015, 22(4): 147-161.
[22] Kumar A, Bernier J, Verulkar S, Lafitte H, Atlin G. Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations., 2008, 107(3): 221-231.
[23] Jagadish K S V, Cairns J E, Kumar A, Somayanda I M, Craufurd P Q. Does susceptibility to heat stress confound screening for drought tolerance in rice?, 2011, 38(4): 261-269.
[24] Mittler R. Abiotic stress, the field environment and stress combination., 2006, 11(1): 15-19.
[25] 趙鴻, 王潤元, 尚艷, 王鶴齡, 張凱, 趙福年, 齊月, 陳斐. 糧食作物對高溫干旱脅迫的響應(yīng)及其閾值研究進展與展望. 干旱氣象, 2016, 34(1): 1-12.
Zhao H, Wang R Y, Shang Y, Wang H L, Zhang K, Zhao F N, Qi Y, Chen F. Progress and perspectives in studies on responses and thresholds of major food crops to high temperature and drought stress., 2016, 34(1): 1-12. (in Chinese with English abstract)
[26] Suzuki N, Rivero R M, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations., 2014, 203(1): 32-43.
[27] Belder P, Bouman B, Cabangon R, Guoan L, Quilang E, Yuanhua L, Spiertz J, Tuong T. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia., 2004, 65(3): 193-210.
[28] Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among-rice varieties., 2001, 4(2): 90-93.
[29] Saini H S, Westgate M E. Reproductive development in grain crops during drought., 1999, 68: 59-96.
[30] Matsui T, Omasa K. Rice (L.) cultivars tolerant to high temperature at flowering: anther characteristics., 2002, 89(6): 683-687.
[31] 曹云英, 段驊, 楊立年, 王志琴, 劉立軍, 楊建昌. 抽穗和灌漿早期高溫對耐熱性不同秈稻品種產(chǎn)量的影響及其生理原因. 作物學(xué)報, 2009, 35(3): 512-521.
Cao Y Y, Duan H, Yang L N, Wang Z Q, Liu L J, Yang J C.Effect of high temperature during heading and early grain filling on grain yield ofrice cultivars differing in heat-tolerance and its physiological mechanism., 2009, 35(3): 512-521. (in Chinese with English abstract)
[32] Matsui T, Kobayasi K, Kagata H, Horie T. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition., 2005, 8(2): 109-114.
[33] 段驊, 蘇京平, 傅亮, 劇成欣, 劉立軍, 楊建昌. 耐熱耐旱性不同水稻品種的農(nóng)藝和生理性狀. 植物生理學(xué)報, 2015, 51(10): 1658-1668.
Duan H, Su J P, Fu L, Ju C X, Liu L J, Yang J C. Agronomic and physiological traits of rice cultivars differing in heat and drought tolerances., 2015, 51(10): 1658-1668. (in Chinese with English abstract)
[34] Jagadish S, Muthurajan R, Oane R, Wheeler T R, Heuer S, Bennett J, Craufurd P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (L.)., 2009, 61(1): 143-156.
[35] Xiong D, Ling X, Huang J, Peng S. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality., 2017, 141: 1-9.
[36] Bunnag S, Pongthai P. Selection of rice (L.) cultivars tolerant to drought stress at the vegetative stage under field conditions., 2013, 4(9): 1701-1708.
[37] 謝華英, 馬均, 代鄒, 李玥, 孫加威, 趙建紅, 徐徽, 孫永健. 抽穗期高溫干旱脅迫對雜交水稻產(chǎn)量及生理特性的影響. 雜交水稻, 2016, 31(1): 62-69.
Xie H Y, Ma J, Dai Z, Li Y, Sun J W, Zhao J H, Xu H, Sun Y J. Effects of high temperature and drought stress in heading stage on grain yield and physiological characteristics of hybrid rice.2016, 31(1): 62-69.(in Chinese with English abstract)
[38] 高煥曄, 宗學(xué)鳳, 呂俊, 王玲, 楊愛杰, 閆榮, 張燕, 董玉鋒, 王三根. 高溫干旱雙重脅迫對水稻產(chǎn)量與品質(zhì)的影響. 三峽生態(tài)環(huán)境監(jiān)測, 2016, 1(2): 10-17.
Gao H Y, Zong X F, Lv J, Wang Li, Yang A J, Yan R, Zhang Y, Dong Y F, Wang S G. Combined effects of high temperature and drought stress on yield and quality of rice., 2016, 1(2): 10-17. (in Chinese with English abstract)
[39] 段驊, 唐琪, 劇成欣, 劉立軍, 楊建昌. 抽穗灌漿早期高溫與干旱對不同水稻品種產(chǎn)量和品質(zhì)的影響. 中國農(nóng)業(yè)科學(xué), 2012, 45(22): 4561-4573.
Duan H, Tang Q, Ju C X, Liu L J, Yang J C. Effect of high temperature and drought on grain yield and quality of different rice varieties during heading and early grain filling periods., 2012, 45(22): 4561-4573. (in Chinese with English abstract)
[40] Sharma K, Sharma N. Influence of high temperature on sucrose metabolism in chalky and translucent rice genotypes., 2017, 88(3): 1275-1284.
[41] 董明輝, 陳培峰, 喬中英, 吳翔宙, 趙步洪, 蔣媛媛, 楊建昌. 水稻不同粒位籽粒米質(zhì)對花后不同時段溫度脅迫的響應(yīng). 作物學(xué)報, 2011, 37(3): 506-513.
Dong M H, Chen P F, Qiao Z Y, Wu X Z, Zhao B H, Jiang Y Y, Yang J C. Effect of temperature at different durations after anthesis on rice quality and variations between positions on a panicle.,2011, 37(3): 506-513. (in Chinese with English abstract)
[42] Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation., 2010, 51(5): 795-809.
[43] Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray., 2007, 144(1): 258-277.
[44] Wassmann R, Dobermann A. Climate change adaptation through rice production in regions with high poverty levels., 2007, 4(1): 1-24.
[45] 劉凱, 張耗, 張慎鳳, 王志琴, 楊建昌. 結(jié)實期土壤水分和灌溉方式對水稻產(chǎn)量與品質(zhì)的影響及其生理原因. 作物學(xué)報, 2008, 34(2): 268-276.
Liu K, Zhang H, Zhang S F, Wang Z Q, Yang J C. Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanisms.,2008, 34(2): 268-276.(in Chinese with English abstract)
[46] 高煥曄, 王三根, 宗學(xué)鳳, 騰中華, 趙芳明, 劉照. 灌漿結(jié)實期高溫干旱復(fù)合脅迫對稻米直鏈淀粉及蛋白質(zhì)含量的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2012, 20(1): 40-47.
Gao H Y, Wang S G, Zong X F, Teng Z H, Zhao F M, Liu Z. Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage., 2012, 20(1): 40-47. (in Chinese with English abstract)
[47] 周建霞, 張玉屏, 朱德峰, 林賢青, 向鏡, 陳惠哲, 胡聲博. 高溫下水稻開花習(xí)性對受精率的影響. 中國水稻科學(xué), 2014, 28(3): 297-303.
Zhou J X, Zhang Y P, Zhu D F, Lin X Q, Xiang J, Chen H Z, Hu S B.Influence of flowering characteristics on spikelet fertility under high temperature.,2014, 28(3): 297-303. (in Chinese with English abstract)
[48] 陶龍興, 談惠娟, 王熹, 曹立勇, 宋建, 程式華. 高溫脅迫對國稻 6 號開花結(jié)實習(xí)性的影響. 作物學(xué)報, 2008, 34(4): 669-674.
Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H. Effects of high temperature stress on flowering and grain-setting characteristics for Guodao 6., 2008, 34(4): 669-674. (in Chinese with English abstract)
[49] 張桂蓮, 廖斌, 湯平, 唐文幫, 肖應(yīng)輝, 陳立云. 灌漿結(jié)實期高溫對水稻劍葉生理特性和稻米品質(zhì)的影響. 中國農(nóng)業(yè)氣象, 2014, 35(6): 650-655.
Zhang G L, Liao B, Tang P, Tang W B, Xiao Y H, Chen L Y. Effects of high temperature stress during grain-filling period on physiological characteristics in flag leaves and grain quality of rice., 2014, 35(6): 650-655. (in Chinese with English abstract)
[50] Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, O’Toole J. Yield response of rice (L.) genotypes to different types of drought under rainfed lowlands: Part 1. Grain yield and yield components., 2002, 73(2-3): 153-168.
[51] 李俊周, 喬江方, 李夢琪, 杜彥修, 趙全志. 短時水分脅迫對水稻葉片光合作用的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2017, 35(3): 126-129.
Li J Z, Qiao J F, Li M Q, Du Y X, Zhao Q Z. The effects of short-term water stress on leaf photosynthesis in rice., 2017, 35(3): 126-129. (in Chinese with English abstract)
[52] 段素梅, 楊安中, 黃義德, 吳文革, 許有尊, 陳剛. 干旱脅迫對水稻生長, 生理特性和產(chǎn)量的影響. 核農(nóng)學(xué)報, 2014, 28(6): 1124-1132.
Duan S M, Yang A Z, Huang Y D, Wu W G, Xu Y Z, Chen G. Effects of drought stress on growth and physiological feature and yield of various rice varieties.,2014, 28(6): 1124-1132. (in Chinese with English abstract)
[53] 江學(xué)海, 李剛?cè)A, 王紹華, 羅德強, 周維佳, 劉正輝, 李敏, 丁艷鋒. 不同生育階段干旱脅迫對雜交稻產(chǎn)量的影響. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2015, 38(2): 173-181.
Jiang X H, Li G H, Wang S H, Luo D Q, Zhou W J, Liu Z H, Li M, Ding Y F. Effect of drought stress at different growth stages on grain yield ofhybrid rice., 2015, 38(2): 173-181. (in Chinese with English abstract)
[54] 段驊, 楊建昌. 高溫對水稻的影響及其機制的研究進展. 中國水稻科學(xué), 2012, 26(4): 393-400.
Duan H, Yang J C. Research advances in the effect of high temperature on rice and its mechanism., 2012, 26(4): 393-400.(in Chinese with English abstract)
[55] Nishiyama Y, Murata N. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery., 2014, 98: 8777-8796.
[56] 高煥曄, 宗學(xué)鳳, 呂俊, 徐宇, 何秀娟, 董玉鋒, 張燕, 王三根. 高溫干旱雙重脅迫下水稻灌漿結(jié)實期的光合生理變化. 三峽生態(tài)環(huán)境監(jiān)測, 2018, 3(2): 68-76.
Gao H Y, Zong X F, Lu J, Xu Y, He X J, Dong Y F, Zhang Y, Wang S G. Photosynthetic physiological changes of rice in combined threat of high temperature and drought stress at grain-filling stage., 2018, 3(2): 68-76. (in Chinese with English abstract)
[57] Radhakrishna N K A, Chenniappan V, Dhashnamurthi V. Combined effects of drought and moderately high temperature on the photosynthesis, PS II photochemistry and yield traits in rice (L.)., 2018, 23(3): 408-415.
[58] Perdomo J A, Capó-Bau?à S, Carmo-Silva E, Galmés J. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit., 2017, 8: 490.
[59] 劉照, 高煥燁, 王三根. 高溫干旱雙重脅迫對水稻劍葉光合特性的影響. 西南師范大學(xué)學(xué)報, 2011, 36(3): 161-165.
Liu Z, Gao H Y, Wang S G. Effect of high temperature and drought stress on the photosynthesis characteristics in rice., 2011, 36(3): 161-165. (in Chinese with English abstract)
[60] 趙鳳云, 徐忠俊. 干旱高溫脅迫下轉(zhuǎn)基因水稻的生理變化. 西北植物學(xué)報, 2009, 29(2): 240-248.
Zhao F Y, Xu Z J. Physiological changes of transgenic rice under drought and heat stress., 2009, 29(2): 240-248.
[61] Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling., 2014, 65(5): 1229-1240.
[62] Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions., 2006, 141(2): 391-396.
[63] 蘭旭, 顧正棟, 丁艷菲, 王珂, 江瓊, 朱誠. 花期高溫脅迫對水稻穎花生理特性的影響. 中國水稻科學(xué), 2016, 30(6): 637-646.
Lan X, Gu Z D, Ding Y F, Wang K, Jiang Q, Zhu C. Effect of high temperature stress on physiological characteristics of spikelet of rice during flowering stage.,2016, 30(6): 637-646. (in Chinese with English abstract)
[64] 王艷, 高鵬, 黃敏, 陳浩, 楊志榮, 孫群. 高溫對水稻開花期劍葉抗氧化酶活性及基因表達(dá)的影響. 植物科學(xué)學(xué)報, 2015, 33(3): 355-361.
Wang Y, Gao P, Huang M, Chen H, Yang Z R, Sun Q. Effects of high temperature on the activity and expression of antioxidative enzymes in rice flag leaves during flowering stage., 2015, 33(3): 355-361.(in Chinese with English abstract)
[65] 張桂蓮, 蔡志歡, 李波, 廖斌, 唐文幫, 肖應(yīng)輝, 陳立云. 水稻對減數(shù)分裂期高溫脅迫的生理響應(yīng). 雜交水稻, 2016, 31(3): 64-67.
Zhang G L, Cai Z H, Li B, Liao B, Tang W B, Xiao Y H, Chen L Y. Physiological responses of rice to high temperature stress during meiosis stage., 2016, 31(3): 64-67.(in Chinese with English abstract)
[66] Lai A G, Doherty C J, Mueller-Roeber B, Kay S A, Schippers J H, Dijkwel P P.regulates ROS homeostasis and oxidative stress responses., 2012, 109(42): 17129-17134.
[67] Byeon Y, Back K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransfer ase and N-acetylserotonin methyltransferase activities., 2014, 56(2): 189-195.
[68] 李鈺. 高溫干旱復(fù)合脅迫下水稻的應(yīng)答響應(yīng). 合肥: 安徽農(nóng)業(yè)大學(xué), 2018.
Li Y. The rice(L.) response to the combined stress of high temperature and drought. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract)
[69] 高煥曄, 宗學(xué)鳳, 呂俊, 張燕, 董玉鋒, 何秀娟, 徐宇, 王三根. 灌漿結(jié)實期水稻對高溫干旱脅迫的抗性生理響應(yīng). 三峽生態(tài)環(huán)境監(jiān)測, 2017, 2(1): 11-27.
Gao H Y, Zong X F, Lv J, Zhang Y, Dong Y F, He X J, Xu Y, Wang S G. Resistant physiological response of rice to combined stress of high temperature and drought at grain-filling stage., 2017, 2(1): 11-27.(in Chinese with English abstract)
[70] 楊建昌, 劉凱, 張慎鳳, 王學(xué)明, 王志琴, 劉立軍. 水稻減數(shù)分裂期穎花中激素對水分脅迫的響應(yīng). 作物學(xué)報, 2008, 34(1): 111-118.
Yang J C, Liu K, Zhang S F, Wang X M, Wang Z Q, Liu L J. Hormones in rice spikelets in responses to water stress during meiosis., 2008, 34(1): 111-118.(in Chinese with English abstract)
[71] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling., 2001, 127(1): 315-323.
[72] Zhang H, Chen T, Wang Z, Yang J, Zhang J. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation., 2010, 61(13): 3719-3733.
[73] Zhang H, Li H, Yuan L, Wang Z, Yang J, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice., 2012, 63(1): 215-227.
[74] Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes., 2016, 67(6): 1839-1851.
[75] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production., 2005, 309(5735): 741-745.
[76] Tang R S, Zheng J C, Jin Z Q, Zhang D D, Huang Y H, Chen L G. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (L.)., 2008, 54(1): 37-43.
[77] Tomosugi M, Ichihara K i, Saito K. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor., 2006, 223(2): 349-358.
[78] Alcázar R, Marco F, Cuevas J C, Patron M, Ferrando A, Carrasco P, Tiburcio A F, Altabella T. Involvement of polyamines in plant response to abiotic stress., 2006, 28(23): 1867-1876.
[79] Paschalidis K A, Roubelakis-Angelakis K A. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation., 2005, 138(1): 142-152.
[80] 曹云英, 陳艷紅, 李衛(wèi)振, 唐仙伯, 趙華, 王志琴, 楊建昌. 水稻減數(shù)分裂期幼穗激素, 多胺和蛋白質(zhì)對高溫的響應(yīng). 植物生理學(xué)報, 2015, 51(10): 1687-1696.
Cao Y Y, Chen Y H, Li W Z, Tang X B, Zhao H, Wang Z Q, Yang J C. Responses of hormones, polyamines and proteins in young panicles of rice to high temperature during meiosis.,2015, 51(10): 1687-1696. (in Chinese with English abstract)
[81] Yang J, Zhang J, Liu K, Wang Z, Liu L. Involvement of polyamines in the drought resistance of rice., 2007, 58(6): 1545-1555.
[82] Yoshida S. Physiological aspects of grain yield., 1972, 23(1): 437-464.
[83] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm., 1992, 82(1): 15-20.
[84] Nakamura Y, Yuki K, Park S-Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grains., 1989, 30(6): 833-839.
[85] Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types., 2007, 10(4): 442-450.
[86] Preiss J, Ball K, Smith-White B, Iglesias A, Kakefuda G, Li L. Starch biosynthesis and its regulation., 1991, 19: 539-547.
[87] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat., 2001, 35(1): 81-91.
[88] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling., 2003, 81(1): 69-81.
[89] Jiang H, Dian W, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme., 2003, 63(1): 53-59.
[90] Cheng F, Zhong L, Zhao N, Liu Y, Zhang G. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties., 2005, 46(1): 87-95.
[91] 段驊. 高溫與干旱對水稻產(chǎn)量和品質(zhì)的影響及其生理機制. 揚州: 揚州大學(xué), 2013.
Duan H. Effect of high temperature and soil drying on the yield quality and quantity of rice and its physiological mechanism. Yangzhou: Yangzhou University, 2013. (in Chinese with English abstract)
[92] 張純, 唐承晨, 王吉永, 郭龍妹, 王莉莉, 黎萬奎. 轉(zhuǎn)錄組學(xué)在植物應(yīng)答逆境脅迫中的研究進展. 生物學(xué)雜志, 2017, 34(2): 86-90.
Zhang C, Tang C C, Wang J Y, Guo L M, Wang L L, Li W K. Advances on transcriptome of plants under stresses., 2017, 34(2): 86-90. (in Chinese with English abstract)
[93] Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato., 2015, 33(9): 996.
[94] Li X M, Chao D Y, Wu Y, Huang X, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice., 2015, 47(7): 827.
[95] Li X, Lawas L M, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha D K. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress., 2015, 38(10): 2171-2192.
[96] Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts., 2014, 164: 1759-1771.
[97] Fukao T, Xiong L. Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex?, 2013, 16(2): 196-204.
[98] El-Kereamy A, Bi Y M, Ranathunge K, Beatty P H, Good A G, Rothstein S J. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism., 2012, 7(12): e52030.
[99] Song Y, Ai C, Jing S, Yu D. Research progress on functional analysis of rice WRKY genes., 2010, 17(1): 60-72.
[100]Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice., 2006, 140(2): 411-432.
[101]Lee D K, Chung P J, Jeong J S, Jang G, Bang S W, Jung H, Kim Y S, Ha S H, Choi Y D, Kim J K. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance., 2017, 15(6): 754-764.
[102]羅成科, 肖國舉, 李茜. 水稻逆境相關(guān)轉(zhuǎn)錄因子研究進展. 廣西植物, 2015, 35(6): 942-945.
Luo C K, Xiao G J, Li Q. Research advance of the transcription factors related to stress resistances in rice., 2015, 35(6): 942-947. (in Chinese with English abstract)
[103]Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice., 2014, 84: 19-36.
[104]Tang N, Zhang H, Li X, Xiao J, Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice., 2012, 158: 1755-1768.
[105]Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice., 2008, 148(4): 1938-1952.
[106]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter., 2009, 28(1): 21-30.
[107]Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice., 2012, 80(3): 241-253.
[108]Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice., 2011, 23(1): 412-427.
[109]Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice., 2008, 30(12): 2191-2198.
[110]Lee D K, Jung H, Jang G, Jeong J S, Kim Y S, Ha S H, Do Choi Y, Kim J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance., 2016, 172(1): 575-588.
[111]Jeong J S, Kim Y S, Redillas M C, Jang G, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field., 2013, 11(1): 101-114.
[112]Redillas M C, Jeong J S, Kim Y S, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions., 2012, 10(7): 792-805.
[113]Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Do Choi Y, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions., 2010, 153(1): 185-197.
[114]You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice., 2012, 64(2): 569-583.
[115]郭建茂, 吳越, 楊沈斌, 江曉東, 謝曉燕, 王錦杰, 申雙和. 典型高溫年不同播期一季稻產(chǎn)量差異及其原因分析. 中國農(nóng)業(yè)氣象, 2017, 38(2): 121-130.
Guo J M, Wu Y, Yang S B, Jiang X D, Xie X Y, Wang J J, Shen S H. Yield differences and its causes for one season rice under different sowing dates in typical high temperature year., 2017, 38(2): 121-130. (in Chinese with English abstract)
[116]段驊, 傅亮, 劇成欣, 劉立軍, 楊建昌. 氮素穗肥對高溫脅迫下水稻結(jié)實和稻米品質(zhì)的影響. 中國水稻科學(xué), 2013, 27(6): 591-602.
Duan H, Fu L, Ju C X, Liu L J, Yang J C. Effects of application of nitrogen as panicle fertilizer under high temperature on seed setting and grain quality of rice during heading and grain filling.,2013, 27(6): 591-602. (in Chinese with English abstract)
[117]繆乃耀, 唐設(shè), 陳文珠, 李剛?cè)A, 劉正輝, 王紹華, 丁承強, 陳琳, 丁艷鋒. 氮素粒肥緩解水稻灌漿期高溫脅迫的生理機制研究. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2017, 40(1): 1-10.
Miao N Y, Tang S, Chen W Z, Li G H, Liu Z H, Wang S H, Ding C Q, Chen L, Ding Y F. Research of nitrogen granular fertilizer alleviating high temperature stress at rice grain filling stage and its physiological mechanism.,2017, 40(1): 1-10. (in Chinese with English abstract)
[118]段驊, 俞正華, 徐云姬, 王志琴, 劉立軍, 楊建昌. 灌溉方式對減輕水稻高溫危害的作用. 作物學(xué)報, 2012, 38(1): 107-120.
Duan H, Yu Z H, Xu Y J, Wang Z Q, Liu L J, Yang J C. Role of irrigation patterns in reducing harms of high temperature to rice.,2012, 38(1): 107-120.(in Chinese with English abstract)
[119]Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan M Z, Shah A N, Ullah A, Khan F, Ullah S. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice., 2016, 103: 191-198.
[120]Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah A N, Wu C, Yousaf M, Nasim W, Alharby H. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature., 2016, 7: 1250.
[121]劉霞, 唐設(shè), 竇志, 李剛?cè)A, 劉正輝, 王紹華, 丁承強, 丁艷鋒. 茉莉酸甲酯對武運粳 24 和寧粳 3 號灌漿早期高溫脅迫生理特性的影響. 中國水稻科學(xué), 2016, 30(3): 291-303.
Liu X, Tang S, Dou Z, Li G H, Liu Z H, Wang S H, Ding C Q, Ding Y F. Effects of MeJA on the physiological characteristics ofrice wuyunjing 24 and ningjing 3 during early grain filling stage under heat stress.,2016, 30(3): 291-303. (in Chinese with English abstract)
[122]符冠富, 張彩霞, 楊雪芹, 楊永杰, 陳婷婷, 趙霞, 符衛(wèi)蒙, 奉保華, 章秀福, 陶龍興, 金千瑜. 水楊酸減輕高溫抑制水稻穎花分化的作用機理研究. 中國水稻科學(xué), 2015, 29(6): 637-647.
Fu G F, Zhang C X, Yang X Q, Yang Y J, Chen T T, Zhao X, Fu W M, Feng B H, Zhang X F, Tao L X, Jin Q Y. Action mechanism by which SA alleviates high temperature induced inhibition to spikelet differentiation., 2015, 29(6): 637-647. (in Chinese with English abstract)
[123]Mohammad R I, 符冠富, 奉保華, 陶龍興, 金麗華, 陳婷婷. “稻清”減輕水稻穗期高溫傷害的原因分析. 中國稻米, 2018, 24(3): 21-24.
Mohammad R I, Fu G F, Feng B H, Tao L X, Jin L H, Chen T T. Physiological mechanisms involved in “Daoqing” alleviating the damage on rice under heat stress., 2018, 24(3): 21-24. (in Chinese with English abstract)
[124]Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice., 2016, 12(2): e1005844.
[125]陳凡, 錢前, 王臺, 董愛武, 漆小泉, 左建儒, 楊淑華, 林榮呈, 蕭浪濤, 顧紅雅, 陳之端, 姜里文, 白永飛, 孔宏智, 種康. 2017 年中國植物科學(xué)若干領(lǐng)域重要研究進展. 植物學(xué)報, 2018, 53(4): 391-440.
Chen F, Qian Qian, Wang T, Dong A W, Qi X Q, Zuo J R, Yang S H, Lin R C, Xiao L T, Gu H Y, Chen Z D, Jiang L W, Bai Y F, Kong H Z, Chong K. Research advances in plant science in China in 2017., 2018, 53(4): 391-440. (in Chinese with English abstract)
[126]王小菁, 蕭浪濤, 董愛武, 王臺, 錢前, 漆小泉, 陳凡, 左建儒, 楊淑華, 顧紅雅, 陳之端, 姜里文, 白永飛, 孔宏智, 種康. 2016 年中國植物科學(xué)若干領(lǐng)域重要研究進展. 植物學(xué)報, 2017, 52(4): 394-452.
Wang X J, Xiao L T, Dong A W, Wang T, Qian Q, Qi X Q, Chen F, Zuo J R, Yang S H, Gu H Y, Chen Z D, Jiang L W, Bai Y F, Kong H Z, Chong K (2017). Research advances in plant science in China in 2016., 2017, 52(4): 394-452. (in Chinese with English abstract)
[127]陳明江, 劉貴富, 余泓, 王冰, 李家洋. 水稻高產(chǎn)優(yōu)質(zhì)的分子基礎(chǔ)與品種設(shè)計. 科學(xué)通報, 2018, 63(14): 1275-1289.
Chen M J, Liu G F, Yu H, Wang B, Li J Y. Towards molecular design of rice plant architecture and grain quality., 2018, 63(14): 1276-1289. (in Chinese with English abstract)
[128]Gao C X. The future of CRISPR technologies in agriculture., 2018, 19: 275-276.
[129]Meng X B, Hu X X, Liu Q, Song X, Gao C, Li J, Wang K. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice., 2018, 61: 122-125.
Research Advances in the Effect of Heat and Drought on Rice and Its Mechanism
DUAN Hua*, TONG Hui, LIU Yanqing, XU Qingfen, MA Jun, WANG Chunmin
(,,,;*Corresponding author, E-mail: duanhua2004@gmail.com*Corresponding author, E-mail: duanhua2004@gmail.com)
Heat and drought are two major environmental stresses that affect rice growth, productivity, and grain quality. a comprehensive understanding of which is critical to evaluate the impacts of climate change on crop production. We review the independent and combined effects of heat and drought on rice growth, yield, and grain quality, demonstrate the possible mechanisms involved from multiple perspectives, such as photosynthesis, antioxidant system, endogenous hormones, activities of the key enzymes involved in sucrose-to-starch conversion, and molecular profiling, proposes reasonable strategies to mitigate the stress of environmental heterogeneity, and provide considerable suggestions for future study.
rice; heat; drought; combined heat and drought; grain yield; quality; physiological mechanism
Q945.78; S511.01
A
1001-7216(2019)03-0206-13
10.16819/j.1001-7216.2019.8106
2018-09-20;
2019-01-28。
國家自然科學(xué)基金資助項目(31601248);天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計劃資助項目(15JCQNJC14800);天津市科技支撐重點項目(18YFZCNC01150)。