趙偉華,王梅香,李健偉,馮 巖,劉 博,李夕耀,彭永臻*
?
A2O工藝和A2O+BCO工藝的脫氮除磷性能比較
趙偉華1,2,王梅香3,李健偉1,馮 巖1,劉 博1,李夕耀1,彭永臻1*
(1.北京工業(yè)大學(xué),國家工程實驗室,北京市污水脫氮除磷處理與過程控制工程技術(shù)研究中心,北京 100124;2.哈爾濱工業(yè)大學(xué),海洋科學(xué)與技術(shù)學(xué)院,山東 威海 264209;3.北京城市排水集團有限責(zé)任公司科技研發(fā)中心,北京 100044)
以實際低C/N生活污水為研究對象,依次分別采用A2O工藝和A2O+BCO(生物接觸氧化)工藝考察系統(tǒng)的脫氮除磷性能.試驗在進水負荷和運行參數(shù)基本維持不變的情況下運行134d.結(jié)果表明,相對于A2O系統(tǒng),A2O+BCO系統(tǒng)由于采用雙污泥工藝,硝化菌和聚磷菌(PAOs)污泥齡分離,同時反硝化除磷“一碳兩用”,碳源利用率更高,TN和TP去除率分別提高了18%和28%.其次FISH試驗表明,在穩(wěn)定運行的A2O+BCO工藝中,PAOs比例為22%,遠遠超過A2O中7%的比例,從微生物角度證明了脫氮除磷效果好的原因.
低碳氮比(C/N);A2O工藝;A2O+BCO工藝;反硝化除磷;雙污泥
城市生活污水普遍存在碳源不足、C/N較低等問題從而制約現(xiàn)有污水處理廠的脫氮除磷性能.A2O工藝由于具有在同一個系統(tǒng)內(nèi)實現(xiàn)同步脫氮除磷的優(yōu)點被廣泛應(yīng)用于市政生活污水的處理[1],但在實際運行中存在硝化菌和聚磷菌(PAOs)的污泥齡矛盾,反硝化菌和PAOs的碳源競爭,污泥回流含有硝酸鹽影響厭氧釋磷等,導(dǎo)致脫氮除磷效率不高[2-3].針對這些缺陷,很多研究者對A2O工藝進行了改良,研發(fā)了倒置A2O[4], JHB[5],UCT[6]等工藝,取得了一定效果,但仍存在不足.
A2O+BCO雙污泥反硝化除磷工藝[7],在傳統(tǒng)A2O工藝基礎(chǔ)上進行改良,通過增加生物接觸氧化單元(BCO)將A2O單元原有硝化功能分離出去,原有A2O單元承擔反硝化除磷功能,硝化只發(fā)生在BCO中,通過BCO硝化液出水回流到A2O單元缺氧區(qū)進行脫氮.根據(jù)前期研究[7],本系統(tǒng)中硝化菌和PAOs污泥齡分離,硝化菌存在于BCO硝化反應(yīng)器中,PAOs存在于A2O單元中,并以NO3--N為電子受體,以細胞內(nèi)儲存的PHA為電子供體,以“一碳兩用”的方式進行同步脫氮除磷,減少了碳源需求和曝氣量,降低了污泥產(chǎn)量[8],適合我國低C/N城市生活污水現(xiàn)狀,并且提標改造簡單.
本試驗以實際低C/N城市生活污水為處理對象,在進水負荷相同的條件下,依次采用A2O工藝和在A2O工藝基礎(chǔ)上改進的A2O+BCO工藝,對兩者的脫氮除磷性能進行考察比較,并通過分子生物學(xué)FISH鑒定的方法揭示其機理,以期為低C/N生活污水實現(xiàn)穩(wěn)定高效的脫氮除磷提供新型工藝,同時為我國A2O工藝的提標改造提供理論基礎(chǔ)和技術(shù)指導(dǎo).
根據(jù)前期試驗獲得的A2O[1]和A2O+BCO[7]最優(yōu)工況,本次試驗兩階段的工況運行如下.(1)階段1:A2O系統(tǒng)主要由A2O反應(yīng)器、沉淀池順序連接組成,試驗裝置如圖1(a)所示.推流式A2O反應(yīng)器由無色有機玻璃構(gòu)成,有效容積為30L,均分為9個格室,厭氧:缺氧:好氧容積比為1:3:5.厭氧段和缺氧段采用攪拌器攪拌,好氧段格室的底端以黏砂塊為微孔曝氣器,采用氣泵進行鼓風(fēng)曝氣,轉(zhuǎn)子流量計調(diào)節(jié)曝氣量,沉淀池采用豎流式,體積為20L,硝化液從好氧段末端回流到缺氧段首端,污泥回流從二沉池底部回流到厭氧池首端,通過蠕動泵實現(xiàn)進水、硝化液回流、污泥回流等功能.A2O工藝整體HRT=8h,按照厭氧/缺氧/好氧=0.89h/2.67h/ 4.44h運行,進水流量3.75L/h,污泥回流比100%,硝化液回流比200%, SRT=15d, MLSS=4000mg/L.(2)階段2:試驗裝置如圖1(b)將原有A2O工藝前6個格室改造為新工藝的A2O池,厭氧:缺氧:好氧=1:4:1,第6格出水通過增加出水堰流入中間沉淀池,中間沉淀池出水進入BCO池,BCO池共3格,內(nèi)置聚乙烯材質(zhì)的懸浮生物填料(直徑′高度=25′10mm,比表面積500~700m2/m3,密度為960~1000kg/m3),填充率約為40%.生活污水依次流經(jīng)厭氧/缺氧/好氧區(qū)/硝化區(qū),A2O+BCO裝置按照厭氧:缺氧:好氧:硝化容積比為1:4:1:3運行,沉淀池出水進入BCO完成硝化后其出水一部分回流到A2O裝置的缺氧區(qū),一部分排放,通過改變硝化液回流比可明顯提高TN去除率.污泥回流到A2O池厭氧段.試驗期間HRT=8h,污泥回流比100%,硝化液回流比300%, SRT=12d,MLSS=2500mg/L.綜上所述,試驗前60d按照A2O工藝模式運行,61-135d按照A2O+BCO工藝模式運行.
初始接種污泥取自北京高碑店污水處理廠A2O工藝二沉池剩余污泥.試驗用水采用北京工業(yè)大學(xué)教工住宅小區(qū)化糞池生活污水,試驗期間的原水水質(zhì)特點見表1,原水pH值平均為7.3,試驗均在室溫下進行.
表1 原水水質(zhì)特點 Table 1 The influent characteristics
MLSS、COD等指標采用標準方法測定(APHA,1998),水樣采用中速濾紙過濾,PO43--P, NH4+-N,NO2--N,NO3--N由Lachat Quikchem8500型流動注射儀測定(Lachat Instrument, Milwaukee, wiscosin);TN通過TN/TOC分析儀(MultiN/C3100, Analytik Jena,AG)測定;采用WTW,Multi 340i pH/DO儀測定pH值、氧化還原電位(ORP)值和溶解氧(DO).PAOs的相對定量分析采用熒光原位雜交(FISH)技術(shù),通過zilles等[9]提供的方法進行PAOs和全菌的比例測算,PAOs探針為PAO462 (CCGTCATCTACWCAGGGTATTAAC),PAO651(CCCTCTGCCAAACTCCAG),PAO846(CTTAGCTACGGCACTAAAAGG),全菌探針為EUB338(GCTG- CCTCCCGTAGGAGT),EUB338-II(CAGCCACCCGTAGGTGT),EUB338-III(CTGCCACCCGTAGGTGT),圖片采用OLYMPUS DP72數(shù)字成像系統(tǒng)采集.
試驗期間,原水COD在176.1~249.2mg/L之間波動,平均值為207.8mg/L,C/N較低(3.96).由圖2可見,A2O和A2O+BCO工藝一直保持穩(wěn)定的較高COD去除率,分別為78.85%和77.63%,出水COD一直穩(wěn)定低于國家一級A排放標準,實現(xiàn)了有機物的深度去除,這說明有機物的去除不再是難題,難點在于脫氮除磷.在本研究中,兩種工藝對COD的轉(zhuǎn)化去除途徑有所不同,由圖3(a)、(b)可以看到,在A2O工藝中,COD主要在厭氧和缺氧區(qū)去除,COD去除所占比例分別為63%和11%.COD在厭氧區(qū)用于去除污泥回流中含有的NO3--N,同時儲存為PAOs體內(nèi)的PHA并釋磷,在缺氧區(qū)剩余的COD被進一步用于反硝化,但是由于進水中碳源有限,厭氧區(qū)優(yōu)先利用消耗大部分COD,缺氧區(qū)反硝化碳源不足,導(dǎo)致缺氧區(qū)末端仍有大量硝酸鹽存在(圖3a),是造成TN超標的主要原因.張杰等[10]認為反硝化效果受到碳源量的限制,而且大量的未被反硝化的硝酸鹽隨回流污泥進入?yún)捬鯀^(qū),會進一步干擾厭氧釋磷的正常進行.而在A2O+BCO工藝中,由于硝化發(fā)生在BCO中, A2O的好氧段沒有硝化作用,回流污泥中不含有硝酸鹽,保證了良好的厭氧環(huán)境,COD在厭氧區(qū)被合成PHA,用于后續(xù)的缺氧區(qū)反硝化除磷,同時缺氧區(qū)COD已經(jīng)較低,避免了剩余的COD進入缺氧區(qū)進行外源反硝化,與反硝化除磷菌競爭電子受體,由于反硝化PAOs“一碳兩用”的特性,大大提高了碳源利用率,提高了脫氮除磷效果[11].
圖2 試驗期間COD去除變化Fig.2 Variations profiles of COD removal during the experiment
氮主要通過硝化作用和反硝化作用去除.在A2O工藝中,原水中的NH4+-N在好氧區(qū)進行硝化作用,然后通過污泥回流和硝化液回流分別在厭氧區(qū)和缺氧區(qū)發(fā)生反硝化作用而去除;在A2O+BCO工藝中, NH4+-N的硝化只發(fā)生在BCO中,A2O單元厭氧區(qū)利用原水碳源儲存PHA,在缺氧區(qū)進行反硝化除磷,好氧區(qū)HRT較短不再承擔硝化作用,BCO單元硝化出水一部分回流到A2O單元缺氧區(qū)通過反硝化除磷的方式進行脫氮,另一部分作為最終出水排放.由本研究可以看到:A2O工藝對NH4+-N的平均去除率為95.72%,A2O+BCO工藝對NH4+-N的平均去除率為98.25%,A2O工藝硝化段HRT為4.4h,A2O+ BCO工藝硝化段HRT為2.67h,雖然HRT減小了,但相對于傳統(tǒng)活性污泥法,生物膜法對氨氮的去除率更高,因為在BCO中硝化菌附著生長,污泥齡更長硝化菌不易流失[12-13],同時更能承受沖擊負荷和低溫.同時由圖3(b)可見,進入BCO的COD濃度已不足50mg/L,更有利于硝化菌富集和生長,因為如果COD較高,則好氧異養(yǎng)菌會大量富集生長在填料表面,與硝化菌競爭生存空間與氧氣,硝化菌生長會處于劣勢甚至逐漸淘洗出系統(tǒng).根據(jù)張淼等[11]提供的方法進行計算,BCO池中生物膜濃度平均為860mg/L,微生物量較高,硝化菌大量富集,同時生物膜系統(tǒng)除脫落的生物膜外不產(chǎn)生污泥,節(jié)省污泥處理費用[14].
A2O工藝的脫氮效果很大程度上依賴于原水碳源和硝化液回流比,硝化液回流比太小,則脫氮效率低,回流比太大,則能耗高較并且反硝化效果受碳源限制,同時大量硝化液回流攜帶的DO也會破壞缺氧環(huán)境.李銀波等[15]、楊小梅等[16]的研究認為硝化液回流比為200%時,普通A2O工藝取得最佳脫氮除磷率,在碳源充足、硝化完全,以及HRT等各種條件最優(yōu)情況下,普通A2O工藝在污泥回流比100%,硝化液回流比200%條件下,脫氮率約為75%.Chen等[17]、王聰?shù)萚7]研究認為在硝化液回流比為300%時,A2O+BCO工藝取得最優(yōu)脫氮除磷效果,在A2O+ BCO工藝在污泥回流比100%,硝化液回流比300%的條件下,去除率為75%,兩者的TN反硝化去除率理論值均為75%左右.由圖4可以看到,本試驗期間A2O工藝對TN的平均去除率為58.36%,圖3(a)表明A2O工藝的缺氧末端仍然含有較高的NO3-N,反硝化不能及時完成造成的NO3-N積累,從而使得TN去除率較低.由A2O工藝改為A2O+BCO工藝之后, TN去除率逐步上升,A2O+BCO工藝對TN的平均去除率為76.42%.相對普通A2O工藝而言,A2O+BCO的TN去除率更高,這是因為:首先硝化的穩(wěn)定使得氨氮幾乎全部轉(zhuǎn)化為NO3-N,其次污泥齡分離,PAOs成為優(yōu)勢菌群,“一碳兩用”碳源利用率更高,同時厭氧/缺氧時間的延長,保證反硝化時間,并有利于反硝化除磷富集,提高了TN去除率.在普通A2O工藝的厭氧段,反硝化菌和PAOs同時競爭碳源,有限的碳源同時被用于反硝化和釋磷,在A2O+BCO工藝中,反硝化除磷菌富集之后,”一碳兩用”,節(jié)省50%碳源[18],大大提高了有限碳源的利用率.
圖4 試驗期間TN去除變化Fig.4 Variations profiles of TN removal during the experiment
根據(jù)強化生物除磷(EBPR)理論,在厭氧段, PAOs利用分解體內(nèi)的多聚磷酸鹽釋放能量將體外的揮發(fā)性脂肪酸(VFA)吸收到體內(nèi)合成PHA,同時將磷酸鹽釋放到體外,在缺氧/好氧段,PAOs以氧氣/硝酸鹽作為電子受體,以厭氧段儲存的PHA作為電子供體吸磷,然后通過排泥除磷[19-20].厭氧段釋磷量越高,合成PHA數(shù)量越多,其吸磷能力也越強,但是厭氧釋磷能力除受到進水碳源的影響外,還受到厭氧區(qū)污泥回流中所含硝酸鹽的影響[21].在A2O工藝和A2O+BCO工藝中,PAOs都是在厭氧段完成釋磷反應(yīng),由圖5可以看到,在普通A2O工藝中,由于厭氧段污泥回流中含有NO3-N,反硝化菌與PAOs競爭碳源,釋磷不充分,平均為8.34mg/L(圖2a),PHA合成較少,意味著吸磷動力不足,同時好氧段還存在與硝化菌的DO競爭,所以磷去除率僅64.64%,在A2O+BCO工藝中,由于A2O工藝的好氧段不發(fā)生硝化作用,所以厭氧段回流污泥中不含有NO3-N,保證了釋磷所需的厭氧環(huán)境,釋磷平均值達到32.3mg/L,意味著儲存了大量的PHA,同時厭氧/缺氧體積較大,HRT較長為4.4h,有利于DPAOs富集提高缺氧段的反硝化除磷[22-23],所以磷去除率提高到92.66%(圖5).同時PAOs和硝化菌污泥齡分離,SRT為12d,短污泥齡有利于世代時間較短的PAOs富集增長為優(yōu)勢菌群,同時短污泥齡可通過增大排泥量提高磷去除率.
圖5 試驗期間磷去除變化Fig.5 Variations profiles of phosphorus removal during the experiment
在第一、二階段末期(53d和131d)分別取泥做FISH試驗估算PAOs的生物量(左側(cè)綠色圖片代表全菌,右側(cè)紅色圖片代表目標菌即PAOs,放大倍數(shù)為10x100倍).在A2O工藝中,PAOs占全菌比例約7%,而在A2O+BCO工藝中,PAOs比例為22%,遠超過A2O中工藝中的比例,這是因為在A2O工藝中硝化菌、反硝化菌與PAOs存在底物、DO、污泥齡等競爭,導(dǎo)致PAOs受到限制其比例不會很高,而在A2O+BCO工藝中,反硝化PAOs和硝化菌分別存在于A2O單元和BCO單元中,污泥齡分離,A2O單元短污泥齡適合反硝化PAOs的生長,BCO單元長污泥齡有利于硝化菌的持留和生長.FISH試驗從微生物學(xué)角度證明了A2O+BCO工藝采用雙污泥系統(tǒng)能更好地創(chuàng)造PAOs和硝化菌各自生長的最佳條件,從而提高脫氮除磷效果,這與A2NSBR雙污泥系統(tǒng)相似[24].
圖6 PAOs在第一階段末期(a)和第二階段末期(b)的FISHFig.6 FISH results of PAOs at the end of phase I and II
3.1 低C/N條件下,在A2O工藝中,由于反硝化菌和PAOs對有限碳源的競爭,導(dǎo)致脫氮除磷效率不高,在A2O工藝基礎(chǔ)上進行改良的A2O+BCO工藝,解決了雙污泥齡矛盾,硝化過程和反硝化除磷分別在兩個反應(yīng)器中進行,同時反硝化除磷“一碳兩用”同步脫氮除磷,提高碳源利用率,TN和TP去除率分別提高了18%和28%.
3.2 A2O工藝中PAOs占全菌比例約為7%,而在A2O+BCO工藝中,PAOS比例為22%,遠遠超過A2O中工藝中PAOs的比例,從微生物學(xué)角度證明了A2O+BCO工藝采用雙污泥系統(tǒng)能夠更好地創(chuàng)造PAOs生長的最佳條件,因而富集比例更高.
3.3 由A2O工藝改造為A2O+BCO工藝,只需在原有構(gòu)筑物基礎(chǔ)上重新進行功能區(qū)劃分并調(diào)整相應(yīng)的回流措施以及投加填料等,不需額外增加構(gòu)筑物,升級改造簡單并節(jié)省投資費用,非常適合我國現(xiàn)狀污水處理廠提標改造.
[1] Wang X L, Peng,Y Z, Wang S Y, et al. Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process [J]. Bioprocess and Biosystems Engineering, 2006, 28(6):397-404.
[2] Kapagiannidis A G, Zafiriadis I, Aivasidis A. Upgrading the efficiency of an external nitrification BNR system - The modified Dephanox process [J]. Chemical Engineering Journal, 2011,175:124-135.
[3] Sorm R, Bortone G, Saltarelli R, et al. Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge system [J]. Water Research, 1996,30(7):1573-1584.
[4] 畢學(xué)軍,張 波.倒置A2/O工藝生物脫氮除磷原理及其生產(chǎn)應(yīng)用[J]. 環(huán)境工程, 2006,(3):29-30.Bi Xuejun, Zhang Bo. The principle and full-scale application of reversed A2O process for removing nitrogen and phosphorus [J]. Environmental Engineering, 2006,(3):29-30.
[5] Zeng W, Bai X, Zhang L, et al. Population dynamics of nitrifying bacteria for nitritation achieved in Johannesburg (JHB) process treating municipal wastewater [J]. Bioresource Technology, 2014,162:30-37.
[6] Kapagiannidis A G, Zafiriadis I, Aivasidis A. Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions [J]. Water Science and Technology, 2009,60(10):2695-2703.
[7] 王 聰,王淑瑩,張 淼,等.硝化液回流比對A2/O-BCO工藝反硝化除磷特性的影響[J]. 中國環(huán)境科學(xué), 2014,(11):2844-2850.Wang Cong, Wang Shuying, Zhang Miao, et al. Effect of nitrate recycling ratio on denitrifying phosphorus removal characteristics in A2/O-BCO process [J]. China Environmental Science, 2014,(11):2844-2850.
[8] Kuba T, Vanloosdrecht M, Heijnen J J. Phosphorus and nitrogen removal with minimal cod requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system [J]. Water Research, 1996,30(7):1702-1710.
[9] Zilles J L, Peccia J, Kim M W, et al. Involvement of Rhodocyclus- related organisms in phosphorus removal in full-scale wastewater treatment plants [J]. Appled and Envionmental Microbiology, 2002, 68(6):2763-2769.
[10] 張 杰,臧景紅,楊 宏,等.A2/O工藝的固有缺欠和對策研究[J]. 給水排水, 2003,29(3):22-26.Zhang Jie, Zang Jinghong, Yang Hong, et al. A Study on the inherent shortcomings and countermeasures of the A2/O process [J]. 2003,29(3):22-26.
[11] 張 淼,彭永臻,王 聰,等.三段式硝化型生物接觸氧化反應(yīng)器的啟動及特性[J]. 中國環(huán)境科學(xué), 2015,(1):101-109.Zhang Miao, Peng Yongzhen, Wang Cong, et al.The start-up and characterization of a three-stage nitrification biological contact oxidation reactor [J]. China Environmental Science, 2015,(1):101-109.
[12] Guo J, Ma F, Chang C, et al. Start-up of a two-stage bioaugmented anoxic–oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations [J]. Bioresource Technology, 2009, 100(14):3483-3488.
[13] Malsumoto S, Terada A, Tsuneda S. Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification [J]. Biochemical Engineering Journal, 2007,37(1):98-107.
[14] Grisa A M C, Paese C, Dotto O J, et al. Chemometric analysis of an sanitary landfill leachate [J]. Journal of Water Resource and Protection, 2012,04(1):16-24.
[15] 李銀波,周少奇,邱育真,等.回流比對投料A2/O工藝脫氮除磷影響的中試研究[J]. 環(huán)境科學(xué)與技術(shù), 2010,(2):142-145.Li Yinbo, Zhou Shaoqi, Qiu Yuzhen, et al. Effect of mixed-liquid return ratio on A2/O Process Performance [J]. Environmental Science & Technology. 2010,(2):142-145.
[16] 楊小梅,鄧 猛,王羽華,等.硝化液回流比對A2/O-MBBR工藝反硝化除磷效果的影響[J]. 環(huán)境工程, 2015,33(8):13-16, 41.Yang Xiaomei, Deng Meng, Wang Yuhua, et al. Effect of nitrification liquid reflux ratio on denitrifying phosphorus removal in an A2/O-MBBR process [J]. Environmental Engineering, 2015,33(8):13-16,41.
[17] Chen Y Z, Peng C Y, Wang J H, et al. Effect of nitrate recycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic (A(2)/O)-biological aerated filter (BAF) system [J]. Bioresource Technology, 2011,102(10):5722-5727.
[18] Wang Y Y, Peng Y Z, Stephenson T. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process [J]. Bioresource Technology, 2009,100(14):3506-3512.
[19] Hu Z R, Wentzel M C, Ekama G A. Anoxic growth of phosphate- accumulating organisms (PAOs) in biological nutrient removal activated sludge systems [J]. Water Research, 2002,36(19):4927-4937.
[20] Zhao W H , Zhang Y, Lv D M, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic /anoxic/ aerobic nitrification sequence batch reactor (preA2NSBR) treating low carbon/nitrogen (C/N) wastewater [J]. Chemical Engineering Journal, 2016,(302):296–304.
[21] Chen Y, Li B, Ye L, et al. The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems [J]. Biochemical Engineering Journal, 2015,93:235-242.
[22] Zhang W T, Peng Y Z, Ren N Q, et al. Improvement of nutrient removal by optimizing the volume ratio of anoxic to aerobic zone in AAO-BAF system [J]. Chemosphere, 2013,93(11):2859-2863.
[23] Zhao W H, Wang M X, Huang Y, et al. Denitrifying phosphorus removal optimization in the pre-A2NSBR system: nitrate recycling, carbon/nitrogen ratio and carbon source type [J]. Front. Environ. Sci. Eng. 2018,12(5):8.
[24] 趙偉華,王梅香,呂冬梅,等.前置A2NSBR工藝系統(tǒng)的啟動特性研究.中國環(huán)境科學(xué) [J]. 2016,36(9):2689-2695.Zhao Weihua, Wang Meixiang, Lv Dongmei, et al.Start-up characteristics of the pre-A2NSBR Process. China Environmental Science [J]. 2016,36(9):2689-2695.
Nitrogen and phosphorus removal performance comparison between A2O and A2O+BCO system.
ZHAO Wei-hua1,2, WANG Mei-xiang3, LI Jian-wei1, FENG Yan1, LIU Bo1, LI Xi-yao1, PENG Yong-zhen1*
(1.National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China;2.School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China;3.Beijing Drainage Group Technology Research and Development Center, Beijing 100044, China)., 2019,39(3):994~999
A2O and A2O+BCO process were employed to treat domestic wastewater with low carbon to nitrogen ratio (C/N=3.96) to compare their nutrient removal performance,respectively. The influent loading and operation condition were kept consistent for 134 days, A2O+BCO system achieved a higher nitrogen and phosphorus removal efficiency than A2O system because of the application of denitrifying phosphorus removal technology and two-sludge theory, which could use carbon resource more efficiently and solve the SRT contradiction between nitrifiers and PAOs. PAOs accounts for 22% in the stable A2O+BCO system higher than 7% in the A2O system, which explain the mechanism for the superior nutrient removal performance.
low C/N ratio;A2O process;A2O+BCO process;denitrifying phosphorus removal;two sludge
X703.5
A
1000-6923(2019)03-0994-06
趙偉華(1988-),男,山東濰坊人,助理研究員,博士,主要從事污水處理及資源化技術(shù)研究.發(fā)表論文14篇.
2018-08-20
國家自然科學(xué)基金資助項目(51578014);北京市教委資助項目
* 責(zé)任作者, 教授, pyz@bjut.edu.cn