何立平,田茂平,吳 紅,林俊杰,蘭 波
?
大氣氮沉降對(duì)三峽庫(kù)區(qū)消落帶土壤呼吸的影響
何立平1,2*,田茂平1,吳 紅1,林俊杰1,蘭 波1
(1.重慶三峽學(xué)院,三峽庫(kù)區(qū)水環(huán)境演變與污染防治重慶高校市級(jí)重點(diǎn)實(shí)驗(yàn)室,重慶 404100;2.三峽庫(kù)區(qū)生態(tài)環(huán)境保護(hù)和災(zāi)害防治重慶市協(xié)同創(chuàng)新中心,重慶 404100)
以三峽庫(kù)區(qū)消落帶落干期土壤為研究對(duì)象,采用室內(nèi)模擬培養(yǎng)的方法,探討了大氣氮沉降通量及其組成對(duì)土壤呼吸的影響.結(jié)果表明,土壤呼吸速率對(duì)氮添加的響應(yīng)為短期效應(yīng). 1倍當(dāng)前大氣氮沉降添加下,無(wú)機(jī)氮和有機(jī)氮對(duì)土壤累積CO2釋放分別表現(xiàn)為無(wú)影響和抑制作用.除NH4+-N在2倍氮沉降添加下表現(xiàn)為抑制作用外, 2、3倍氮沉降添加均促進(jìn)了土壤累積CO2釋放.與硝態(tài)氮相比, 2、3倍氮沉降添加的銨態(tài)氮對(duì)土壤累積CO2釋放具有抑制作用.
大氣氮沉降;三峽庫(kù)區(qū);消落帶;土壤呼吸
土壤碳庫(kù)是陸地生態(tài)系統(tǒng)碳庫(kù)的主體,全球約有684~724Pg 碳是以有機(jī)質(zhì)的形態(tài)儲(chǔ)存于地表0~30cm的土壤中.土壤碳庫(kù)儲(chǔ)量約是陸地植被總碳儲(chǔ)量的1.5倍,與大氣CO2碳儲(chǔ)量相當(dāng)[1].因此,即使表層土壤有機(jī)碳庫(kù)輕微的礦化,也可能引起大氣CO2濃度的顯著升高,影響全球氣候變化[2-3].
土壤碳氮循環(huán)存在耦合關(guān)系[4].作為全球氣候變化驅(qū)動(dòng)因素之一,大氣氮沉降是影響陸地生態(tài)系統(tǒng)有機(jī)碳生物地球化學(xué)循環(huán)的重要因素[5].過(guò)去60年,人類活動(dòng)已導(dǎo)致全球大氣氮沉降顯著增加[6-7].并且,隨著全球人口的持續(xù)膨脹和能源消耗的進(jìn)一步加大,未來(lái)數(shù)十年,全球大氣氮沉降將持續(xù)加劇[8].因此,大氣氮沉降對(duì)土壤生態(tài)系統(tǒng)CO2釋放的影響已成為關(guān)注的焦點(diǎn).
目前,針對(duì)大氣氮沉降對(duì)土壤生態(tài)系統(tǒng)CO2釋放的影響,已開(kāi)展了大量的室內(nèi)室外模擬研究.從大氣氮沉降組成的角度,這些研究可分為無(wú)機(jī)氮和有機(jī)氮沉降模擬研究.無(wú)機(jī)氮沉降模擬研究采用了NH4+-N[9-10]、NO3--N[11-13]和NH4NO3[14-16]3種氮組成,而有機(jī)氮沉降模擬研究采用了CO(NH2)2作為氮組成[17-19].目前這些模擬研究還存在以下2方面的問(wèn)題:一方面,這些研究針對(duì)的是不同土壤生態(tài)系統(tǒng)(草地、森林、農(nóng)田、濕地)且氮添加量各異,因此得到了大氣氮沉降對(duì)土壤CO2釋放具有促進(jìn)作用[16,18]、抑制作用[9-10,14]、無(wú)影響[20-21]以及土壤CO2釋放與大氣氮沉降通量有關(guān)的不同結(jié)果[18,22-23].因此,要準(zhǔn)確評(píng)估大氣氮沉降對(duì)土壤生態(tài)系統(tǒng)CO2釋放的影響,仍需進(jìn)一步探討大氣氮沉降對(duì)其他土壤生態(tài)系統(tǒng)CO2釋放影響,為后續(xù)評(píng)估模型的建立提供數(shù)據(jù)支撐.另一方面,實(shí)際大氣氮沉降組成既包括有機(jī)氮也包括無(wú)機(jī)氮[24],而相關(guān)研究?jī)H模擬討論了單一無(wú)機(jī)或者有機(jī)氮沉降對(duì)土壤CO2釋放的影響.因此,這一科學(xué)問(wèn)題仍需針對(duì)更多的土壤生態(tài)系統(tǒng)和實(shí)際的大氣氮沉降組成進(jìn)行更加細(xì)致深入的研究.
消落帶是水陸生態(tài)系統(tǒng)的交界地帶,土壤生態(tài)環(huán)境特殊.針對(duì)大氣氮沉降對(duì)消落帶土壤CO2釋放的影響研究目前尚未見(jiàn)報(bào)道.三峽水庫(kù)蓄水后,形成了世界上面積最大的消落帶,本研究以三峽庫(kù)區(qū)消落帶落干期土壤為研究對(duì)象,采用室內(nèi)模擬培養(yǎng)的方法,探討落干期不同大氣氮沉降通量及其組成對(duì)土壤CO2釋放的影響,為評(píng)估大氣氮沉降對(duì)土壤生態(tài)系統(tǒng)CO2釋放的影響和預(yù)測(cè)未來(lái)全球氣候變化的趨勢(shì)提供新的科學(xué)依據(jù).
三峽水庫(kù)最高水位為175m,最低水位為145m.水庫(kù)冬蓄夏泄的調(diào)蓄水制度,在兩岸形成了落差30m,面積約400km2的消落帶.消落帶1~4月和5~7月分別為淹水期和落干期[25].自2009年三峽水庫(kù)首次蓄水至175m水位以來(lái),消落帶已經(jīng)歷了6個(gè)周期的干濕交替過(guò)程.本研究于2016年7月在三峽庫(kù)區(qū)消落帶萬(wàn)州段(30o49’26’’N~30o49’38’’N, 108o24’45’’E~108o26’16’’E)采集表層0~10cm土壤樣品.樣品采集后立即放入4℃保溫箱中保存,迅速送往實(shí)驗(yàn)室.土壤經(jīng)冷凍干燥,去除石礫、動(dòng)植物殘?bào)w,過(guò)8目篩后混勻裝入棕色磨口瓶中置于干燥器儲(chǔ)存?zhèn)溆?供試土壤基本理化性質(zhì)見(jiàn)表1.
表1 消落帶土壤基本理化性質(zhì) Table 1 Basic physicochemical properties of soil in water level fluctuating zone
三峽庫(kù)區(qū)萬(wàn)州段消落帶落干期平均氣溫為25℃[25],因此本研究以25℃,好氧培養(yǎng)進(jìn)行室內(nèi)模擬.無(wú)機(jī)氮沉降以NH4+-N、NO3--N模擬,而有機(jī)氮沉降以CO(NH2)2模擬.此外,考慮到我國(guó)實(shí)際大氣氮沉降無(wú)機(jī)氮和有機(jī)氮的比例為72%和28%[26],本研究以NH4NO3(72%)和CO(NH2)2(28%)模擬真實(shí)大氣氮沉降.目前三峽庫(kù)區(qū)大氣氮沉降通量約為50kgN/ (hm2·a),且仍存在逐漸加劇的趨勢(shì)[26],因此,本研究模擬大氣氮沉降通量分別為1, 2, 3倍實(shí)際大氣氮沉降通量.最終,培養(yǎng)實(shí)驗(yàn)包括4種大氣氮沉降組成(包含NH4+-N、NO3--N、CO(NH2)2和NH4NO3(72%)+ CO(NH2)2(28%)), 3個(gè)大氣氮沉降通量(50,100, 150kgN/(hm2×a)),共計(jì)12個(gè)處理,每個(gè)處理設(shè)置3個(gè)平行,外加3個(gè)對(duì)照3個(gè)空白,共計(jì)42個(gè)土壤樣品.
每個(gè)處理分別稱取預(yù)處理后的消落帶土壤樣品20g,平鋪于250mL棕色培養(yǎng)瓶底部,調(diào)整土壤含水率為最大田間持水量(WHC)的50%,加蓋密封預(yù)培養(yǎng)24h,然后將土壤含水率調(diào)整至WHC的60%進(jìn)行正式培養(yǎng).加蓋密封正式培養(yǎng)前向各培養(yǎng)瓶中放置盛裝3mL(1mol/L)NaOH溶液的CO2捕獲瓶.土壤培養(yǎng)期間每日打開(kāi)瓶蓋通氣20min,并定期通過(guò)重量法調(diào)整土壤含水率,使其保持穩(wěn)定.各培養(yǎng)瓶分別于土壤培養(yǎng)的1, 2, 4, 6, 8, 15, 22, 29, 36d打開(kāi)培養(yǎng)瓶更換CO2捕收液后繼續(xù)密封培養(yǎng)[27].土壤培養(yǎng)結(jié)束后破壞性取樣分析土壤溶解性有機(jī)碳(DOC)含量.
土壤呼吸速率采用堿液吸收法測(cè)定;土壤DOC使用0.5mol/L K2SO4提取后用TOC分析儀(TOC-LCPH/CPN, Shimadzu)測(cè)定[28];土壤有機(jī)質(zhì)(SOM)采用重鉻酸鉀外加熱法測(cè)定[29];總氮采用凱氏法測(cè)定;土壤WHC和pH值分別采用環(huán)刀法和酸度計(jì)法測(cè)定;土壤粒徑組成采用比重計(jì)法測(cè)定.
采用單因素方差(One-way ANOVA)和LSD多重檢驗(yàn)法分析不同處理下土壤呼吸速率、累積釋放量、DOC差異的顯著性;采用單樣本檢驗(yàn)法分析不同氮添加量及其組成變化下土壤呼吸速率、累積釋放量及DOC含量與對(duì)照之間的顯著性差異;進(jìn)行方差分析之前,首先對(duì)數(shù)據(jù)是否正態(tài)分布和方差是否齊性進(jìn)行檢驗(yàn),如不滿足,則進(jìn)行非參數(shù)檢驗(yàn).所有統(tǒng)計(jì)分析均在SPSS 18.0 (SPSS Inc, Chicago, IL, USA)中進(jìn)行,方差分析及檢驗(yàn),顯著性標(biāo)準(zhǔn)均為<0.05.使用SigmaPlot12.5軟件作圖.
對(duì)照及不同氮添加量時(shí),土壤呼吸速率均隨著培養(yǎng)時(shí)間的增加逐漸下降,最終保持穩(wěn)定(圖 1).培養(yǎng)第1d,不同氮添加量下,土壤呼吸速率特征分別為:(1)NH4Cl: 1倍>0, 3倍>2倍[圖1 (A),<0.05]; (2)NaNO3: 3倍>0, 1, 2倍[圖1 (B),<0.05];(3)CO (NH2)2:3倍>0倍>2倍>1倍[圖1 (C),<0.05];(4)CO (NH2)2+NH4NO3: 2, 3倍>0倍>1倍[圖1 (D),< 0.05].培養(yǎng)第1d,不同氮組成添加下土壤呼吸速率特征分別為:(1)1倍氮添加: NH4Cl >NaNO3, CO(NH2)2+NH4NO3> CO(NH2)2;(2)2倍氮添加: CO(NH2)2+ NH4NO3>NaNO3> CO(NH2)2> NH4Cl;(3)3倍氮添加: NaNO3, CO(NH2)2,CO(NH2)2+ NH4NO3> NH4Cl (圖1,<0.05).
4種氮組成添加下,土壤培養(yǎng)第1d,呼吸速率對(duì)氮添加量存在響應(yīng),而隨著培養(yǎng)時(shí)間的延長(zhǎng),這種響應(yīng)逐漸消失(圖1).這表明土壤呼吸速率對(duì)氮添加的響應(yīng)為短期效應(yīng). 研究表明對(duì)于微生物生長(zhǎng)同時(shí)受到碳氮限制的森林土壤,氮添加對(duì)土壤呼吸并沒(méi)有短期的促進(jìn)作用[30],這與本研究結(jié)果是不一致的.消落帶土壤微生物生長(zhǎng)沒(méi)有受到碳限制是導(dǎo)致不同結(jié)果的原因,即三峽庫(kù)區(qū)消落帶土壤在干濕交替過(guò)程中存在新碳輸入,消落帶土壤有機(jī)質(zhì)含量14.78g/ kg(表1),顯著高于當(dāng)?shù)赝寥烙袡C(jī)質(zhì)含量(7.59g/kg)[31].在微生物不受碳限制的條件下,氮添加短期改變了微生物活性,影響土壤呼吸速率[32-33],隨著微生物可利用碳逐漸分解, 呼吸速率趨于穩(wěn)定.
土壤培養(yǎng)36d后不同氮添加量處理的累積CO2釋放特征分別為:(1)NH4Cl: 3倍>0, 1倍>2倍;(2) NaNO3: 2, 3倍>0, 1倍;(3)CO(NH2)2: 3倍>2倍>0倍>1倍;(4)CO(NH2)2+ NH4NO3: 2倍>3倍>0倍>1倍(表3,<0.05).不同組成處理的CO2累積釋放特征分別為:(1)1倍氮沉降添加:NH4Cl, NaNO3> CO (NH2)2+ NH4NO3> CO(NH2)2;(2) 2倍氮沉降添加: CO(NH2)2+ NH4NO3> NaNO3> CO(NH2)2> NH4Cl;(3)3倍氮沉降添加: CO(NH2)2,NaNO3> NH4Cl, CO(NH2)2+NH4NO3.
1, 2, 3倍氮沉降量的NH4+-N添加對(duì)土壤累積CO2釋放分別表現(xiàn)為無(wú)影響、抑制和促進(jìn)作用(表2).研究表明NH4+-N增加對(duì)土壤CO2釋放存在抑制作用[9-10].這與本研究結(jié)果是不一致的.消落帶土壤存在新碳輸入,土壤C/N為56.8(表1),遠(yuǎn)高于微生物生長(zhǎng)最佳比例(25),因此氮添加量增加能夠逐漸降低土壤C/N引起微生物群落結(jié)構(gòu)和土壤呼吸的變化[32,34-35].這是造成上述結(jié)果差異的原因,有待進(jìn)一步研究.
1倍氮沉降的NO3--N添加下,土壤培養(yǎng)36d后CO2累積釋放量與對(duì)照無(wú)顯著性差異(0.05),而2, 3倍氮沉降的NO3--N添加下均表現(xiàn)為顯著性大于對(duì)照(表2,<0.05).這表明目前大氣氮沉降量下,土壤CO2釋放對(duì)NO3--N沉降無(wú)響應(yīng),而隨著未來(lái)氮沉降量的進(jìn)一步增加氮沉降將促進(jìn)土壤CO2釋放.研究表明:NO3--N增加能夠抑制微生物對(duì)土壤有機(jī)質(zhì)的分解,增加土壤碳儲(chǔ)量[11-13],這顯然與本研究結(jié)果是不一致的.消落帶土壤在干濕交替過(guò)程中存在新碳輸入是造成結(jié)果差異的原因.NO3--N對(duì)老碳分解有抑制作用,相反對(duì)新碳分解有促進(jìn)作用[36].因此,NO3--N含量的增加促進(jìn)了新碳的分解,最終導(dǎo)致土壤呼吸作用增加.
1倍氮沉降添加下,土壤培養(yǎng)36d后CO2累積釋放量在NH4+-N和NO3--N之間無(wú)顯著性差異(0.05),而2, 3倍氮沉降添加下表現(xiàn)為NH4+-N 表2 氮添加量及其組成對(duì)土壤CO2累積釋放的影響(mg/kg) Table 2 The effects of nitrogen addition flux and its composition on soil CO2 cumulative release (mg/kg) 注:土壤培養(yǎng)時(shí)間36d,不同小寫字母表示CO2累積釋放量在不同的氮添加量之間存在顯著性差異(<0.05); 不同大寫字母表示CO2累積釋放量在不同的氮添加組分之間存在顯著性差異(<0.05). 1倍氮沉降的CO(NH2)2及CO(NH2)2+NH4NO3添加下,土壤培養(yǎng)36d后CO2累積釋放量均顯著小于對(duì)照,而在2, 3倍氮沉降的氮添加下則相反(表3,0.05).這表明目前大氣氮沉降量下,CO(NH2)2和CO(NH2)2+NH4NO3添加對(duì)土壤呼吸均有抑制作用,而隨著未來(lái)氮沉降量的持續(xù)增加,將逐漸從抑制作用轉(zhuǎn)換為促進(jìn)作用.CO(NH2)2對(duì)土壤呼吸的影響,目前存在2種觀點(diǎn):第一種觀點(diǎn)認(rèn)為低氮通量(約1倍氮沉降)添加能夠促進(jìn)土壤CO2釋放,而高氮通量(約4倍氮沉降)添加則相反[17];第二種觀點(diǎn)認(rèn)為, CO(NH2)2添加能夠促進(jìn)土壤CO2釋放[18-19].本研究結(jié)果與這兩種觀點(diǎn)均不一致.消落帶土壤生態(tài)環(huán)境特殊,土壤性質(zhì)差異可能是造成結(jié)果差異的原因[37].目前關(guān)于CO(NH2)2+NH4NO3添加對(duì)土壤CO2釋放的影響研究還未見(jiàn)報(bào)道,但科研人員研究了NH4NO3添加對(duì)土壤CO2釋放的影響.主流觀點(diǎn)認(rèn)為,NH4NO3添加對(duì)土壤CO2釋放具有抑制作用[14-15,38],也有研究得到了相反的結(jié)果[16].本研究發(fā)現(xiàn)CO(NH2)2+NH4NO3添加下,土壤呼吸作用表現(xiàn)為3倍氮沉降<2倍氮沉降,而僅存在CO(NH2)2添加下,則相反(表3,0.05).由此可見(jiàn),NH4NO3添加量的增加抑制了土壤CO2釋放,這和主流研究結(jié)果是一致的.這是由于高濃度的NH4NO3對(duì)土壤真菌具有抑制作用造成的[32].要進(jìn)一步闡釋CO(NH2)2和CO(NH2)2+ NH4NO3添加對(duì)土壤呼吸的影響,仍需探討氮添加過(guò)程中土壤微生物群落結(jié)構(gòu)的變化,有待進(jìn)一步的研究. 除NH4Cl外,土壤累積CO2釋放均表現(xiàn)為2, 3倍氮沉降>0, 1倍氮沉降(表2,0.05).可見(jiàn),雖然當(dāng)前大氣氮沉降對(duì)土壤CO2釋放沒(méi)有促進(jìn)作用,但是隨著大氣氮沉降的持續(xù)增加將逐漸轉(zhuǎn)變?yōu)榇龠M(jìn)作用,這無(wú)疑增加了全球氣候進(jìn)一步變暖的風(fēng)險(xiǎn).大量的研究表明大氣氮沉降持續(xù)增加將抑制微生物不受氮素限制的森林土壤呼吸[39-40],這與本研究結(jié)果恰恰相反.本研究中土壤C/N為56.8(表1),遠(yuǎn)高于微生物生長(zhǎng)最佳比例(25),高濃度的氮輸入(2, 3倍氮沉降)短期內(nèi)能夠顯著降低土壤C/N,從而促進(jìn)了土壤呼吸. 土壤培養(yǎng)36d后,不同氮添加量處理的DOC含量特征分別為:(1)NH4Cl、CO(NH2)2及CO(NH2)2+ NH4NO3: 1倍>2倍>3倍>0倍;(2)NaNO3: 3倍>2倍>1倍>0倍(表4,0.05).不同組成處理的DOC含量特征分別為:(1)1倍氮添加: NH4Cl > CO(NH2)2, CO(NH2)2+NH4NO3>NaNO3;(2)2倍氮添加:NH4Cl > CO(NH2)2+ NH4NO3> CO(NH2)2>NaNO3;(3)3倍氮添加: NH4Cl, NaNO3> CO(NH2)2+ NH4NO3> CO(NH2)2. 對(duì)照土壤DOC含量表現(xiàn)為培養(yǎng)前>培養(yǎng)后,而氮添加下則相反(表1,表3,0.05).可見(jiàn),氮添加促進(jìn)了土壤有機(jī)質(zhì)的分解.這與Cusack等[41]的研究結(jié)果是一致的.氮添加能夠增加與有機(jī)質(zhì)分解相關(guān)的酶活性[42],從而促進(jìn)土壤有機(jī)質(zhì)的分解. CO(NH2)2進(jìn)入土壤后水解產(chǎn)物為NH4+-N,與NO3--N相比, NH4+-N更易被土壤微生物吸收,因此在1倍氮沉降添加下,土壤DOC含量表現(xiàn)為NH4Cl、CO(NH2)2、CO(NH2)2+ NH4NO3> NaNO3(表3,0.05).除NO3--N為相反的趨勢(shì)外, DOC含量隨著其余氮組成添加量的增加而減小.這表明NH4+-N含量增加對(duì)土壤有機(jī)質(zhì)分解有抑制作用,而NO3--N增加則具有促進(jìn)作用.NH4+-N含量增加導(dǎo)致的土壤微生物群落結(jié)構(gòu)變化是抑制有機(jī)質(zhì)分解的原因,有待進(jìn)一步研究.NO3--N對(duì)新碳分解有促進(jìn)作用[36],因此土壤NO3--N添加量與DOC含量正相關(guān). 表3 氮添加量及其組成對(duì)土壤培養(yǎng)后DOC含量的影響(mg/kg) Table 3 The effects of nitrogen addition flux and its composition on soil DOC content after soil incubation (mg/kg) 注: 土壤培養(yǎng)時(shí)間36d,不同小寫字母表示 DOC含量在不同的氮添加量之間存在顯著性差異(0.05); 不同大寫字母表示, DOC含量在不同的氮添加組分之間存在顯著性差異(0.05). 3.1 土壤呼吸速率對(duì)氮添加的響應(yīng)為短期效應(yīng). 3.2 1倍氮沉降添加下無(wú)機(jī)氮對(duì)土壤呼吸無(wú)影響,而有機(jī)氮表現(xiàn)為抑制作用.除NH4+-N在2倍氮沉降添加下抑制了土壤呼吸外,與0, 1倍氮沉降添加相比2, 3倍氮沉降添加均促進(jìn)了土壤呼吸作用. 3.3 氮添加促進(jìn)了土壤有機(jī)質(zhì)分解,使得DOC含量增加,從而影響土壤CO2釋放.高通量氮添加下, NO3--N比NH4+-N更有利于土壤有機(jī)質(zhì)分解,促進(jìn)土壤CO2釋放. [1] Batjes N H. Total carbon and nitrogen in the soils of the world [J]. European Journal of Soil Science, 2014,65(1):2-3. [2] Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J]. Nature, 2000,408(6809):184-187. [3] Paterson E, Sim A. Soil-specific response functions of organic matter mineralization to the availability of labile carbon [J]. Global Change Biology, 2013,19(5):1562-1571. [4] Thornton P E, Lamarque J F, Rosenbloom N A, et al. Influence of carbon-nitrogen cycle coupling on land model response to CO2fertilization and climate variability [J]. Global biogeochemical cycles, 2007,201(4):1086-1095. [5] Yue K, Fornara D A, Yang W, et al. Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis[J]. Global Change Biology, 2016,23(6):24-50. [6] 鄭丹楠. 2010年中國(guó)大氣氮沉降特征分析[J]. 中國(guó)環(huán)境科學(xué), 2014,34(5):1089-1097.Zheng D N. Characteristics of atmospheric nitrogen deposition of China in 2010 [J]. China Environmental Science, 2014,34(5):1089-1097. [7] Team C W, Pachauri R K, Meyer L A. Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [J]. Journal of Romance Studies, 2014,4(2):85-88. [8] Lamarque J F, Dentener F, Mcconnell J, et al. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation historical and projected changes [J]. Atmospheric Chemistry & Physics, 2013,13(16):7997-8018. [9] Ward D, Kirkman K, Hagenah N, et al. Soil respiration declines with increasing nitrogen fertilization and is not related to productivity in long-term grassland experiments [J]. Soil Biology & Biochemistry, 2017,115(1):415-422. [10] Guo H, Ye C, Zhang H, et al. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow [J]. Soil Biology and Biochemistry, 2017,113(1):26-34. [11] Kurts P, Andrewj B, Donaldr Z, et al. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests [J]. Global Change Biology, 2008,14(1):142–153. [12] Burton A J, Pregitzer K S, Crawford J N, et al. Simulated chronic NO3?depositionreduces soil respiration in northern hardwood forests [J]. Global Change Biology, 2004,10(7):1080-1091. [13] Zak D R, Holmes W E, Burton A J, et al. Simulated atmospheric NO3?deposition increases soil organic matter by slowing decomposition [J]. Ecological applications, 2008,18(8):2016-2027. [14] Maaroufi N I, Nordin A, Hasselquist N J, et al. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils [J]. Global Change Biology, 2015,21(8):3169-3180. [15] Frey S D, Ollinger S, Nadelhoffer K, et al. Chronic nitrogen additions suppressdecomposition and sequester soil carbon in temperate forests [J]. Biogeochemistry, 2014,121(2):305-316. [16] Gao Q, Hasselquist N J, Palmroth S, et al. Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest [J]. Soil Biology & Biochemistry, 2014,76(1):297-300. [17] Zhu C, Ma Y, Wu H, et al. Divergent effects of nitrogen addition on soil respiration in a semiarid grassland [J]. Scientific Reports, 2016,6(1):33-41. [18] Zhang C, Niu D, Hall S J, et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland [J]. Soil Biology & Biochemistry, 2014,75(75):113-123. [19] Du Y, Guo P, Liu J, et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests [J]. Global Change Biology, 2014,20(10):3222-3230. [20] Allison S D, Czimczik C I, Treseder K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest [J]. Global Change Biology, 2008,14(5):1156-1168. [21] Micks P, Aber J D, Boone R D, et al. Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests [J]. Forest Ecology and Management, 2004,196(1):57-70. [22] Hasselquist N J, Metcalfe D B, H?gberg P. Contrasting effects of low and high nitrogen additions on soil CO2flux components and ectomycorrhizal fungal sporocarp production in a boreal forest [J]. Global Change Biology, 2012,18(12):3596-3605. [23] Gao Q, Hasselquist N J, Palmroth S, et al. Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest [J]. Soil Biology and Biochemistry, 2014,76(1):297-300. [24] Cornell S E. Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component [J]. Environmental Pollution, 2011,159(10):2214-2222. [25] 林俊杰,劉 丹,張 帥,等.淹水-落干與季節(jié)性溫度升高耦合過(guò)程對(duì)消落帶沉積物氮礦化影響[J]. 環(huán)境科學(xué), 2017,38(2):555-562.Lin J J, Zhen D, Zhang S, etal. Effect of coupling process of wetting-drying cycles and seasonal temperature increasing on sediment nitrogen minerization in the water level fluctuating zone [J]. Environmental Science, 2017,38(2):555-562. [26] 袁 玲,周鑫斌,辜夕容,等.重慶典型地區(qū)大氣濕沉降氮的時(shí)空變化[J]. 生態(tài)學(xué)報(bào), 2009,29(11):6095-6101. Yuan L, Zhou X B, Gu X Y, et al. Temporal and spatial variation of atmospheric wet nitrogen deposition in typical areas of Chongqing [J]. Acta Ecologica Sinica, 2009,29(11):6095-6101. [27] Blagodatskaya E, Yuyukina T, Blagodatsky S, et al. Turnover of soil organic matter and of microbial biomass under C3–C4vegetation change: Consideration of13C fractionation and preferential substrate utilization [J]. Soil Biology & Biochemistry, 2011,43(1):159-166. [28] Jones D, Willett V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil [J]. Soil Biology and Biochemistry, 2006,38(5):991-999. [29] Nelson D W, Sommers L E, Sparks D L, et al. Total carbon, organic carbon, and organic matter [J]. Methods of Soil Analysis, 1996,9(1):961-1010. [30] Micks P, Aber J D, Boone R D, et al. Short-term soil respiration and nitrogen immobilization response to nitrogen applicationsin control and nitrogen-enriched temperate forests [J]. Forest Ecology & Management, 2004,196(1):57-70. [31] 鐘遠(yuǎn)平,唐 將,王 力.三峽庫(kù)區(qū)土壤有機(jī)質(zhì)區(qū)域分布及影響因素[J]. 水土保持學(xué)報(bào), 2006,20(5):73-76.Zhong Y P, Tang J, Wang L. Regional distribution and influencing factors of soil organic matter in three gorges reservoir area [J]. Journal of Soil and Water Conservation, 2006,20(5):73-76. [32] Zhang W, Cui Y, Lu X, et al. High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem [J]. Soil Biology & Biochemistry, 2016,97(1):211-214. [33] Falsaperla P, Motta S, Succi S. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function [J]. Biology & Fertility of Soils, 2013,49(6):723-733. [34] Austin A T, Yahdjian L, Stark J M, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems [J]. Oecologia, 2004,141(2):221-235. [35] Zhang W, Parker K M, Luo Y, et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie [J]. Global Change Biology, 2005,11(2):266–277. [36] Saiyacork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum forest soil [J]. Soil Biology & Biochemistry, 2002,34(9): 1309-1315. [37] Six J, Frey S D, Thiet R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J]. Soil Science Society of America Journal, 2006,70(2):555-569. [38] Jiangming M O, Zhang W, Zhu W, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China [J]. Global Change Biology, 2008,14(2):403-412. [39] Lehmann E A, Johansson A M. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nature Geoscience, 2010,3(5): 315-322. [40] Zhou L, Zhou X, Zhang B, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta- analysis [J]. Global Change Biology, 2014,20(7):2332-2343. [41] Cusack D F, Firestone M K. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests [J]. Ecology, 2011,92(3):621-632. [42] Sinsabaugh R L, Gallo M E, Lauber C, et al. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen dhemistry [J]. 2005,75(2):201- 215. Effects of atmospheric nitrogen deposition on soil respiration in the water level fluctuating zone of the Three Gorges Reservoir area. HE Li-ping1,2*, TIAN Mao-ping1, WU Hong1, LIN Jun-jie1, LAN Bo1 (1.Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Georges University, Chongqing 404100, China;2.Collaborative Innovation Center of Ecological Environment Protection and Disaster Prevention in the three Gorges Reservoir area, Chongqing Three Georges University, Chongqing 404100, China)., 2019,39(3):1132~1138 An indoor incubation experiment was conducted to reveal the effect of atmospheric nitrogen deposition on soil respiration of water level fluctuating zone in the Three Gorges Reservoir area. The results showed that the response of soil respiration rate to nitrogen addition was a short term effect. Under the present atmospheric nitrogen deposition flux, soil cumulative CO2release was not changed by inorganic nitrogen addition, while, it was inhibited by organic nitrogen addition. Except soil cumulative CO2release was depressed by ammonium addition of double present atmospheric nitrogen deposition flux, it was promoted by all the simulated atmospheric nitrogen deposition compositionunder both double and triple present atmospheric nitrogen deposition flux. Compared with ammonium, nitrate was more conducive for promoting cumulative CO2release under double and triple present atmospheric nitrogen deposition flux. atmospheric nitrogen deposition;Three Gorges Reservoir area;water level fluctuating zone;soil respiration X142 A 1000-6923(2019)03-1132-07 何立平(1982-),男,四川南充人,講師,博士,主要從事環(huán)境土壤學(xué)研究.發(fā)表論文10余篇. 2018-08-15 國(guó)家自然科學(xué)基金資助項(xiàng)目(31770529);重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ1710260);三峽庫(kù)區(qū)水環(huán)境演變與污染防治重慶高校市級(jí)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(WEPKL2016LL-03,WEPKL2016ZD-01, WEPKL2016ZZ-01);教育部春暉計(jì)劃項(xiàng)目(Z2015133);萬(wàn)州科技人才專項(xiàng)(2016-1) *責(zé)任作者, 講師, hlp_weird@163.com2.3 氮添加量及其組成對(duì)土壤DOC含量的影響
3 結(jié)論