陳玲玲,高月香,張毅敏*,朱月明,孔 明,許雪婷,王涌濤,黃天寅
?
鰱鱅鲴混養(yǎng)對(duì)水環(huán)境及氮素遷移轉(zhuǎn)化的影響
陳玲玲1,2,高月香2,張毅敏2*,朱月明2,孔 明2,許雪婷2,王涌濤1,黃天寅1
(1.蘇州科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 蘇州 215009;2.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇 南京 210000)
利用15N穩(wěn)定同位素技術(shù)研究混養(yǎng)細(xì)鱗斜頜鲴對(duì)鰱鱅魚水環(huán)境及氮素遷移轉(zhuǎn)化的影響.結(jié)果顯示:實(shí)驗(yàn)期間,鲴鰱鱅組各營(yíng)養(yǎng)鹽濃度經(jīng)過(guò)短暫升高后迅速降低,實(shí)驗(yàn)結(jié)束時(shí),TN,TP,NO3--N,NO2--N,PO43--P濃度分別達(dá)到2.67,0.13,0.93,0.026,0.0035mg/L,鰱鱅組各營(yíng)養(yǎng)鹽濃度總體保持增長(zhǎng)趨勢(shì)并于第10d后顯著大于鲴鰱鱅組相應(yīng)值(<0.05),到實(shí)驗(yàn)結(jié)束分別為鲴鰱鱅組的1.80,1.69,1.73,1.72,1.83倍.與對(duì)照組相比,有魚組的葉綠素濃度Chla和藻細(xì)胞密度明顯下降,到實(shí)驗(yàn)結(jié)束,鰱鱅組的Chl a和藻細(xì)胞密度分別為34.69mg/m3,1.96′106cells/L,鲴鰱鱅組分別為25.32mg/m3,1.9′106cells/L,均顯著低于對(duì)照組(<0.05).同位素分析結(jié)果顯示:標(biāo)記物15N微囊藻進(jìn)入系統(tǒng)后,部分被鰱鱅魚攝食同化為機(jī)體組成部分,再通過(guò)魚類分泌,排泄等方式進(jìn)入水體,水體中含氮營(yíng)養(yǎng)鹽被藻類生長(zhǎng)吸收,此外,一部分微囊藻沉淀和魚類排泄物作為沉積腐質(zhì)被鲴魚攝食同化為其機(jī)體組成部分.
穩(wěn)定同位素技術(shù);細(xì)磷斜頜鲴鰱魚;微囊藻
為治理富營(yíng)養(yǎng)化水體,遏制藍(lán)藻爆發(fā),非經(jīng)典生物操縱理論提出了利用濾食性魚類鰱(),鱅()直接牧食藻類的方法,但是對(duì)于該理論的應(yīng)用一直存在爭(zhēng)議.一方面,Ke等[1]通過(guò)圍隔實(shí)驗(yàn)發(fā)現(xiàn)鰱鱅腸道對(duì)微囊藻的貢獻(xiàn)率最高可達(dá)80%~100%;李元鵬等[2]也通過(guò)向富營(yíng)養(yǎng)化水庫(kù)投放鰱鱅魚,發(fā)現(xiàn)鰱鱅魚對(duì)水體中COD,TN,TP,NH3-N和藻類等均達(dá)到一定的去除效果.但Starling等[3]研究表明鰱魚10d內(nèi)排泄糞便重量近乎其自身重量,而其沉淀糞便沉積物所釋放的營(yíng)養(yǎng)鹽將對(duì)水質(zhì)產(chǎn)生負(fù)面影響.谷孝鴻等[4]也發(fā)現(xiàn)鰱鱅魚體儲(chǔ)存的氮、磷只占總氮、總磷的一小部分,大部分仍滯留在水體中,而魚類攝食,排泄活動(dòng)和對(duì)底泥的擾動(dòng)會(huì)加速水體中氮、磷養(yǎng)分循環(huán),促進(jìn)浮游植物密度的提高.近些年,許多學(xué)者發(fā)現(xiàn)細(xì)鱗斜頜鲴()與河蟹、鱖魚、青蝦、泥鰍等水生動(dòng)物套養(yǎng)可以更好地維持水環(huán)境的生態(tài)平衡,創(chuàng)造更多的經(jīng)濟(jì)效益[5-7].細(xì)鱗斜頜鲴是生活在水體底層的魚類,以刮取有機(jī)碎屑、污泥雜質(zhì)及水表面殘?jiān)菽械穆阍鍨槭?有水底“清潔夫”之稱[8],而鰱、鱅魚屬于水體中上層魚類,主要以浮游生物為食,將三者混養(yǎng)可豐富生物和食物鏈結(jié)構(gòu),提高經(jīng)濟(jì)效益.
此外,在水域生態(tài)學(xué)中穩(wěn)定同位素是一種被廣泛運(yùn)用的示蹤劑[9-11],王銀平等[12]曾利用該技術(shù)研究鰱,羅非魚攝食15N標(biāo)記物微囊藻干粉后排泄氮在水中的遷移轉(zhuǎn)化規(guī)律;Bergner等[13]也利用15N標(biāo)記魚體組織,在飼養(yǎng)中接受不同的蛋白質(zhì)來(lái)源以研究魚類的蛋白質(zhì)代謝與植物蛋白質(zhì)的氨基酸區(qū)別.因此,本論文結(jié)合兩者考慮,設(shè)計(jì)在模擬的富營(yíng)養(yǎng)水環(huán)境下將鲴魚與鰱鱅魚混養(yǎng),利用穩(wěn)定同位素技術(shù),通過(guò)鰱鱅魚牧食藻類,鲴魚攝食底層碎屑的食物鏈結(jié)構(gòu),探究鲴鰱鱅魚混養(yǎng)對(duì)水環(huán)境和氮素遷移轉(zhuǎn)化的影響.
實(shí)驗(yàn)裝置:采用9個(gè)100L的白色塑料圓桶,桶高65cm,頂部直徑52cm,底部直徑40cm.
實(shí)驗(yàn)用水:采用經(jīng)過(guò)曝氣除氯的自來(lái)水,銅綠微囊藻(藻密度約為7.4×106cells/L)和一定量的化學(xué)藥劑(1.40gNaNO3,0.90gK2HPO4)在恒溫循環(huán)水箱中混合均勻后分裝到實(shí)驗(yàn)裝置中.
實(shí)驗(yàn)魚種:細(xì)鱗斜頜鲴(Plagiogathops),體長(zhǎng)(10.12±0.56)cm,體重(13.45±3.98)g,魚齡接近1齡,由湖南醴陵市國(guó)家鲴魚良種場(chǎng)提供.鰱(),體長(zhǎng)(10.28±2.00)cm,體重(30.68±3.87)g.鱅()體長(zhǎng)(14.48±0.43)cm,體重(46.21±2.24)g,由安徽香泉鰱鱅養(yǎng)殖魚塘提供.
銅綠微囊藻:中國(guó)科學(xué)院水生生物研究所接種的純種銅綠微囊藻()藻種,采用BG11培養(yǎng)基擴(kuò)大培養(yǎng),培養(yǎng)溫度為(25±0.5)℃,光照強(qiáng)度為2000lx,光暗比為 12h:12h.
銅綠微囊藻培養(yǎng)液用15NH4Cl(98atom%15N)溶液進(jìn)行15N標(biāo)記,標(biāo)記后離心去除上清液后進(jìn)行冷凍干燥,再添加等量誘食劑制成藻食顆粒物待用.
實(shí)驗(yàn)設(shè)計(jì)為鰱鱅組,鲴鰱鱅組和對(duì)照組3組,每組設(shè)3個(gè)平行實(shí)驗(yàn).1~3#為鰱鱅組(5尾鰱,3尾鱅),4~6#為鲴鰱鱅組(5尾鰱,3尾鱅,5尾鲴),7~9#為對(duì)照組(不放魚)排除因?qū)嶒?yàn)環(huán)境對(duì)銅綠微囊藻產(chǎn)生的影響.實(shí)驗(yàn)前將鲴鰱鱅魚放入清水中饑餓處理3d排空腸胃,挑選其中活潑健康,大小接近的個(gè)體作為實(shí)驗(yàn)材料.實(shí)驗(yàn)水桶上方裝有日光燈,光照時(shí)間為9:30~21:00,24h曝氣.
實(shí)驗(yàn)時(shí)間為2018年5月21~6月9日,共計(jì)20d,于實(shí)驗(yàn)前1d,實(shí)驗(yàn)第1,5,10,15,20d上午09:30取樣監(jiān)測(cè),監(jiān)測(cè)的指標(biāo)有:TN,TP,NH3-N,NO3--N, NO2--N, PO43--P,Chl a,SS和藻細(xì)胞密度.實(shí)驗(yàn)第1d及以后每隔5d采集魚類生物體,浮游藻類,沉積腐質(zhì)和水體進(jìn)行穩(wěn)定同位素比值測(cè)定,由于鳙魚生物量有限,因此分別于實(shí)驗(yàn)第1,10,20d進(jìn)行采樣,采集樣品分別記為δ15N(鲴),δ15N(鰱),δ15N(鱅),δ15N(浮游藻類),δ15N(沉積腐質(zhì)), δ15N(氨氮)和δ15N(硝酸鹽氮),同位素比值單位為‰.
1.3.1 水質(zhì)指標(biāo) 營(yíng)養(yǎng)鹽TN,TP,NH3-N,NO3--N, NO2--N,PO43--P濃度測(cè)定方法參照《水和廢水監(jiān)測(cè)分析方法(第四版)》[14],SS濃度依據(jù)《湖泊富營(yíng)養(yǎng)化調(diào)查規(guī)范》[15]中所述方法進(jìn)行測(cè)定,Chl a濃度測(cè)定采用熱乙醇萃取分光光度法[16],藻細(xì)胞密度采用血小板顯微鏡計(jì)數(shù)法和分光光度法[17].
1.3.215N同位素比值測(cè)定 實(shí)驗(yàn)期間采集的魚類生物體、沉積腐質(zhì)、浮游藻類樣品均放入儀器中冷凍干燥,干燥后的樣品進(jìn)行研磨,水體中δ15N(氨氮)樣品處理按照Lehmann等[18]提供的方法,δ15N(硝酸鹽氮)樣品測(cè)定按照吳俊森等[19]提供的方法,所有樣品最終送入元素分析儀-同位素比質(zhì)譜儀聯(lián)機(jī)(FLASH 2000-Thermo Fisher DELTA V advantage,測(cè)定精度δ15N£±0.1‰)中測(cè)定氮同位素組成.
文中數(shù)據(jù)采用Execl和SPSS進(jìn)行單因素方差分析和顯著相關(guān)性分析,利用Origin2018進(jìn)行作圖.
由圖1可知,實(shí)驗(yàn)前期,鲴鰱鱅組各營(yíng)養(yǎng)鹽濃度(除NH3-N)快速增長(zhǎng),TN,TP,NO3--N,NO2--N, PO43-- P濃度分別于實(shí)驗(yàn)第1,5d達(dá)到最大值為3.94,0.20, 1.19,0.034,0.0039mg/L,隨后濃度逐漸下降,到實(shí)驗(yàn)結(jié)束分別達(dá)到2.67,0.13,0.93,0.026,0.0035mg/L.而鰱鱅組各營(yíng)養(yǎng)鹽濃度(除NH3-N)總體保持持續(xù)增長(zhǎng)并于第10d后顯著大于鲴鰱鱅組相應(yīng)值(<0.05),到實(shí)驗(yàn)結(jié)束,鰱鱅組TN,TP, NO3--N,NO2--N,PO43--P分別為鲴鰱鱅組的1.80,1.69,1.73,1.72,1.83倍.實(shí)驗(yàn)期間NH3-N濃度變化略有不同,實(shí)驗(yàn)前期,3組的NH3-N濃度快速下降,實(shí)驗(yàn)后期趨于穩(wěn)定,到實(shí)驗(yàn)結(jié)束,對(duì)照組、鰱鱅組和鲴鰱鱅組均達(dá)到最低值,分別為0.08,0.13,0.16mg/L,去除率分別為85.96%,77.19%, 71.93%.
由圖2可知,對(duì)照組懸浮固體SS濃度圍繞30.52mg/L上下浮動(dòng),變化較小,實(shí)驗(yàn)第1d鰱鱅組和鲴鰱鱅組SS濃度達(dá)到最大值,分別為43.13, 45.17mg/L,顯著高于對(duì)照組(<0.05),隨后濃度逐漸下降,實(shí)驗(yàn)第10d后均低于對(duì)照組.Chl a濃度表現(xiàn)為實(shí)驗(yàn)前期鰱鱅組和鲴鰱鱅組濃度快速下降,鰱鱅組于第5d達(dá)到最小值33.85mg/m3,極顯著低于對(duì)照組(<0.01),隨后緩慢增長(zhǎng)并趨于平穩(wěn),而鲴鰱鱅組Chl a濃度持續(xù)下降,于第15d顯著低于鰱鱅組(<0.05),實(shí)驗(yàn)結(jié)束達(dá)到最小值25.32mg/m3.藻細(xì)胞密度變化與Chl a,SS不同,鰱鱅組和鲴鰱鱅組藻細(xì)胞密度自實(shí)驗(yàn)開始后持續(xù)下降,并于第5d后均顯著低于對(duì)照組(<0.05),至實(shí)驗(yàn)結(jié)束,鰱鱅組和鲴鰱鱅組藻細(xì)胞密度分別達(dá)到最低值1.96′106,1.90′106cells/L,為對(duì)照組的69.50%和67.37%.
由圖3可知,自實(shí)驗(yàn)第1d投加標(biāo)記物微囊藻干粉后,3組水體中δ15N值均明顯增大.實(shí)驗(yàn)期間,對(duì)照組的δ15N(氨氮)值和δ15N(硝酸鹽氮)值分別圍繞平均值491.57‰,292.89‰上下浮動(dòng),最大幅度分別為9.11%, 18.53%,顯著低于鲴鰱鱅組(<0.05).鲴鰱鱅組的δ15N(氨氮)值和δ15N(硝酸鹽氮)值在實(shí)驗(yàn)前期快速增長(zhǎng)并于第10d達(dá)到最大值,分別為1108.66‰,668.64‰,隨后均逐漸下降,到實(shí)驗(yàn)結(jié)束分別為956.14‰,406.73‰.鰱鱅組δ15N(氨氮)值和δ15N(硝酸鹽氮)值前期迅速增長(zhǎng),δ15N(氨氮)值于第5d達(dá)到最大值788.72‰后迅速下降,且顯著低于鲴鰱鱅組(<0.05),而δ15N(硝酸鹽氮)值與鲴鰱鱅組對(duì)應(yīng)值變化趨勢(shì)相似,實(shí)驗(yàn)第10d達(dá)到最大值490.61‰,但顯著低于鲴鰱鱅組(<0.05).
由圖4可知,實(shí)驗(yàn)前期,對(duì)照組的δ15N(浮游藻類)值保持增長(zhǎng),并于第10d達(dá)到最大值1153.95‰后逐步下降,而鰱鱅組和鲴鰱鱅組中δ15N(浮游藻類)自實(shí)驗(yàn)開始就保持下降趨勢(shì),極顯著低于對(duì)照組(<0.01),到實(shí)驗(yàn)結(jié)束達(dá)到最低值,分別為324.74‰,307.17‰.鰱鱅組δ15N(沉積腐質(zhì))值自實(shí)驗(yàn)第1d就持續(xù)下降,而鲴鰱鱅組則經(jīng)歷短暫的升高后于第5d達(dá)到最高值1229.54‰后迅速下降,到實(shí)驗(yàn)結(jié)束鰱鱅組和鲴鰱鱅組δ15N(沉積腐質(zhì))值均達(dá)到最低值,分別為681.97‰,349.17‰.
由圖5可見,鰱鱅組和鲴鰱鱅組的鰱魚和鱅魚δ15N值變化趨勢(shì)相似,但總體上鰱鱅組的δ15N(鰱)值,δ15N(鱅)值均大于鲴鰱鱅組相應(yīng)值,且2組均表現(xiàn)為δ15N(鰱)值大于δ15N(鱅)值.實(shí)驗(yàn)前期,鰱鱅組和鲴鰱鱅組的δ15N(鰱)值,δ15N(鱅)值均迅速增長(zhǎng),第10d達(dá)到最大值分別為282.485‰,276.72‰,279.04‰, 260.12‰,隨后逐漸下降.鲴鰱鱅組的δ15N(鲴)值自實(shí)驗(yàn)開始就保持增長(zhǎng)趨勢(shì),實(shí)驗(yàn)前期δ15N(鲴)值低于δ15N(鰱)值和δ15N(鱅)值,實(shí)驗(yàn)結(jié)束時(shí)達(dá)到最大值307.65‰,顯著高于δ15N(鱅)值和δ15N(鰱)值(<0.05).
圖5 各組不同魚類δ15N值的變化 Fig.5 Changes of δ15N values of different fishes in each group
由表1可知,各組NH3-N與TN, NO3--N, NO2--N, δ15N(氨氮)和δ15N(硝酸鹽氮)均成負(fù)相關(guān),其中鰱鱅組和對(duì)照組NH3-N與TN,δ15N(硝酸鹽氮)和NO3--N呈顯著相關(guān)性,鲴鰱鱅組未達(dá)到顯著水平,同時(shí),鰱鱅組和對(duì)照組的TN與對(duì)應(yīng)組中其他不同形態(tài)氮素成一致相關(guān)性,其中與NO3--N,NO2--N和δ15N(氨氮)均呈正相關(guān)性,同時(shí)表現(xiàn)為與相應(yīng)組的δ15N(硝酸鹽氮)呈正顯著相關(guān)性,鰱鱅組的TN與NO3--N,NO2--N也達(dá)到顯著水平,說(shuō)明實(shí)驗(yàn)水體的氮鹽主要由硝酸鹽氮貢獻(xiàn),鲴鰱鱅組TN與其NH3-N,NO3--N,δ15N(氨氮)和δ15N(硝酸鹽氮)均成正相關(guān),但未達(dá)到顯著水平.
表1 實(shí)驗(yàn)中各組合水體中不同形態(tài)氮素測(cè)定值的相關(guān)關(guān)系 Table 1 Correlation of different morphological nitrogen values in each combination of water in the text
注:*表示顯著相關(guān),<0.05.
研究指出,大規(guī)模放養(yǎng)鰱,鱅對(duì)藻類有明顯消耗作用[20],尤其是藍(lán),綠藻的生物量能被控制在較低的水平[21].范振強(qiáng)等[22]也發(fā)現(xiàn)以水華微囊藻為優(yōu)勢(shì)種的高藻原水經(jīng)過(guò)在水廠預(yù)沉池放養(yǎng)鰱魚進(jìn)行預(yù)處理后,藻類總量,藍(lán)藻和水華微囊藻含量分別下降了61.8%,76.1%和78.2%.本次實(shí)驗(yàn)鰱鱅組和鲴鰱鱅組的Chl.a和藻細(xì)胞密度與對(duì)照組對(duì)應(yīng)值相比,均明顯下降,鰱、鱅魚生理特征顯示,其鰓粑、腭褶和鰓粑管上皮都分布有味蕾和豐富的粘液細(xì)胞[23],另外從鰱鱅所生活水體中的浮游生物組成和它們腸管中食物組成的一致性來(lái)看,它們對(duì)食物并無(wú)選擇能力[24],更能表明鰱,鱅確實(shí)能夠攝食銅綠微囊藻.但鰱鱅魚類牧食排泄活動(dòng)也會(huì)導(dǎo)致營(yíng)養(yǎng)物質(zhì)重新進(jìn)入水體,陳少蓮等[25]通過(guò)實(shí)驗(yàn)研究發(fā)現(xiàn)鰱,鱅魚組水體中氮,磷釋放率分別為無(wú)魚水體的1.8和1.41倍,王嵩等[26]通過(guò)圍隔實(shí)驗(yàn)也發(fā)現(xiàn)水體總磷較放魚前明顯上升.本次研究中鰱鱅組TN,TP等部分營(yíng)養(yǎng)鹽濃度持續(xù)增高,到實(shí)驗(yàn)后期,鰱鱅組水體中各營(yíng)養(yǎng)鹽濃度均高于鲴鰱鱅組,分析原因是放養(yǎng)鰱,鳙會(huì)在很大程度上加速浮游生物—有機(jī)質(zhì)—微生物—營(yíng)養(yǎng)鹽這一鏈條的循環(huán)速率,加速了水體富營(yíng)養(yǎng)化鹽氮磷的溢出作用[27].本次實(shí)驗(yàn)中后期,鲴鰱鱅組相較于鰱鱅組水體各營(yíng)養(yǎng)鹽濃度明顯下降,同時(shí),水體Chl a和藻細(xì)胞密度也明顯低于對(duì)照組和鰱鱅組,原因可能是細(xì)鱗斜頜鲴喜食一些能形成“水華”的藻類,如微囊藻,絲狀顫藻等,并主要以水中有機(jī)碎屑和腐殖質(zhì)為食[28],混養(yǎng)鲴魚可以減少鰱鳙攝食微囊藻后的排泄物,同時(shí)降低排泄物中微囊藻活性,減少了因鰱鳙排泄物引起的水環(huán)境污染和生態(tài)影響[29].
3組的NH3-N濃度自實(shí)驗(yàn)開始就迅速下降,到實(shí)驗(yàn)結(jié)束,對(duì)照組,鰱鱅組和鲴鰱鱅組3組均達(dá)到最低值,去除率分別達(dá)到85.96%,77.19%,71.93%,分析可能是曝氣對(duì)水體中NH3-N有一定的吹脫作用,且曝氣營(yíng)造的好氧環(huán)境也抑制了NH3-N的產(chǎn)生,加快了其分解[30].同時(shí),實(shí)驗(yàn)期間3組的NH3-N濃度表現(xiàn)為鲴鰱鱅組高于鰱鱅組,對(duì)照組濃度明顯低于鰱鱅組和鲴鰱鱅組,可能是因?yàn)榘弊鳛轸~類最主要的排泄產(chǎn)物之一,在肝臟內(nèi)通過(guò)自由氨基酸的轉(zhuǎn)氨和脫氨作用產(chǎn)生,靠擴(kuò)散作用等透過(guò)細(xì)胞膜而排出體外[31],而鲴鰱鱅組魚類密度明顯高于鰱鱅組.
經(jīng)過(guò)同位素標(biāo)記的標(biāo)記物進(jìn)入生態(tài)系統(tǒng),在傳遞過(guò)程中會(huì)產(chǎn)生具有一定規(guī)律性的分餾效應(yīng),各生物與非生物相同位素比值有一定的差異,通過(guò)此差異性可以研究標(biāo)記元素的遷移轉(zhuǎn)化[32].本次實(shí)驗(yàn)通過(guò)將用15N標(biāo)記過(guò)的銅綠微囊藻做成食物投加到系統(tǒng)中,實(shí)驗(yàn)前期,各組水體中δ15N(氨氮)值和δ15N(硝酸鹽氮)值明顯增長(zhǎng),分析可能是實(shí)驗(yàn)前期藻類處于生長(zhǎng)適應(yīng)期,釋放的15N大大超過(guò)藻類生物合成過(guò)程中吸收的[33],此外魚體通過(guò)鰓排出15N以及微生物從沉積的魚類排泄物和衰亡藻類分解出的15N也會(huì)導(dǎo)致δ15N(氨氮)值增高[34],而硝化細(xì)菌在好氧環(huán)境中將水體中的NH3-N轉(zhuǎn)化為NO3--N,因此δ15N(硝酸鹽氮)值也逐步增長(zhǎng).隨著實(shí)驗(yàn)的進(jìn)行,藻類生長(zhǎng)所需的15N超過(guò)釋放的,鲴鰱鱅組和鰱鱅組中魚類生物量減少,各組中魚類排出的15N量也隨之降低,但生物量總體表現(xiàn)為鲴鰱鱅組高于鰱鱅組,因此實(shí)驗(yàn)后期,鰱鱅組和鲴鰱鱅組的δ15N(氨氮)和δ15N(硝酸鹽氮)值開始下降,且總體表現(xiàn)為鲴鰱鱅組δ15N(氨氮)和δ15N(硝酸鹽氮)值高于鰱鱅組對(duì)應(yīng)值.
實(shí)驗(yàn)第1d,各組δ15N(浮游藻類)值和δ15N(沉積腐質(zhì))值均迅速升高,說(shuō)明無(wú)機(jī)氮能夠有效地被微囊藻利用[35],而沉積腐質(zhì)主要由魚類排泄物,懸浮物顆粒物和藻類衰亡的沉淀物組成,δ15N(沉積腐質(zhì))值迅速增加,原因可能有以下3個(gè):喂食過(guò)程中部分未被攝食的餌料作為懸浮顆粒物沉淀到裝置底部;藻類生長(zhǎng)適應(yīng)期部分衰亡沉淀;魚類的代謝活動(dòng)導(dǎo)致排泄物增多.對(duì)比王銀平等[12]實(shí)驗(yàn)研究中δ15N(沉積腐質(zhì))值緩慢升高到第5d達(dá)到最大之后下降,本次實(shí)驗(yàn)鰱鱅組和鲴鰱鱅組的δ15N(浮游藻類)值和δ15N(沉積腐質(zhì))值自實(shí)驗(yàn)第1d后迅速下降,同時(shí)鰱鱅組和鲴鰱鱅組中各魚類的δ15N值逐步升高,說(shuō)明魚類能夠有效進(jìn)行牧食活動(dòng).此外,各組魚類δ15N值表現(xiàn)為鰱鱅組和鲴鰱鱅組δ15N(鰱)值和δ15N(鱅)值于第10d達(dá)到最大值后趨于平穩(wěn),且2組的δ15N(鰱)值分別高于相應(yīng)組的δ15N(鱅)值,原因是鰱魚和鳙魚的腸道發(fā)育不同,當(dāng)魚體長(zhǎng)超過(guò)3cm,鰱魚的腸道明顯長(zhǎng)于鳙魚,使得鰱魚攝食消化率高于鱅魚.
根據(jù)樣品經(jīng)同位素質(zhì)譜儀分析出的15N原子百分比(atom%)和氮含量百分比(N%),計(jì)算得出樣品中的15N增加量(excess15N)及15N存儲(chǔ)量(store15N).
excess
15
N
[36]
=
式中:atom%sample為樣品15N原子百分比平均值; atom%control為標(biāo)記前樣品15N原子百分比平均值;sample為樣品質(zhì)量.;excess15N為15N原子的增加量,mmol;store15N為15N原子的存儲(chǔ)量,μmol.
根據(jù)以上公式計(jì)算得出每組投加的標(biāo)記物微囊藻中15N總量為19.34μmol,由表2可見,實(shí)驗(yàn)第1d,3組沉積腐質(zhì)的15N存儲(chǔ)量占比較大,鰱鱅組,鲴鰱鱅組和對(duì)照組分別為總量的20.77%,21.56%和20.66%,說(shuō)明標(biāo)記物微囊藻干粉有部分沉淀.隨著實(shí)驗(yàn)的進(jìn)行,各類魚體中過(guò)量15N存儲(chǔ)量均有所增高,但占總量的百分比不高,到實(shí)驗(yàn)結(jié)束,鰱鱅組的鰱魚,鳙魚轉(zhuǎn)化百分比分別是7.31%和6.96%,鲴鰱鱅組分別為7.15%, 6.73%,同時(shí),鲴魚達(dá)到了轉(zhuǎn)化最大百分比7.85%.實(shí)驗(yàn)期間,浮游藻類的15N存儲(chǔ)量表現(xiàn)為對(duì)照組高于鰱鱅組和鲴鰱鱅組,實(shí)驗(yàn)結(jié)束時(shí),鰱鱅組和鲴鰱鱅組分別達(dá)到最低值0.45和0.42μmol,占總量的2.33%和2.19%,對(duì)照組則為1.79μmo,占比9.27%.同時(shí),各組水體中營(yíng)養(yǎng)鹽15N存儲(chǔ)量表現(xiàn)為NH3-N大于NO3--N,對(duì)比實(shí)驗(yàn)第1d和第20d,鰱鱅組,鲴鰱鱅組和對(duì)照組硝酸鹽氮過(guò)量15N存儲(chǔ)量分別增加了2.96,2.65和0.38μmol,此外,根據(jù)各組中不同相的占比總和可知,投加的標(biāo)記物并未全部轉(zhuǎn)化到監(jiān)測(cè)的生物和非生物相中,說(shuō)明系統(tǒng)中微生物也參與了15N的遷移轉(zhuǎn)化.由實(shí)驗(yàn)中15N存儲(chǔ)量數(shù)據(jù)和食物鏈相關(guān)知識(shí)分析可知,標(biāo)記物微囊藻進(jìn)入系統(tǒng)后,一部分經(jīng)鰱鱅魚攝食后被同化成魚類有機(jī)體組成部分,一部分標(biāo)記物下沉和魚類排泄物一起作為沉積腐質(zhì)被鲴鰱鱅組中鲴魚攝食并同化成其機(jī)體組成部分,而魚類分泌,排泄等活動(dòng)使氮營(yíng)養(yǎng)鹽進(jìn)入水體,水體中含氮營(yíng)養(yǎng)鹽被浮游藻類生長(zhǎng)利用.
表2 實(shí)驗(yàn)各組合中不同相15N存儲(chǔ)量及其百分比 Table 2 15N storage and its percentage of different phases in each combination of the text
4.1 鲴魚與鰱鱅魚混養(yǎng)能夠有效減緩鰱鱅魚排泄活動(dòng)對(duì)水質(zhì)造成的負(fù)面影響,并能達(dá)到協(xié)同控藻的效果,到實(shí)驗(yàn)結(jié)束,鲴鰱鱅組TN,TP顯著低于鰱鱅組(<0.05),分別為2.67,0.13mg/L,Chl.a和藻細(xì)胞密度也達(dá)到最低值,分別為25.32mg/m3,1.90′106cell/L,極顯著低于對(duì)照組(<0.01).
4.2 鲴魚因食物來(lái)源和魚體吸收消化率的差異性,使得其與鰱鱅魚相比能更有效的吸收和存儲(chǔ)15N.實(shí)驗(yàn)期間,δ15N(鲴)值一直呈上升趨勢(shì),到實(shí)驗(yàn)結(jié)束, δ15N(鲴)值達(dá)到最大值307.65‰,顯著高于δ15N(鱅)值和δ15N(鰱)值(<0.05).
4.3 同位素標(biāo)記物微囊藻進(jìn)入系統(tǒng)后,一部分經(jīng)鰱鱅魚攝食同化成為魚類有機(jī)體組成部分,又通過(guò)魚類分泌,排泄等方式進(jìn)入水體,水體中含氮營(yíng)養(yǎng)鹽被浮游藻類生長(zhǎng)利用,一部分未被攝食的微囊藻沉淀和魚類排泄物作為沉積腐質(zhì)經(jīng)鲴魚攝食同化成其機(jī)體組成部分.
[1] Ke Z X, Xie P, Guo L G, et al. In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China: A large fish pen experiment [J]. Aquaculture, 2007,265(1):127-138.
[2] 李元鵬,于惠莉,顧學(xué)林,等.鰱鳙魚原位修復(fù)水庫(kù)水質(zhì)的試驗(yàn)[J]. 凈水技術(shù), 2017,36(10):52-56.Li Y P, Yu H L, Gu X L, et al. Experiment of reservoir water quality in-situ remediation with silver and bighead carps [J]. Water Purification Technology, 2017,36(10):52-56.
[3] Starling L D R M. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoá Reservoir (Brasília, Brazil): a mesocosm experiment [J]. Hydrobiologia, 1993, 257(3):143-152.
[4] 谷孝鴻,劉桂英.濾食性鰱鳙魚對(duì)池塘浮游生物的影響[J]. 農(nóng)村生態(tài)環(huán)境, 1996,(1):6-10+41.Gu X H, Liu G Y. Impact of Silver Carp and Head Carp in Fish Ponds on Plankton [J]. Rural Ecological Environment, 1996,(1):6-10,41.
[5] 侯冠軍,宋光同,陳 靜,等.蝦蟹混養(yǎng)池塘套養(yǎng)細(xì)鱗斜頜鲴試驗(yàn)[J]. 水產(chǎn)養(yǎng)殖, 2012,33(12):18-22.Hou G J, Song G T, Chen J, et al. Text of Shrimp, crab andpolyculture ponds [J]. Journal of Aquaculture, 2012,33(12):18-22.
[6] 凌 俊,江 河,胡 王,等.池塘蟹、鱖、鲴、鳙健康混養(yǎng)增效模式[J]. 科學(xué)養(yǎng)魚, 2013,(11):25-27.Ling J, Jiang H, Hu W, et al. Pond crab, scorpion, silver carp and bighead carp health polyculture efficiency model [J]. Scientific Fish Farming, 2013,(11):25-27.
[7] 陳 軍,王煜恒,王會(huì)聰,等.投放不同密度的細(xì)鱗斜頜鲴對(duì)河蟹養(yǎng)殖水質(zhì)和經(jīng)濟(jì)效益的影響[J]. 江蘇農(nóng)業(yè)科學(xué), 2017,45(23):174-177.Chen J, Wang Y H, Wang H C, et al. Effects of different density ofon the water quality and economic benefits of crab farming [J]. Jiangsu Agricultural Sciences, 2017,45(23):174-177.
[8] 楊四秀.鲴魚的生物學(xué)特性及養(yǎng)殖技術(shù)[J]. 內(nèi)陸水產(chǎn), 2004, (5):28-29. Yang S X. Biological characteristics and culture techniques of[J]. Inland Aquatic Products, 2004,(5):28-29.
[9] Burford M A, Preston N P, Glibert P M, et al. Tracing the fate of15N-enriched feed in an intensive shrimp system [J]. Aquaculture, 2002,206(3):199-216.
[10] Kang C K, Choy E J, Son Y, et al. Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses [J]. Marine Biology, 2008,153(6):1181-1198.
[11] 王海霞,劉 瑀,關(guān)春江,等.營(yíng)養(yǎng)條件對(duì)微藻碳,氮穩(wěn)定同位素組成的影響[J]. 中國(guó)環(huán)境科學(xué), 2014,34(3):727-733.Wang H X, Liu Y, Guan C J, et al. Effects of nutritional conditions on the stable carbon and nitrogen isotope of microalgae [J]. China Environmental Science, 2014,34(3):727-733.
[12] 王銀平,谷孝鴻,曾慶飛,等.食微囊藻干粉魚類對(duì)水環(huán)境的影響及氮素遷移轉(zhuǎn)化規(guī)律[J]. 湖泊科學(xué), 2015,27(3):475-485.Wang Y P, Gu X H, Zeng Q F, et al. Impacts of faeces from microcystis-dietary silver carp () and tilapia () on the aquatic environments and the transferring of fae[1]ces-sourced nitrogen [J]. J. Lake Sciences, 2015, 27(3):475-485.
[13] Bergner H, G?tz K P, Simon M, et al.15N-labeling of fishes using15N isotopes in aquarium water and the effect of a different protein nutrient on the15N elimination after the labeling period [J]. Archiv für Tierern?hrung, 1993,45(2):139.
[14] 魏復(fù)盛.水和廢水監(jiān)測(cè)分析方法(第四版) [M].北京:中國(guó)科學(xué)出版社, 2002:200-284.Wei F S. Water and wastewater monitoring and analysis methods (Fourth edition) [M]. Beijing: China Science Press, 2002:200-284.
[15] 金相燦,屠清瑛.湖泊富營(yíng)養(yǎng)化調(diào)查規(guī)范[M]. 北京:中國(guó)環(huán)境科學(xué)出版社, 1990:143. Jin X C, Tu Q Y. Lake eutrophication survey specification [M]. Beijing: China Environmental Science Press, 1990:143.
[16] 陳宇煒,陳開寧,胡耀輝.浮游植物葉綠素a測(cè)定的“熱乙醇法”及其測(cè)定誤差的探討[J]. 湖泊科學(xué), 2006,18(5):550-552.Chen Y W, Chen K N, Hu Y H. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method [J]. Journal of Lake Sciences, 2006,18(5):550-552.
[17] Dickman M. A new method for making permanent phytoplankton mounts [J]. Hydrobiologia, 1968,31(2):161-167.
[18] Lehmann M F, Bernasconi S M, Mckenzie J A. A method for the extraction of ammonium from freshwaters for nitrogen isotope analysis [J]. Analytical Chemistry, 2001,73(19):4717-4721.
[19] 吳俊森,王麗麗,賈瑞寶,等.同位素分析法測(cè)定硝酸鹽氮預(yù)處理方法研究[J]. 山東建筑大學(xué)學(xué)報(bào), 2012,27(1):8-10.Wu J S, Wang L L, Jia R B, et al. Study on pretreatment for measurement nitrate nitrogen in isotopic analysis method [J]. Journal of Shandong Jianzhu University, 2012,27(1):8-10.
[20] 朱雪霞.億尾鰱鳙魚苗可“滅”藍(lán)藻120萬(wàn)噸[N]. 江蘇科技報(bào), 2015-02-13(A01). Zhu X X. Billions of silver carp and bighead carp fry can "kill" cyanobacteria 1.2 million tons [N]. Jiangsu Science and Technology News, 2015-02-13(A01).
[21] 崔福義,林 濤,馬 放,等.水體治理中鰱鳙生物操縱作用的實(shí)驗(yàn)研究[J]. 南京理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004,(6):668-672.Cui F Y, Lin T, Ma F, et al. Experimental study on the Biological manipulation of silver carp and bighead carp in water treatment [J]. Journal of Nanjing University of Science And Technology, 2004,(6):668-672.
[22] 范振強(qiáng),崔福義,馬 華,等.放養(yǎng)鰱魚預(yù)處理高藻原水的除藻效能及特性[J]. 環(huán)境科學(xué), 2008,(3):632-637.Fan Z Q, Cui F Y, Ma H, et al. Effectiveness and characteristics of treating algae-laden raw water by stocking silver carp [J]. Environmental Science, 2008,(3):632-637.
[23] 孫曉明,孟慶聞.鰱、鳙濾食及消化器官的發(fā)育,構(gòu)造與食性的相互關(guān)系[J]. 水產(chǎn)學(xué)報(bào), 1992,(3):202-212.Sun X M, Meng Q W. The relationship between the development of sputum, sputum filter and digestive organs, structure and diet of silver carp and bighead carp [J]. Journal of Fisheries of China, 1992,(3):202-212.
[24] 周 潔,林 峰.鰱、鳙的食性及其對(duì)藻類的消化利用[J]. 水生生物學(xué)報(bào), 1990,(2):170-175+197-198. Zhou J, Lin F. The feeding habits of silver carp and bighead carp and their digestion and utilization of algae [J]. Acta Hydrobiologica Sinica, 1990,(2):170-175+197-198.
[25] 陳少蓮,劉肖芳,華 俐.鰱、鳙在東湖生態(tài)系統(tǒng)的氮、磷循環(huán)中的作用[J]. 水生生物學(xué)報(bào), 1991,(1):8-26.Chen S L, Liu X F, Hua L. The role of silver carp and bighead in the nitrogen and phosphorus cycles of the East Lake ecosystem [J]. Acta Hydrobiologica Sinica, 1991,(1):8-26.
[26] 王 嵩,王啟山,張麗彬,等.水庫(kù)大型圍隔放養(yǎng)鰱魚、鳙魚控藻的研究[J]. 中國(guó)環(huán)境科學(xué), 2009,29(11):1190-1195.Wang S, Wang Q S, Zhang L B, et al. Large enclosures experimental study on algal control by silver carp and bighead [J]. China Environmental Science, 2009,29(11):1190-1195.
[27] 劉 敏,徐敏嫻,許迪亮,等.鰱、鳙非經(jīng)典生物操縱作用的研究進(jìn)展與應(yīng)用現(xiàn)狀[J]. 水生態(tài)學(xué)雜志, 2010,31(3):99-103.Liu M, Xu M X, Xu D L, et al. Research progress and application status of non-classical biological manipulation ofand[J]. Journal of Hydroecology, 2010,31(3):99-103.
[28] 李艷和,江 河,管遠(yuǎn)亮,等.細(xì)鱗斜頜鲴湖泊套養(yǎng)試驗(yàn)[J]. 安徽農(nóng)業(yè)科學(xué), 2005,(11):2085-2086.Li Y H, Jiang H, Guan Y L, et al.lake nesting test [J]. Anhui Agricultural Sciences, 2005,(11):2085-2086.
[29] 郭艷敏,高月香,張毅敏,等.鲴對(duì)食微囊藻鰱鳙排泄物及藻活性的作用研究[J]. 中國(guó)環(huán)境科學(xué), 2016,36(12):3784-3792.Guo Y M, Gao Y X, Zhang Y M, et al. Effect ofon feces and microcystis activity from microcystis-dietary silver carp and bighead carp [J]. China Environmental Science, 2016,36(12):3784-3792.
[30] 胡湛波,劉 成,周權(quán)能,等.曝氣對(duì)生物促生劑修復(fù)城市黑臭河道水體的影響[J]. 環(huán)境工程學(xué)報(bào), 2012,6(12):4281-4288.Hu Z B, Liu C, Zhou Q N, et al. Effects of aeration to remediation of black-odorous urban river by using biostimulants [J]. Chinese Journal of Environmental Engineering, 2012,6(12):4281-4288.
[31] 吳 晗,張毅敏,周 創(chuàng),等.溫度對(duì)細(xì)鱗斜頜鲴生理學(xué)特性影響的研究[J]. 環(huán)境工程, 2015,33(5):23-27+89.Wu H, Zhang Y M, Zhou C, et al. Influence of temperature on physiological Characteristics of[J]. Environmental Engineering, 2015,33(5):23-27+89.
[32] Gribsholt B, Boschker S, Struyf E, et al. Nitrogen processing in a tidal freshwater marsh: A whole-ecosystem15N labeling study [J]. Limnology and Oceanography, 2005,50(6):1945-1959.
[33] 郭艷敏.鰱鳙鲴組合系統(tǒng)控制富營(yíng)養(yǎng)化水體中藍(lán)藻活性和氮素遷移轉(zhuǎn)化的研究[D]. 南京:東南大學(xué), 2017.Guo Y M. Studies on the variation of cyanophyta activity and nitrogen migration and transformation in biomanipulation process by silver carp,bighead carp and[D]. Nanjing:Southeast University, 2017.
[34] Burford M A, Glibert P M. Short-term nitrogen uptake and regeneration in early and late growth phase shrimp ponds [J]. Aquaculture Research, 1999,30(3):215-227.
[35] 吳軒浩,高佳逸,嚴(yán)楊蔚,等.無(wú)機(jī)氮和有機(jī)氮對(duì)銅綠微囊藻生長(zhǎng)和產(chǎn)毒影響的比較[J]. 環(huán)境科學(xué)學(xué)報(bào), 2015, 35(3):677-683.Wu X H, Gao J Y, Yan Y W, et al. Comparison of inorganic nitrogen and organic nitrogen on the growth and microcystin production of[J]. Acta Scientiae Circumstantiae, 2015,35(3):677-683.
[36] 李 柯.藍(lán)藻分解所釋放營(yíng)養(yǎng)鹽在沉水植被區(qū)的歸趨[D]. 武漢:華中農(nóng)業(yè)大學(xué), 2011.Li K. The fate of nutrients released during the decomposing of cyanobacterial detritus in submerged macrophytes zones [D]. Wuhan: Huazhong Agricultural University, 2011.
Effects ofandpolyculture on water environment and nitrogen migration and transformation.
CHEN Ling-ling1,2, GAO Yue-xiang2, ZHANG Yi-min2*, ZHU Yue-ming2, KONG Ming2, XU Xue-ting2, WANG Yong-tao1, HUANG Tian-yin1
(1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;2.Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210000, China)., 2019,39(3):1181~1188
15N stable isotope tracer technique was employed to study the effects of(),(Silver carp) and(bighead carp) polyculture on water environment and nitrogen migration and transformation. The results showed thateach nutrient salt concentration in the,silver carpandbighead carp group decreased rapidly after a brief increase and at the end of the test, while TN, TP, NO3--N,NO2--N and PO43--P respectively reached 2.67, 0.13, 0.93, 0.026 and 0.0035mg/L. The nutrient concentration of the silver carp and bighead carp group generally maintained an increasing trend and was significantly greater than the corresponding value of the,silver carp and bighead carp group after the 10th day (<0.05), while TN, TP, NO3--N, NO2--N and PO43--P of it were 1.80, 1.69, 1.73, 1.72 and 1.83 times of that group when the experiment was over. Chl a and the cell density of algae in the fish group decreased significantly compared with the control group, while the silver carpandbighead carp group reaching 34.69mg/m3, 1.96′106cells/L and the, silver and bighead carpgroup reaching 25.32mg/m3, 1.9′106cells/L respectively at the end of the test, which were significantly lower than the control group (<0.05). The isotope analysis showed thatmarked15N was assimilated partly by thesilver carp and bighead carp body and entered the water body through fish secretion and excretion, then the nitrogen in water were absorbed by algae after being put into the water. In addition, somesedimentation and fish excrement were assimilated as the sedimentary humus into the body ofby ingestion.
stable isotope technique;;and;
X52
A
1000-6923(2019)03-1181-08
陳玲玲(1992-),女,江蘇泰州人,蘇州科技大學(xué)碩士研究生,主要從事水環(huán)境治理和流域生態(tài)保護(hù)研究方向.
2018-08-07
國(guó)家水體污染控制與治理重大專項(xiàng)課題(2017ZX07202006);中央級(jí)公益性科研院所基本科研業(yè)務(wù)專項(xiàng)(GYZX160105);長(zhǎng)江經(jīng)濟(jì)帶突發(fā)事故環(huán)境風(fēng)險(xiǎn)分級(jí)與防控對(duì)策研究(GYZX170104)
* 責(zé)任作者, 研究員, zym7127@163.com