摘" 要: 為提升信號(hào)識(shí)別電路的電量采集精度,實(shí)現(xiàn)理想狀態(tài)下的電力誤差校準(zhǔn),設(shè)計(jì)基于神經(jīng)網(wǎng)絡(luò)的模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng)。以CNN神經(jīng)網(wǎng)絡(luò)作為模數(shù)轉(zhuǎn)換電路的物理依賴環(huán)境,通過合理選取動(dòng)態(tài)識(shí)別元件的方式,實(shí)現(xiàn)誤差源識(shí)別系統(tǒng)的硬件運(yùn)行環(huán)境搭建。在此基礎(chǔ)上,將模擬電流轉(zhuǎn)化成數(shù)字信號(hào),再將其完整存儲(chǔ)于系統(tǒng)數(shù)據(jù)庫中,利用既定數(shù)學(xué)運(yùn)算公式對(duì)已存儲(chǔ)的數(shù)字信號(hào)進(jìn)行識(shí)別精度提純處理,實(shí)現(xiàn)誤差源識(shí)別系統(tǒng)的軟件運(yùn)行環(huán)境搭建,聯(lián)合相關(guān)硬件執(zhí)行設(shè)備,完成基于神經(jīng)網(wǎng)絡(luò)的模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng)設(shè)計(jì)。實(shí)際應(yīng)用結(jié)果表明,在加壓環(huán)境下,新型誤差源識(shí)別系統(tǒng)的電量采集精度達(dá)到90%,單位時(shí)間內(nèi)的信號(hào)識(shí)別量超過7.5×109 TB,理想狀態(tài)下信號(hào)識(shí)別電路的電力誤差校準(zhǔn)能力得到有效保障。
關(guān)鍵詞: 神經(jīng)網(wǎng)絡(luò); 模數(shù)轉(zhuǎn)換; 電路誤差源; 動(dòng)態(tài)識(shí)別; 數(shù)字信號(hào)存儲(chǔ); 系統(tǒng)設(shè)計(jì)
中圖分類號(hào): TN79+2?34; TP391" " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼: A" " " " " " " " " " "文章編號(hào): 1004?373X(2019)21?0053?05
Abstract: In order to improve the acquisition accuracy of signal recognition circuit and realize the power error calibration in ideal state, a neural network based dynamic error source identification system of analog?to?digital conversion circuit is designed. The hardware operation link of the error source identification system is constructed by reasonably selecting the dynamic identification elements and taking CNN neural network as the physical dependent environment of the analog?to?digital converter circuit. On this basis, the analog current is converted into digital signals, and then they are stored completely in the system database. The purifying processing for the stored digital signal is conducted to make identification precision improved by means of the established mathematical formula. The software running link construction of the error source recognition system is realized. The neural network based dynamic error source recognition system for the analog?to?digital conversion circuit is completed by combining the relevant hardware equipments. The practical application results show that, in the pressurized environment, the power acquisition accuracy of the new error source identification system reaches 90%, the signal recognition quantity per unit time exceeds 7.5×109 TB, and the power error calibration ability of the signal recognition circuit under ideal conditions is effectively guaranteed.
Keywords: neural network; analog to digital conversion; circuit error source; dynamic identification; digital signal; System design
0" 引" 言
模數(shù)轉(zhuǎn)換是基于將模擬電流轉(zhuǎn)化為數(shù)字化信號(hào)的操作思想,而實(shí)現(xiàn)該實(shí)體操作的電路結(jié)構(gòu)或物理器件即被稱為模數(shù)轉(zhuǎn)換電路,通常情況下可簡(jiǎn)稱為A/D轉(zhuǎn)換器或DAC設(shè)備。在模數(shù)轉(zhuǎn)換電路內(nèi)部,每個(gè)電流或電壓開關(guān)都至少負(fù)載一個(gè)D/A電阻結(jié)構(gòu),且為提升整體電路環(huán)境中的恒流輸出精度,所有元件都采取并聯(lián)的接入方式[1?2]。通常情況下,電流開關(guān)切換誤差直接決定開關(guān)的連接形式,若電流開關(guān)可直接輸出電路元件產(chǎn)生的電量分子,則可認(rèn)為D/A轉(zhuǎn)換器處于良好的誤差識(shí)別狀態(tài)。
隨著電路環(huán)境中電子信號(hào)采集量的不斷增加,如何保證精準(zhǔn)的電力誤差校正結(jié)果已經(jīng)成為社會(huì)各界的重點(diǎn)攻破問題?,F(xiàn)有技術(shù)手段利用FPGA芯片識(shí)別可編程邏輯結(jié)構(gòu)中的電力誤差數(shù)據(jù),再借助卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)模態(tài)電流到動(dòng)態(tài)數(shù)字信號(hào)的物理轉(zhuǎn)化。但這種方法支持下的電量采集精度、信號(hào)識(shí)別量等物理?xiàng)l件始終不能達(dá)到預(yù)期水平。為解決上述問題,引入CNN神經(jīng)網(wǎng)絡(luò),在新型模數(shù)轉(zhuǎn)換電路的支持下,通過數(shù)字信號(hào)緩存、識(shí)別精度提純等處理方法,搭建基于神經(jīng)網(wǎng)絡(luò)的模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng),并通過對(duì)比實(shí)驗(yàn)的方式突出說明該新型系統(tǒng)的實(shí)用可行價(jià)值。
1" 誤差源識(shí)別系統(tǒng)硬件結(jié)構(gòu)設(shè)計(jì)
新型識(shí)別系統(tǒng)的硬件執(zhí)行環(huán)境包含CNN神經(jīng)網(wǎng)絡(luò)、模數(shù)轉(zhuǎn)換電路、動(dòng)態(tài)識(shí)別元件三個(gè)主要物理元件,其具體搭建方法可按如下步驟進(jìn)行。
1.1" CNN神經(jīng)網(wǎng)絡(luò)拓?fù)?/p>
CNN神經(jīng)網(wǎng)絡(luò)是新型模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng)的主體硬件結(jié)構(gòu),由電子輸出層、特征轉(zhuǎn)換層、動(dòng)態(tài)隱藏層、識(shí)別輸出層四級(jí)單元組織構(gòu)成,如圖1所示。其中,電子輸出層作為CNN神經(jīng)網(wǎng)絡(luò)的頂級(jí)拓?fù)浣Y(jié)構(gòu),可根據(jù)模數(shù)轉(zhuǎn)換電路的具體連接情況對(duì)動(dòng)態(tài)電子量進(jìn)行選擇性輸出處理。特征轉(zhuǎn)換層作為CNN神經(jīng)網(wǎng)絡(luò)的第二級(jí)拓?fù)浣Y(jié)構(gòu),向上承接電子輸出層、向下承接動(dòng)態(tài)隱藏層,可等效對(duì)接電子輸出層中的動(dòng)態(tài)電子量[3?4]。動(dòng)態(tài)隱藏層作為CNN神經(jīng)網(wǎng)絡(luò)的第三級(jí)拓?fù)浣Y(jié)構(gòu),向上承接特征轉(zhuǎn)換層、向下承接識(shí)別輸出層,可對(duì)發(fā)散的動(dòng)態(tài)電子源節(jié)點(diǎn)進(jìn)行籠絡(luò)處理。識(shí)別輸出層作為CNN神經(jīng)網(wǎng)絡(luò)的尾級(jí)拓?fù)浣Y(jié)構(gòu),只與動(dòng)態(tài)隱藏層保持定向連接關(guān)系,可根據(jù)上級(jí)拓?fù)浣Y(jié)構(gòu)中電子量的具體釋放情況輸出合理化的系統(tǒng)識(shí)別指令。
1.2" 模數(shù)轉(zhuǎn)換電路設(shè)計(jì)
新型誤差源識(shí)別系統(tǒng)的模數(shù)轉(zhuǎn)換電路包含一個(gè)電子加速度儀表和動(dòng)態(tài)陀螺,且兩個(gè)元件始終保持增益性連接,即在其中一個(gè)元件中電子量增大的情況下,另一個(gè)元件中的電子量也隨著增大,而電子量減小卻只是單一性元件行為。模數(shù)轉(zhuǎn)換電路作為系統(tǒng)中的唯一供電設(shè)備,可與CNN神經(jīng)網(wǎng)絡(luò)的電子輸出層相連,并通過定向調(diào)制的方式,將系統(tǒng)運(yùn)行所需的電子量傳輸至相關(guān)硬件執(zhí)行結(jié)構(gòu)中[5]。為保證加速度儀表釋放的模擬電流可完全轉(zhuǎn)化成數(shù)字識(shí)別信號(hào),減法器作為中間連接組織,可過濾模擬電流中的可識(shí)別誤差源節(jié)點(diǎn),并將其少量多次地傳輸至動(dòng)態(tài)陀螺結(jié)構(gòu)中,以此避免系統(tǒng)數(shù)字識(shí)別信號(hào)堆積現(xiàn)象的出現(xiàn)。模數(shù)轉(zhuǎn)換電路圖如圖2所示。
1.3" 動(dòng)態(tài)識(shí)別元件選取
系統(tǒng)動(dòng)態(tài)識(shí)別元件是以型號(hào)為ADS1281的ADC芯片作為核心搭建設(shè)備的模擬電流轉(zhuǎn)化裝置,可借助CNN神經(jīng)網(wǎng)絡(luò)獲取模數(shù)轉(zhuǎn)換電路中的電子流量,并分解成可供系統(tǒng)直接應(yīng)用的誤差源節(jié)點(diǎn)信息條件[6]。ADC芯片是具備誤差源識(shí)別功能的電路模數(shù)轉(zhuǎn)換裝置,要求系統(tǒng)中同時(shí)執(zhí)行的電子識(shí)別數(shù)量只能為1。相對(duì)于傳統(tǒng)模數(shù)轉(zhuǎn)換電路來說,動(dòng)態(tài)識(shí)別元件對(duì)誤差源內(nèi)存任務(wù)的要求相對(duì)較為寬泛,可允許100~200 MB的模數(shù)電量同時(shí)接入系統(tǒng)環(huán)境,且只要誤差源節(jié)點(diǎn)數(shù)量不超過70 MB,就不會(huì)出現(xiàn)明顯的模數(shù)漏轉(zhuǎn)行為,全面保障了系統(tǒng)識(shí)別操作的準(zhǔn)入連接權(quán)益[7?8]。從識(shí)別精準(zhǔn)性來看,隨著ADC芯片的應(yīng)用,由模擬電流轉(zhuǎn)化得來的數(shù)字信號(hào)可直接利用誤差源節(jié)點(diǎn)進(jìn)行協(xié)調(diào)性分布,全面提升系統(tǒng)對(duì)電量分子的采集識(shí)別精度。完整的動(dòng)態(tài)識(shí)別元件選取原理如表1所示。
2" 誤差源識(shí)別系統(tǒng)軟件環(huán)境搭建
在硬件執(zhí)行環(huán)境的基礎(chǔ)上,按照模擬電流轉(zhuǎn)化、數(shù)字信號(hào)緩存、識(shí)別精度提純的處理流程,完成系統(tǒng)軟件運(yùn)行環(huán)境搭建,兩項(xiàng)結(jié)合,實(shí)現(xiàn)基于神經(jīng)網(wǎng)絡(luò)模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng)的順利應(yīng)用。
2.1" 模擬電流轉(zhuǎn)化
模擬電流轉(zhuǎn)化是實(shí)現(xiàn)系統(tǒng)對(duì)電路誤差源識(shí)別的重要物理環(huán)節(jié),通常情況下,轉(zhuǎn)化前模數(shù)電路輸出的電量分子始終保持為電流形式,而轉(zhuǎn)化后模數(shù)電路輸出的電量分子則為數(shù)字信號(hào)形式[9]。當(dāng)CNN神經(jīng)網(wǎng)絡(luò)接入系統(tǒng)識(shí)別流程后,電子加速度儀表開始向減法器傳輸電流形式的電量分子,在確保動(dòng)態(tài)陀螺能夠完整承接電子量的前提下,減法器斷開與前置結(jié)構(gòu)的物理連接,建立與后置結(jié)構(gòu)的物理連接,并將設(shè)備體內(nèi)部的電流完全傳輸至動(dòng)態(tài)陀螺結(jié)構(gòu)中。動(dòng)態(tài)識(shí)別元件感知到模數(shù)轉(zhuǎn)換電路中的電量變化情況后,ADC芯片作為轉(zhuǎn)化設(shè)備,先整合系統(tǒng)中傳輸?shù)乃须娮恿髁浚賹⑵浒凑展?jié)點(diǎn)信息的分解需求,逐步轉(zhuǎn)化為動(dòng)態(tài)形式清晰的數(shù)字信號(hào),以供下級(jí)執(zhí)行設(shè)備的提取應(yīng)用[10]。完整的轉(zhuǎn)化流程如圖3所示。
2.2" 數(shù)字信號(hào)緩存
數(shù)字信號(hào)緩存是系統(tǒng)執(zhí)行誤差源識(shí)別操作過程中的物理過渡階段,不需消耗電力節(jié)點(diǎn)用以進(jìn)行電流傳輸,而且數(shù)據(jù)庫作為系統(tǒng)中的數(shù)據(jù)供給結(jié)構(gòu),可直接容納所有待運(yùn)行的數(shù)字信號(hào)。循環(huán)于系統(tǒng)環(huán)境中的數(shù)字信號(hào)完全來源于模擬電流,是系統(tǒng)進(jìn)行誤差源節(jié)點(diǎn)分布處理的重要物理依據(jù)[11?12]。簡(jiǎn)單來說,經(jīng)過模擬電流轉(zhuǎn)化處理后的數(shù)字信號(hào)中包含大量可存儲(chǔ)節(jié)點(diǎn),但這些節(jié)點(diǎn)大都分布在兩個(gè)信號(hào)體之間或與單一信號(hào)體完整融合,而對(duì)于系統(tǒng)數(shù)據(jù)庫來說,能夠進(jìn)行緩存處理的數(shù)據(jù)信息必須保持獨(dú)立存在狀態(tài)[13?14]。為解決上述問題,在模數(shù)轉(zhuǎn)換電路的促進(jìn)下,數(shù)字信號(hào)體之間會(huì)進(jìn)行激烈的碰撞行為,并以此斷裂不想管的信號(hào)連接結(jié)構(gòu),釋放存儲(chǔ)節(jié)點(diǎn)。當(dāng)所有節(jié)點(diǎn)都保持獨(dú)立存在狀態(tài)后,系統(tǒng)數(shù)據(jù)庫會(huì)根據(jù)就近原則對(duì)這些數(shù)字信號(hào)進(jìn)行緩存處理,進(jìn)而使神經(jīng)網(wǎng)絡(luò)環(huán)境中的電子參量得以大量消耗,達(dá)到促進(jìn)轉(zhuǎn)換模擬電流的目的。
2.3" 識(shí)別精度提純
識(shí)別精度提純是新型誤差源識(shí)別系統(tǒng)搭建的末尾環(huán)節(jié),與模擬電流轉(zhuǎn)化系數(shù)、數(shù)字信號(hào)緩存量等多項(xiàng)物理數(shù)值產(chǎn)生關(guān)聯(lián)性影響。隨著系統(tǒng)運(yùn)行時(shí)間的延長,模數(shù)轉(zhuǎn)換電路會(huì)產(chǎn)生大量的待轉(zhuǎn)化模擬電流,并將其暫時(shí)存儲(chǔ)于系統(tǒng)動(dòng)態(tài)識(shí)別元件中[15]。所謂模擬電流轉(zhuǎn)化系數(shù)是指在由存儲(chǔ)到輸出的過程中,由系統(tǒng)動(dòng)態(tài)識(shí)別元件承載的電子量分配條件,通常情況下可表示為[ye],[e]代表動(dòng)態(tài)識(shí)別元件在模擬電流轉(zhuǎn)化瞬間所負(fù)擔(dān)的電量分配條件。數(shù)字信號(hào)緩存量是考察系統(tǒng)數(shù)據(jù)庫平均承載能力的物理系數(shù),在神經(jīng)網(wǎng)絡(luò)環(huán)境中不會(huì)隨著模數(shù)轉(zhuǎn)換電路中電流、電壓等數(shù)值條件的變化而發(fā)生改變,是與系統(tǒng)設(shè)備結(jié)構(gòu)相關(guān)的屬性參量,通常情況下表示為[p]。定義系統(tǒng)的平均識(shí)別時(shí)間為[t],聯(lián)立上述變量,可將系統(tǒng)識(shí)別精度提純結(jié)果表示為:
式中:[χ]代表提純積分的下限運(yùn)算數(shù)值;[β1],[β2]分別代表兩個(gè)不同的基準(zhǔn)識(shí)別向量;[q1],[q2]分別代表兩個(gè)不同的電路動(dòng)態(tài)誤差源節(jié)點(diǎn)系數(shù)。至此,完成所有數(shù)據(jù)處理及執(zhí)行設(shè)備搭建,按照上述處理流程,實(shí)現(xiàn)基于神經(jīng)網(wǎng)絡(luò)模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng)的順利應(yīng)用。
3" 實(shí)驗(yàn)結(jié)果討論
為驗(yàn)證基于神經(jīng)網(wǎng)絡(luò)模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng)的實(shí)用能力,設(shè)計(jì)如下對(duì)比實(shí)驗(yàn)。在數(shù)字轉(zhuǎn)換電路中,配置2臺(tái)完全相同的實(shí)驗(yàn)主機(jī),其中實(shí)驗(yàn)組主機(jī)搭載新型動(dòng)態(tài)誤差源識(shí)別系統(tǒng),對(duì)照組主機(jī)搭載傳統(tǒng)識(shí)別系統(tǒng)。在其他影響因素不發(fā)生改變的前提下,應(yīng)用控制變量法分別記錄應(yīng)用實(shí)驗(yàn)組、對(duì)照組識(shí)別系統(tǒng)后相關(guān)實(shí)驗(yàn)數(shù)據(jù)的變化情況。
3.1" 前期實(shí)驗(yàn)準(zhǔn)備
相關(guān)實(shí)驗(yàn)參數(shù)及具體實(shí)驗(yàn)環(huán)境配置結(jié)果如表2所示。
為保證實(shí)驗(yàn)結(jié)果的絕對(duì)公平性,除所采用識(shí)別系統(tǒng)不同外,實(shí)驗(yàn)組、對(duì)照組其他實(shí)驗(yàn)參數(shù)始終保持一致。
3.2" 電量采集精度對(duì)比
在模數(shù)轉(zhuǎn)換參量等于0.46的條件下,以100 min作為實(shí)驗(yàn)時(shí)間,分別記錄在該段時(shí)間內(nèi),應(yīng)用實(shí)驗(yàn)組、對(duì)照組識(shí)別系統(tǒng)后,電量采集精度的變化情況,詳細(xì)實(shí)驗(yàn)對(duì)比結(jié)果如圖4所示。
分析圖4可知,隨著實(shí)驗(yàn)時(shí)間的增加,實(shí)驗(yàn)組、對(duì)照組電量采集精度出現(xiàn)了明顯的分層趨勢(shì),在整個(gè)實(shí)驗(yàn)過程中,實(shí)驗(yàn)組數(shù)值始終處于對(duì)照組數(shù)值上方。實(shí)驗(yàn)組電量采集精度最大值超過90%,且出現(xiàn)頻率相對(duì)較高;對(duì)照組電量采集精度最大值僅達(dá)到40%,且出現(xiàn)頻率較低,遠(yuǎn)低于理想極值區(qū)間。綜上可知,在模數(shù)轉(zhuǎn)換參量等于0.46的條件下,應(yīng)用基于神經(jīng)網(wǎng)絡(luò)的模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng),可使電量采集精度數(shù)值大幅提升。
3.3" 單位時(shí)間內(nèi)的信號(hào)識(shí)別量對(duì)比
在動(dòng)態(tài)誤差源識(shí)別系數(shù)等于0.82的條件下,以20 min作為單位時(shí)間長度,分別記錄在5個(gè)單位時(shí)間長度內(nèi),應(yīng)用實(shí)驗(yàn)組、對(duì)照組識(shí)別系統(tǒng)后信號(hào)識(shí)別量的具體變化情況,詳細(xì)實(shí)驗(yàn)對(duì)比結(jié)果如表3,表4所示。
對(duì)比表2,表3可知,在前3組單位時(shí)間內(nèi),實(shí)驗(yàn)組信號(hào)識(shí)別量都保持穩(wěn)定的上升狀態(tài),從第4組單位時(shí)間開始,上升幅度逐漸縮小,直至第5組單位時(shí)間,實(shí)驗(yàn)組信號(hào)識(shí)別量開始出現(xiàn)穩(wěn)定狀態(tài)。整個(gè)實(shí)驗(yàn)過程中,實(shí)驗(yàn)組信號(hào)識(shí)別量共上升了2.0×109 TB,最大值7.7×109 TB與理想極值5.0×109 TB相比,上升了2.7×109 TB。
對(duì)比表2,表4可知,在整個(gè)實(shí)驗(yàn)過程中,對(duì)照組信號(hào)識(shí)別量始終保持上升、下降交替出現(xiàn)的變化趨勢(shì),但隨著實(shí)驗(yàn)時(shí)間的增加,最小值始終保持為2.6×109 TB,最大值卻出現(xiàn)不斷下降的變化趨勢(shì),階段性最大值從3.7×109 TB下降至3.1×109 TB,低于理想極值5.0×109 TB,更遠(yuǎn)低于實(shí)驗(yàn)組數(shù)值結(jié)果。綜上可知,在動(dòng)態(tài)誤差源識(shí)別系數(shù)等于0.82的條件下,應(yīng)用基于神經(jīng)網(wǎng)絡(luò)的模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng),可促進(jìn)信號(hào)識(shí)別量的穩(wěn)定提升。
4" 結(jié)" 語
從實(shí)際應(yīng)用結(jié)果來看,基于神經(jīng)網(wǎng)絡(luò)模數(shù)轉(zhuǎn)換電路動(dòng)態(tài)誤差源識(shí)別系統(tǒng)可在兼顧電量采集精度的同時(shí),提升單位時(shí)間內(nèi)的信號(hào)識(shí)別量,更加符合理想狀態(tài)下的系統(tǒng)應(yīng)用需求。從搭建角度來看,新型動(dòng)態(tài)誤差源識(shí)別系統(tǒng)以CNN神經(jīng)網(wǎng)絡(luò)作為硬件執(zhí)行基礎(chǔ),在模數(shù)轉(zhuǎn)換電路等元件的支持下,對(duì)識(shí)別精度進(jìn)行不斷提純。未來相關(guān)科研機(jī)構(gòu)將在此系統(tǒng)的基礎(chǔ)上,全面發(fā)掘模數(shù)轉(zhuǎn)換電路在誤差源識(shí)別領(lǐng)域的實(shí)用能力,力求使我國的模擬電路處理技術(shù)達(dá)到國際領(lǐng)先水平。
參考文獻(xiàn)
[1] 安強(qiáng)強(qiáng),張峰,李趙興,等.基于機(jī)器學(xué)習(xí)的VoIP流量在線識(shí)別系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)研究[J].電子設(shè)計(jì)工程,2018,26(16):103?106.
AN Qiangqiang, ZHANG Feng, LI Zhaoxing, et al. Design and implementation of VoIP traffic online identification system based on machine learning [J]. Electronic design engineering, 2018, 26(16): 103?106.
[2] 胡變香,繆旻,高軍.集成電路板互連傳輸結(jié)構(gòu)優(yōu)化設(shè)計(jì)仿真[J].計(jì)算機(jī)仿真,2018,35(6):263?268.
HU Bianxiang, MIU Min, GAO Jun. Integrated circuit board interconnection transmission structure optimization design simulation [J]. Computer simulation, 2018, 35(6): 263?268.
[3] 胡飛,尤志強(qiáng),劉鵬,等.基于憶阻器交叉陣列的卷積神經(jīng)網(wǎng)絡(luò)電路設(shè)計(jì)[J].計(jì)算機(jī)研究與發(fā)展,2018,55(5):1097?1107.
HU Fei, YOU Zhiqiang, LIU Peng, et al. Circuit design of convolutional neural network based on memristor cross array [J]. Computer research and development, 2018, 55(5): 1097?1107.
[4] 陳洪月,張坤,劉治翔,等.基于PSO?BP神經(jīng)網(wǎng)絡(luò)光電編碼器誤差補(bǔ)償研究[J].傳感技術(shù)學(xué)報(bào),2017,30(8):1182?1186.
CHEN Hongyue, ZHANG Kun, LIU Zhixiang, et al. Photoelectric encoder error compensation research based on PSO?BP neural network [J]. Chinese journal of sensors and actuators, 2017, 30(8): 1182?1186.
[5] 虎濤濤,康波,單要楠.基于動(dòng)態(tài)函數(shù)連接神經(jīng)網(wǎng)絡(luò)的自適應(yīng)逆控制系統(tǒng)辨識(shí)研究[J].計(jì)算機(jī)科學(xué),2017,44(10):203?208.
HU Taotao, KANG Bo, SHAN Yaonan. Study on identification of adaptive inverse control system based on dynamic function link neural network [J]. Computer science, 2017, 44(10): 203?208.
[6] 張玉,周睿,張烈平.基于神經(jīng)網(wǎng)絡(luò)的PID自整定光伏并網(wǎng)逆變器仿真[J].桂林理工大學(xué)學(xué)報(bào),2018,38(2):184?188.
ZHANG Yu, ZHOU Rui, ZHANG Lieping. Simulation of self?tuning PID photovoltaic grid?connected inverter based on neural network [J]. Journal of Guilin University of Technology, 2018, 38(2): 184?188.
[7] CHAUHAN T, TRIPATHI A, SEHRA P, et al. Functional modelling,validation and testing of analog to digital converters (ADC) from system design perspective [J]. Analog integrated circuits amp; signal processing, 2018, 95(2): 1?12.
[8] 王洪樂,王家序,周青華,等.基于BP神經(jīng)網(wǎng)絡(luò)的數(shù)控機(jī)床綜合誤差補(bǔ)償方法[J].西安交通大學(xué)學(xué)報(bào),2017,51(6):138?146.
WANG Hongle, WANG Jiaxu, ZHOU Qinghua, et al. Comprehensive error compensation of machine tools based on BP?neural network algorithm [J]. Journal of Xi’an Jiaotong University, 2017, 51(6): 138?146.
[9] 高家穎,何秋陽,詹志新.基于神經(jīng)網(wǎng)絡(luò)的撞球機(jī)器人控制器設(shè)計(jì)[J].北京航空航天大學(xué)學(xué)報(bào),2017,43(3):533?543.
GAO Jiaying, HE Qiuyang, ZHAN Zhixin. Design of neural network controller for a billiard robot [J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 533?543.
[10] 陳陽,胡伍生,嚴(yán)宇翔,等.基于神經(jīng)網(wǎng)絡(luò)模型誤差補(bǔ)償技術(shù)的對(duì)流層延遲模型研究[J].大地測(cè)量與地球動(dòng)力學(xué),2018,38(6):577?580.
CHEN Yang, HU Wusheng, YAN Yuxiang, et al. Research on tropospheric delay model based on neural network model error compensation technique [J]. Journal of geodesy and geodynamics, 2018, 38(6): 577?580.
[11] MEHDIZADEH F, SOROOSH M, ALIPOUR?BANAEI H, et al. Ultra?fast analog?to?digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure [J]. Applied optics, 2017, 56(7): 1799.
[12] 顏學(xué)龍,丁鵬,馬峻.基于狼群算法的RBF神經(jīng)網(wǎng)絡(luò)模擬電路故障診斷[J].計(jì)算機(jī)工程與應(yīng)用,2017,53(19):152?156.
YAN Xuelong, DING Peng, MA Jun. Analog circuit diagnosis based on wolf pack algorithm radical basis function network [J]. Computer engineering and applications, 2017, 53(19): 152?156.
[13] 李光升,梁靖聰,謝永成,等.基于免疫遺傳算法改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)在裝甲車輛電路板故障診斷中的應(yīng)用[J].計(jì)算機(jī)測(cè)量與控制,2017,25(6):9?13.
LI Guangsheng, LIANG Jingcong, XIE Yongcheng, et al. Application of BP neural network improved by genetic immune algorithm in armored vehicle circuit board fault diagnosis [J]. Computer measurement amp; control, 2017, 25(6): 9?13.
[14] 鐘金童,李國龍,劉達(dá)斌,等.基于概率神經(jīng)網(wǎng)絡(luò)的蝸桿砂輪磨齒機(jī)徑向熱誤差建模[J].計(jì)算機(jī)集成制造系統(tǒng),2017,23(3):534?541.
ZHONG Jintong, LI Guolong, LIU Dabin, et al. Radial thermal error modeling of CNC worm wheel gear grinding machine based on probabilistic neural network [J]. Computer integrated manufacturing systems, 2017, 23(3): 534?541.
[15] 于慧鳴,張志晟,龔文杰.基于深度遞歸神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)短期負(fù)荷預(yù)測(cè)模型[J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2019,31(1):112?116.
YU Huiming, ZHANG Zhisheng, GONG Wenjie. Short?term load forecasting model of power system based on deep recurrent neural network [J]. Proceedings of the CSU?EPSA, 2019, 31(1): 112?116.