亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        New Inequalities for the Hadamard Product of Nonsingular M-matrices

        2019-05-04 05:52:06ChenFubin

        Chen Fubin

        (Science Department,Oxbridge College,Kunming University of Science and Technology,Kunming 650106,China)

        Abstract Some new inequalities for the minimum eigenvalue of nonsingular M-matrices are given. A numerical example is given to show that the new inequalities are better than some existing ones.

        Key words M-matrix Hadamard product Lower bound Minimum eigenvalue

        1 Introduction

        The set of all real (complex) matrices is denoted byRn×n(Cn×n).Ndenotes the set {1,2,…,n} throughout.

        If ann×nmatrixAsatisfiesA=λI-Bandλ≥ρ(B), whereBis a nonnegative matrix,λis a nonnegative real number andρ(B) is the spectral radius of matrixB,Iis an identity matrix, thenAis called anM-matrix. Furthermore, ifλ>ρ(B), thenAis called a nonsingularM-matrix, and is denoted asA∈Mn[1]; ifλ=ρ(B), thenAis called a singularM-matrix.

        Our work is based on the following simple facts (see Problems 16,19 and 28 in Section 2.5 of [2] ):

        (1)τ(A)∈σ(A),τ(A)= min {Re(λ):λ∈σ(A)} denotes the minimum eigenvalue ofA.

        (2)τ(A)≥τ(B), whenA,B∈MnandA≥B.

        The Hadamard productA°BofAandBis defined asA°B=(aijbij). IfA,B∈Mn, thenB°A-1∈Mn[3].

        A matrixAis irreducible if there does not exist any permutation matrixPsuch that

        whereA11,A22are square matrices.

        Given a matrixA=(aij)∈Rn×n, for anyi∈N, let

        In [9], Li et al. gave the following result

        Furthermore, ifa11=a22=…=ann, they have obtained

        In [10], Li et al. gave the following sharper result

        In this paper, our motives are to improve the lower bounds for the minimum eigenvalue ofM-matrices, which improve some existing results.

        2 Main results

        In this section, we give some lemmas that involve inequalities for the entries ofA-1. They will be useful in the following proofs.

        Lemma 2.1[13]LetA,B∈Cn×nand suppose thatE,F∈Cn×nare diagonal matrices. Then

        E(A°B)F=(EAF)°B=(EA)°(BF)=(AF)°(EB)=A°(EBF).

        Lemma 2.2[14]LetA∈Mn, andD=diag(d1,d2,…,dn),(di>0,i=1,2,…,n). ThenD-1ADis a strictly row diagonally dominantM-matrix.

        Lemma 2.4[15]IfA=(aij)∈Cn×n, then there existx1,x2,…,xn(xi>0) such that

        Lemma 2.5[16]IfA-1is a doubly stochastic matrix, thenAe=e,ATe=e, wheree=(1,1,…,1)T.

        Lemma 2.6[3]IfP∈Mnis irreducible, andPz≥kzfor a nonnegative nonzero vectorz, thenτ(P)≥k.

        Theorem 2.1IfA=(aij)∈Mnwith strictly row diagonally dominant, thenA-1=(βij) satisfies

        ProofThe proof is similar to the Theorem 2.1 in [9].

        Theorem 2.2IfA=(aij)∈Mmwith strictly row diagonally dominant, thenA-1=(βij) satisfies

        ProofLetB=A-1. SinceAis anM-matrix, soB≥0. ByAB=In, we have

        By Theorem 2.1, we have

        i.e.,

        Theorem 2.3LetA=(aij)∈Rn×nbe anM-matrix, and suppose thatA-1=(βij) is a doubly stochastic matrix. Then

        ProofSinceA-1is a doubly stochastic andAis anM-matrix, we know thatAis strictly diagonally dominant by row. By Lemma 2.5, we have

        and

        Then, by Theorem 2.1, fori∈N

        i.e.,

        Theorem 2.4IfA=(aij),B=(bij)∈Mn, then

        ProofBy Lemma 2.1, and Lemma 2.2, for convenience and without loss of generality, we assume thatAis a strictly diagonally dominant matrix by row.

        First, we assume thatA,Bare irreducible. Letτ(B°A-1)=λandA-1=(βij), by Lemma 2.4 and Theorem 2.1, there exists anisuch that

        i.e.,

        By Theorem 2.2, we obtain

        When one ofAandBis reducible.T=(tij) denotes the permutation matrix witht12=t23=…=tn-1,n=tn1=1, the remainingtijzero. We know thatA-εTandB-εTare irreducible nonsingularM-matrices withε>0[1]. we substituteA-εTandB-εTforAandB, the result also holds.

        Corollary 2.1IfA=(aij),B=(bij)∈MnandA-1is a doubly stochastic matrix, then

        Corollary 2.2IfA=(aij)∈MnandA-1is a doubly stochastic matrix, then

        Theorem 2.5IfA=(aij)∈Mnis irreducible strictly row diagonally dominant, then

        ProofSinceAis irreducible, thenA-1=(βij)>0, andA°A-1is again irreducible. Note that

        τ(A°A-1)=τ((A°A-1)T)=τ(AT°(AT)-1).

        Let

        (AT°(AT)-1)e=(d1,d2,…,dn)T,

        wheree=(1,1,…,1)T. Without loss of generality, we assume thatd1=mini{di}, by Theorem 2.1, we have

        Therefore, by Lemma 2.6, we have

        RemarkSinceA∈Mnis a strictly row diagonally dominant,so 0≤sji≤dj<1 , then

        By the definition ofhi, we have

        hence

        By 0≤hi≤1, we havevji≤sjiandvi≤si.

        Therefore, it is easy to obtain that

        That is to say, the bound of Corollary 2.2 is sharper than Theorem 3.1 and the bound of Theorem 2.5 is sharper than Theorem of 3.5 in [9].

        3 An example

        Let

        By Theorem 3.1 of [9], we have

        By Theorem 3.2 of [10], we have

        If we apply Corollary 2, we have

        国产人妖av在线观看| 国产草草视频| 国产精品久久久亚洲第一牛牛| 激情免费视频一区二区三区| 日韩少妇人妻中文字幕| 肥臀熟女一区二区三区| 五月中文字幕| 国产精品成人有码在线观看| 青青草骚视频在线观看| 国产激情电影综合在线看| 亚洲七七久久综合桃花| 蜜桃在线观看视频在线观看| 我和隔壁的少妇人妻hd| 99re热视频这里只精品| 久久狠色噜噜狠狠狠狠97| 国产偷闻女邻居av在线观看| 亚洲国产av无码精品| 亚洲粉嫩高潮的18p| 亚洲人成网站18男男| 中文字幕人妻互换av| 国产乱人激情h在线观看| 三上悠亚免费一区二区在线| 亚洲成av人片在线天堂无| 国产精品一区二区黑丝| 国产精品无码一本二本三本色| 人妻无码Aⅴ中文系列| 饥渴少妇一区二区三区| 熟女体下毛荫荫黑森林| 亚洲精品网站在线观看你懂的| 中文字幕亚洲无线码a| 精彩视频在线观看一区二区三区| 欧美亚洲国产一区二区三区| 亚洲成a人片在线| 午夜精品一区二区三区av免费| 国产精品毛片无遮挡高清| 无码人妻黑人中文字幕| av无码一区二区三| 中文字幕精品一区二区的区别| 黑森林福利视频导航| 亚洲A∨无码国产精品久久网| 神马不卡影院在线播放|