朱安東 孫志超 朱玉君 張薈 牛小軍 樊葉楊 張振華 莊杰云, *
?
應(yīng)用剩余雜合體衍生群體定位水稻粒重粒形QTL
朱安東1孫志超1朱玉君1張薈2, 3牛小軍1樊葉楊1張振華1莊杰云1, *
(1中國水稻研究所 水稻生物學(xué)國家重點實驗室/ 國家水稻改良中心, 杭州 310006;2福建農(nóng)林大學(xué) 作物科學(xué)學(xué)院, 福州 350002;3福建農(nóng)業(yè)科學(xué)院 水稻研究所, 福州 350018;*通訊聯(lián)系人, E-mail: zhuangjieyun@caas.cn)
【目的】粒重粒形是影響水稻產(chǎn)量和品質(zhì)的重要因素,由大量數(shù)量性狀座位(QTL)控制,其作用變異極大,但以往研究主要著眼于效應(yīng)大的QTL。本研究在剔除主效QTL影響的基礎(chǔ)上,開展微效粒重粒形QTL分析?!痉椒ā吭谇捌谘芯炕A(chǔ)上,從原群體挑選出1個剩余雜合體單株,構(gòu)建了在主效QTL區(qū)間純合、在其余區(qū)域中13個區(qū)間分離的群體,種植于浙江杭州和海南陵水,測定千粒重、粒長和粒寬?!窘Y(jié)果】采用Windows QTL Cartographer 2.5,檢測到22個QTL,分布于10條染色體的12個區(qū)間,其中,10個區(qū)間在兩地均呈顯著作用,2個區(qū)間僅在杭州試驗中呈顯著作用。進(jìn)一步從該群體篩選出1個只在其中4個QTL區(qū)間雜合的單株,自交構(gòu)建分離群體,驗證了這4個區(qū)間對粒重粒形的效應(yīng)。【結(jié)論】排除主效QTL有利于提高微效粒重粒形QTL的檢測功效;雖然微效QTL可能易受環(huán)境和遺傳背景影響,但仍可具有穩(wěn)定表現(xiàn)。這些結(jié)果為進(jìn)一步開展粒重粒形QTL的精細(xì)定位、克隆和分子標(biāo)記輔助選擇奠定了基礎(chǔ)。
數(shù)量性狀座位; 千粒重; 粒形; 剩余雜合體; 水稻
水稻(L.)是人類最重要的糧食作物之一,水稻單產(chǎn)的提高對糧食安全發(fā)揮了至關(guān)重要的作用。隨著生活水平的提高,人們對稻米品質(zhì)的要求越來越高,優(yōu)質(zhì)和高產(chǎn)均至關(guān)重要。千粒重是水稻產(chǎn)量的重要構(gòu)成因素,在正常生長狀態(tài)下,主要決定于粒長、粒寬和粒厚;粒形是評價稻米外觀品質(zhì)的重要指標(biāo)之一,同時還影響稻米的加工、蒸煮和食味品質(zhì)[1],該指標(biāo)一般由粒長和長寬比確定。揭示水稻千粒重、粒長和粒寬的遺傳控制機(jī)理,具有重要的生物學(xué)意義和育種應(yīng)用價值。
水稻千粒重屬于多基因控制的數(shù)量性狀,其數(shù)量性狀座位(QTL)研究一直得到廣泛重視,定位的QTL分布于水稻所有12條染色體,并已有16個獲得克隆[2-6]。這些研究大大豐富了人們對水稻千粒重分子調(diào)控機(jī)制的了解,并為水稻高產(chǎn)優(yōu)質(zhì)育種提供了寶貴的基因資源。然而,這些克隆研究均著眼于效應(yīng)較大的QTL,加性效應(yīng)最弱的也達(dá)到了0.8 g[7]。有研究表明,微效QTL在水稻重要農(nóng)藝性狀調(diào)控中扮演著重要角色[8];就千粒重、粒長和粒寬而言,僅應(yīng)用珍汕97/密陽46這1個秈秈交組合,就在第1染色體長臂分解出6個微效QTL[9]??梢酝茰y,水稻基因組中存在大量影響千粒重的微效QTL,它們對水稻產(chǎn)量潛力的貢獻(xiàn)和對品質(zhì)性狀的影響不容忽視,因此,微效QTL的發(fā)掘、驗證和克隆,對于全面解析千粒重調(diào)控網(wǎng)絡(luò)、豐富可供育種利用的優(yōu)異基因資源,具有重要意義。
微效QTL研究一直都面臨挑戰(zhàn),其中一個重要原因是易受遺傳背景影響。在主效和微效位點同時分離的初級定位群體中,效應(yīng)較小的QTL往往因主效基因的掩蓋而難以得到有效檢測[10-12],排除主效QTL干擾是解決該問題的一條有效途徑。在排除前期檢測到的6個水稻種子活力QTL影響的基礎(chǔ)上,Ye等[13]利用剩余雜合體衍生的分離群體,檢測到3個控制種子活力的微效QTL;Xu等[14]利用主效基因純合的次級群體,定位到6個控制稻米蒸煮與食味品質(zhì)的微效QTL。在前期研究中,我們應(yīng)用由秈稻材料特青和IRBB品系配組構(gòu)建的重組自交系群體(簡稱TI群體),檢測到13個控制粒形的QTL,分布于9條染色體的11個區(qū)間;其中,第3染色體區(qū)間的和第5染色體區(qū)間的呈主效作用,分別解釋了56.71%的粒長變異和59.51%的粒寬變異,而其它QTL的貢獻(xiàn)率均不足5%[15]。在本研究中,我們從特青/IRBB52剩余雜合體衍生的材料中,挑選出1個在和區(qū)間純合、在其他部分染色體區(qū)域分離的群體,檢測控制千粒重、粒長和粒寬的QTL,進(jìn)而發(fā)展1個遺傳背景更為一致的分離群體,驗證了其中4個QTL區(qū)間的作用。
本研究應(yīng)用了2個水稻分離群體。第1個群體衍生于秈稻組合特青/IRBB52的1個F7剩余雜合體,稱為Ti52-2;該群體已應(yīng)用于檢測微效抽穗期QTL[16],含251個株系,存在13個分離區(qū)間,分布于除第2和第7染色體外的所有水稻染色體,分離區(qū)間共覆蓋約84.0 Mb (圖1)。在前期應(yīng)用TI群體檢測到的11個粒長和粒寬QTL區(qū)間中[15],Ti52-2群體的純合區(qū)域覆蓋2個主效QTL區(qū)間和6個效應(yīng)較小的區(qū)間,分離區(qū)域僅覆蓋3個QTL(、和)。第2個群體衍生于Ti52-2的1個單株,該單株僅在4個區(qū)間雜合,自交構(gòu)建了1個新的S1:2群體,含179個家系,稱為ZC8。
Ti52-2群體的S1:2和S1:3家系分別種植于浙江杭州(2016年5?9月)和海南陵水(2016年12月?2017年4月),ZC8群體的S1:2家系種植于杭州(2017年5?9月)。試驗采用完全隨機(jī)區(qū)組設(shè)計,2個重復(fù),每重復(fù)每株系種1行12個單株,株行距16.7 cm × 26.7 cm,正常田間管理。成熟后每行混收中間10株,曬干。遵循Zhang等[17]的方法進(jìn)行飽滿籽粒的挑選,采用SA-G型種子數(shù)粒儀(萬深)測定千粒重、粒長和粒寬,以2個重復(fù)的平均值為基礎(chǔ)進(jìn)行數(shù)據(jù)分析。
Ti52-2群體的標(biāo)記數(shù)據(jù)已具備,連鎖圖譜已構(gòu)建[16]。對于ZC8群體,從每個S1單株取幼葉約2 cm,采用微量法[18]提取DNA。共采用9個多態(tài)性標(biāo)記,分別為位于第6染色體的RM20731、第8染色體的RM22755和RM210、第10染色體的RM6100、RM1108和RM7300以及第12染色體的RM3246、和RM511。SSR標(biāo)記信息源自Gramene數(shù)據(jù)庫 (http://www.gramene.org/)。PCR擴(kuò)增遵循Chen等[19]方法,擴(kuò)增產(chǎn)物應(yīng)用6%非變性聚丙烯酰胺凝膠分離,銀染檢測。
分別計算Ti52-2群體杭州試驗和陵水試驗、ZC8群體杭州試驗的基本統(tǒng)計數(shù)據(jù),包括平均值、標(biāo)準(zhǔn)差、變異系數(shù)、變異范圍、峰度和偏度。
對于Ti52-2群體,連鎖圖譜前期已構(gòu)建[16];對于ZC8群體,利用Mapmaker/Exp 3.0軟件[20]進(jìn)行連鎖分析,采用Kosambi函數(shù)將標(biāo)記間的重組率轉(zhuǎn)換成遺傳圖距(cM)。所有群體的QTL檢測均運用Windows QTL Cartographer 2.5[21],采用復(fù)合區(qū)間作圖法(composite interval mapping, CIM),經(jīng)置換檢驗(permutation test)1000次計算,取全基因組< 0.05水平的LOD值為閾值。QTL命名遵循文獻(xiàn)[22]制定的規(guī)則。
Ti52-2和ZC8群體的千粒重、粒長和粒寬表現(xiàn)如表1所示。在各個試驗中,3個性狀均呈連續(xù)分布,偏度和峰度亦均較小,呈數(shù)量性狀的遺傳特點。
ZC8群體衍生于Ti52-2群體的1個剩余雜合體單株,群體同質(zhì)性前者比后者高。2個群體都在杭州試驗點進(jìn)行性狀鑒定,并在性狀變異上呈現(xiàn)出ZC8低于Ti52-2的特點:千粒重、粒長和粒寬的標(biāo)準(zhǔn)差前者分別為0.27、0.053和0.016,后者分別為0.42、0.094和0.028;變異系數(shù)前者分別為0.012、0.007和0.006,后者分別為0.019、0.012和0.011。該結(jié)果與ZC8群體遺傳背景同質(zhì)性高于Ti52-2群體的特點是一致的。
采用Windows QTL Cartographer 2.5分別對Ti52-2群體杭州和陵水兩地的千粒重、粒長和粒寬數(shù)據(jù)進(jìn)行分析,共檢測到22個QTL,它們位于10條水稻染色體的12個區(qū)間(表2和圖1)。
在12個區(qū)間中,有10個在兩地均檢測到QTL,其中4個區(qū)間檢測到的QTL在兩地間完全一致。在第4染色體RM16252-RM335區(qū)間,檢測到和,增效等位基因均來自特青,對千粒重和粒寬變異的貢獻(xiàn)率在杭州分別為6.66%和11.50%,在陵水分別為7.14%和9.02%;在第8染色體RM22755?RM210區(qū)間,檢測到和,增效等位基因均來自IRBB52,對千粒重和粒長變異的貢獻(xiàn)率在杭州分別為3.55%和4.09%,在陵水分別為6.29%和5.70%;在第1染色體RM12210區(qū)間檢測到,增效等位基因來自IRBB52,在杭州和陵水對粒長變異的貢獻(xiàn)率分別為4.51%和4.76%;在第12染色體RM3246?區(qū)間檢測到,增效等位基因來自特青,在杭州和陵水對粒長變異的貢獻(xiàn)率分別為2.31%和11.67%。
在兩地均檢測到QTL的其余6個區(qū)間中,有4個在兩地均對粒長具顯著作用,它們分別位于第3、5、6和10染色體上的RM14302?RM14383、RM18927?RM3321、RM469?RM587和RM6704?RM6100區(qū)間,增效等位基因均來自IRBB52,對粒長變異的貢獻(xiàn)率為3.52%~40.16%。此外,RM14302?RM14383區(qū)間還在陵水檢測到,增效等位基因來自特青,對粒寬變異的貢獻(xiàn)率為6.93%;RM18927?RM3321和RM6704?RM6100區(qū)間還在杭州分別檢測到和,增效等位基因均來自IRBB52,對千粒重變異的貢獻(xiàn)率分別為27.44%和6.44%;RM469?RM587區(qū)間還在杭州和陵水分別檢測到和,增效等位基因分別來自特青和IRBB52,對粒寬和千粒重變異的貢獻(xiàn)率分別為14.78%和3.98%。
在兩地均檢測到QTL的其余2個區(qū)間為位于第6染色體的RM20731區(qū)間和第11染色體的RM1233?RM5926區(qū)間,它們在兩地均對粒寬呈顯著作用,增效等位基因均來自特青,對粒寬變異的貢獻(xiàn)率為4.79%~10.09%。這2個區(qū)間還分別在杭州和陵水對千粒重呈顯著作用,增效等位基因均來自特青,對千粒重變異的貢獻(xiàn)率分別為4.62%和6.13%。
表1 Ti52-2群體的千粒重、粒長和粒寬表現(xiàn)
表2 在Ti52-2群體檢測到的千粒重、粒長和粒寬QTL
?加性效應(yīng),指一個IRBB52等位基因取代特青等位基因所產(chǎn)生的遺傳效應(yīng);?顯性效應(yīng);2?貢獻(xiàn)率,指相應(yīng)QTL所解釋的群體表型方差的比例;ns?不顯著。表3中的縮寫與此表相同。
, Additive effect measured as the genetic effect when the Teqing allele is replaced with the IRBB52 allele;, Dominance effect;2, Proportion of phenotypic variation explained by the QTL effect. ns, Not significant. Abbreviations are the same as in Table 3.
其余2個QTL區(qū)間為位于第3染色體的RM232區(qū)間和第9染色體的RM5688?RM219區(qū)間,均僅在杭州呈顯著作用,增效等位基因均來自IRBB52,其中,對粒長變異的貢獻(xiàn)率為3.79%。和對千粒重和粒寬變異的貢獻(xiàn)率分別為14.23%和13.16%。
從Ti52-2群體挑選出1個單株,該單株除4個區(qū)間外均呈純合狀態(tài),雜合區(qū)間為分別位于第6、8、10和12染色體的RM20731、RM22755?RM210、RM6100?RM7300和RM3246?RM511區(qū)間。將由該單株衍生的S1:2家系種植于杭州,進(jìn)行千粒重、粒長和粒寬的QTL分析,共檢測到8個QTL(表3)。與應(yīng)用Ti52-2群體在這些區(qū)間檢測到的QTL相比,性狀和等位方向高度一致,對表型變異的貢獻(xiàn)率普遍提高。
在Ti52-2群體中,位于第6染色體RM20731區(qū)間的和在杭州均被檢測到,增效等位基因均來自特青;在ZC8群體中,這2個QTL亦被檢測到,增效等位基因仍來自特青,對千粒重和粒寬變異的貢獻(xiàn)率從Ti52-2群體的4.62%和6.31%分別提高到5.08%和8.03%。兩群體均未在RM20731區(qū)間檢測到對粒長的顯著作用。
在Ti52-2群體中,位于第8染色體RM22755? RM210區(qū)間的和在杭州均被檢測到,增效等位基因均來自IRBB52。在ZC8群體中,這2個QTL亦被檢測到,增效等位基因來自IRBB52,對千粒重和粒長變異的貢獻(xiàn)率分別從Ti52-2群體的3.55%和4.09%提高到16.32%和11.92%。兩群體均未在該區(qū)間檢測到對粒寬的顯著作用。
在Ti52-2群體中,位于第10染色體RM6704? RM6100區(qū)間的和在杭州均被檢測到,增效等位基因均來自IRBB52,其中,的顯著性(LOD值)和貢獻(xiàn)率均高于。在ZC8群體中,僅被檢測到,增效等位基因仍來自IRBB52,對粒長變異的貢獻(xiàn)率從Ti52-2群體的7.47%提高到9.27%。兩群體均未在RM6704? RM6100區(qū)間檢測到對粒寬的顯著作用。
圖1 在Ti52-2群體檢測到的千粒重、粒長和粒寬QTL在染色體上的位置
Fig. 1.Chromosomal regions of QTL for the 1000-grain weight (TGW), grain length (GL) and grain width (GW) detected in the Ti52-2 population.
表3 在ZC8群體檢測到的千粒重、粒長和粒寬QTL
在Ti52-2群體中,位于第12染色體RM3246?區(qū)間的在杭州被檢測到,增效等位基因來自特青。在ZC8群體中,亦被檢測到,增效等位基因仍來自特青,對粒長變異的貢獻(xiàn)率從Ti52-2群體的2.31%提高到6.79%;同時,還檢測到和,增效等位基因均來自IRBB52,對千粒重和粒寬變異的貢獻(xiàn)率分別為5.49%和6.85%。
千粒重是水稻重要的農(nóng)藝性狀,與稻米產(chǎn)量和品質(zhì)密切相關(guān)。本研究根據(jù)前期粒長、粒寬QTL初定位結(jié)果[15],從原群體后代株系中篩選材料構(gòu)建群體,開展千粒重、粒長和粒寬QTL分析。首先,利用剔除了主效QTL變異的Ti52-2群體,在12個區(qū)間檢測到22個QTL;然后,進(jìn)一步構(gòu)建了1個僅在4個QTL區(qū)間分離的ZC8群體,驗證了這4個區(qū)間對千粒重、粒長和粒寬作用。
本研究所用的Ti52-2群體來源于特青/IRBB品系重組自交系群體(簡稱TI群體)的后代單株。在TI群體檢測到的13個QTL[15],僅有3個處于Ti52-2的分離區(qū)域中,包括、和。和在Ti52-2群體中檢測到,加性效應(yīng)方向保持不變,來自特青的等位基因分別降低粒長和增加粒寬;未在Ti52-2群體檢測到,但該QTL在TI群體定位于RM3773-RM3123區(qū)間,而Ti52-2群體的分離區(qū)間覆蓋RM3773,未覆蓋RM3123,兩個群體檢測結(jié)果的差異,是源于QTL與環(huán)境或遺傳背景的相互作用,還是因為本身不位于Ti52-2群體的分離區(qū)域中,尚待進(jìn)一步研究。除和所處區(qū)間外,在Ti52-2群體中還檢測到10個QTL區(qū)間;挑選Ti52-2群體的1個單株構(gòu)建了僅在其中4個區(qū)間分離的ZC8群體,這些區(qū)間對粒重、粒形的作用都得到良好驗證,且對性狀表型變異的貢獻(xiàn)率有較大程度提高。這些表明,排除主效QTL分離、提高遺傳背景純合度,都有利于提高微效QTL的檢測功效。
本研究檢測到的12個QTL區(qū)間中,除第4染色體的RM14302?RM14383區(qū)間外,前人均有粒重粒形QTL報道。在第1染色體上,RM12210區(qū)間的粒長QTL與Huang等[23]所定位的粒長QTL具有類似的染色體位置;在第3染色體上,檢測到粒長和粒寬QTL的RM14302?RM14383區(qū)間包含已克隆的[3],而RM232附近的與邢永忠等[24]定位的具有類似位置;在第5染色體上,RM18927?RM3321區(qū)間的粒長和千粒重QTL,與Li等[25]和姜恭好等[26]定位的千粒重QTL、與王軍等[27]定位的粒長QTL具有類似位置;在第6染色體上,RM469?RM587區(qū)間檢測到控制千粒重、粒長和粒寬的QTL,在多個研究中有報道[28-31],而RM20731附近的千粒重和粒寬QTL與Gao等[32]定位的和王軍等[27]定位的具有類似位置;在第8染色體上,檢測到千粒重和粒長QTL的RM22755?RM210區(qū)間包含Kang等[33]精細(xì)定位的;在第9染色體上,RM5688?RM219區(qū)間的千粒重和粒寬QTL與Tian等[34]定位的和張亞東等[35]定位的具有類似位置;在第10染色體上,RM6704?RM6100區(qū)間的千粒重和粒長QTL與前人多個報道類似[23, 36-38];在第11染色體上,檢測到千粒重和粒寬QTL的RM1233?RM5926區(qū)間包含Oh等[39]精細(xì)定位的;在第12染色體上,RM3246?區(qū)間的粒長QTL與周夢玉等[40]定位的具有類似位置。對這些QTL區(qū)間的進(jìn)一步鑒定,將有助于完善我們對水稻千粒重和粒形遺傳基礎(chǔ)的認(rèn)識。
在固定主效千粒重QTL基因型的基礎(chǔ)上,應(yīng)用1個涵蓋13個分離區(qū)間的群體,兩地鑒定千粒重、粒長和粒寬,檢測到12個呈顯著作用的區(qū)間,其中,10個在兩地均呈顯著作用,2個僅在杭州呈顯著作用。與前期重組自交系群體定位結(jié)果相比,10個區(qū)間為新檢測到,表明剔除主效QTL的影響有利于提高微效千粒重QTL的檢測功效。繼續(xù)構(gòu)建僅在其中4個QTL區(qū)間分離的群體,經(jīng)QTL分析,這些區(qū)間對粒重粒形性狀的作用均得到良好驗證,表明微效千粒重QTL的作用亦可高度穩(wěn)定,這些結(jié)果為開展微效千粒重QTL的精細(xì)定位、克隆和分子標(biāo)記輔助育種奠定了基礎(chǔ)。
[1] 李一博, 趙雷. 水稻品質(zhì)性狀的遺傳改良及其關(guān)鍵科學(xué)問題. 生命科學(xué), 2016, 28(10): 1168-1179.
Li Y B, Zhao L. Genetic improvement and key scientific questions of grain quality traits in rice.2016, 28(10): 1168-1179. (in Chinese with English abstract)
[2] Li N, Xu R, Li Y. Control of grain size in rice., 2018, 31(3): 237-251.
[3] Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q, Pan Y, Wang X, Rashid M A R, Li J, Gao Y, Li Z, Yang W, Fu X, Li Z.contributing to rice grain length and yield was mined by Ho-LAMap., 2017, 15(1): 28.
[4] Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X. A novel QTLencodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice., 2018, 11(5): 736-749.
[5] Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Rashid M A R, Li J, Zhang H, Li Z. Alternative splicing ofcontrols grain length and yield inrice., 2018, 16(9): 1667-1678.
[6] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H & Liu Q Q.acts as a transcriptional activator to regulate rice grain shape and appearance quality., 2018, 9(1): 1240.
[7] Li Y, Fan C, Xing Y, Jiang Y, Lou L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation inplays an important role in regulating grain size and yield in rice., 2011, 43: 1266-1269.
[8] Noriko K, Masayuki K, Kei K, Takuya K, Tsutomu N, Yuji H, Itsuro T, Takashi S, Kiyoaki K. Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely relatedL. subsp.cultivars grown near the northernmost limit for rice paddy cultivation., 2017, 67: 191-206.
[9] Dong Q, Zhang Z H, Wang L L, Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y. Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice., 2018, 11: 44.
[10] Yamamoto T, Yonemaru J, Yano M. Towards the understanding of complex traits in rice: Substantially or superficially?, 2009, 16(3): 141-154.
[11] Takai T, Ikka T, Kondo K, Nonoue Y, Ono N, Arai-Sanoh Y, Yoshinaga S, Nakano H, Yano M, Kondo M, Yamamoto T. Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines., 2014, 14(1): 295.
[12] Nagata K, Ando T, Nonoue Y, Mizubayashi T, Kitazawa N, Shomura A, Matsubara K, Ono N, Mizobuchi R, Shabaya T, Ogisotanaka E, Hori K, Yano M, Fukuoka S. Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a×cross., 2015, 65(4): 308-318.
[13] Ye H, Foley M E, Gu X Y. New seed dormancy loci detected from weedy rice-derived advanced populations with major QTL alleles removed from the background., 2010, 179(6): 612-619.
[14] Xu F F, Sun C X, Huang Y, Chen Y L, Tong C, Bao J S. QTL mapping for rice grain quality: A strategy to detect more QTLs within sub-populations., 2015, 35(4): 105.
[15] Wang Z, Chen J Y, Zhu Y J, Fan Y Y, Zhuang J Y. Validation of, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (L.)., 2017, 16(1): 16-26.
[16] Sun Z C, Zhu Y J, Chen J Y, Zhang H, Zhang Z H, Niu X J, Fan Y Y, Zhuang J Y. Minor-effect QTL for heading date detected in crosses between indica rice cultivar Teqing and near isogenic lines of IR24., 2018, 6(3): 291-298.
[17] Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y. Dissection of theregion into two tightly-linked minor QTLs having stable effects for grain weight in rice., 2016, 17(1): 98.
[18] Zheng K L, Huang N, Bennett J, Khush G S. PCR-based marker-assisted selection in rice breeding//IRRI Discussion Paper Series No.12. Manila, Los Banos, Philippines: International Rice Research Institute, 1995.
[19] Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (L.)., 1997, 95(4): 553-567.
[20] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations., 1987, 1(2): 174-181.
[21] Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012.
[22] McCouch S R, CGSNL. Gene nomenclature system for rice., 2008, 1(1): 72-84.
[23] Huang N, Parco A, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu J, Subudhi P, Angeles E R, Khush G S. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a double haploid rice population., 1997, 3(2): 105-113.
[24] 邢永忠, 談移芳, 徐才國, 華金平, 孫新立. 利用水稻重組自交系群體定位谷粒外觀性狀的數(shù)量性狀基因. 植物學(xué)報, 2001, 43(8): 840-845.
Xing Y Z, Tan Y F, Xu C G, Hua J P, Sun X L. Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population., 2001, 43(8): 840-845. (in Chinese with English abstract)
[25] Li J X, Yu S B, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q. Analyzing quantitative trait loci for yield using a vegetatively replicated F2population from a cross between the parents of an elite rice hybrid., 2000, 101: 248-254.
[26] 姜恭好, 徐才國, 李香花, 何予卿. 利用雙單倍體群體剖析水稻產(chǎn)量及其相關(guān)性狀的遺傳基礎(chǔ). 遺傳學(xué)報, 2004, 31(1): 63-72.
Jiang G H, Xu C G, Li X H, He Y Q. Characterization of the genetic basis for yield and its component traits of rice revealed by doubled haploid population., 2004, 31(1): 63-72. (in Chinese with English abstract)
[27] 王軍, 朱金燕, 周勇, 楊杰, 范方軍, 李文奇, 梁國華, 仲維功. 基于染色體單片段代換系的水稻粒形QTL定位. 作物學(xué)報, 2013, 39(4): 617-625.
Wang J, Zhu J Y, Zhou Y, Yang J, Fan F J, Li W Q, Liang G H, Zhong W G. Mapping of QTLs for grain shape using chromosome single segment substitution lines in rice (L.)., 2013, 39(4): 617-625. (in Chinese with English abstract)
[28] 林荔輝, 吳為人. 水稻粒型和粒重的QTL定位分析. 分子植物育種, 2003, 1(3): 337-342.
Lin L H, Wu W R. Mapping of QTLs underlying grain shape and grain weight in rice., 2003, 1(3): 337-342. (in Chinese with English abstract)
[29] Liang Y S, Zhan X D, Gao Z Q, Lin Z C, Yang Z L, Zhang Y X, Shen X H, Cao L Y, Cheng S H. Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308., 2012, 184(1): 1-13.
[30] Marathi B, Guleria S, Mohapatra T, Parsad R, Mariappan N, Kurungara V K, Atwal S S, Prabhu K V, Singh N K, Singh A K. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (L.)., 2012, 12: 137.
[31] Gao F Y, Zeng L H, Qiu L, Lu X J, Ren J S, Wu X T, Su X W, Gao Y M, Ren G J. QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (L.)., 2016, 15(8): 1693-1702.
[32] Gao Y, Zhu J, Song Y, He C, Shi C, Xing Y. Analysis of digenic epistatic effects andinteraction effects QTL controlling grain weight in rice., 2004, 5(4): 371-377.
[33] Kang Y J, Shim K C, Lee H S, Jeon Y A, Kim S H, Kang J W, Yun Y T, Park I K, Ahn S N. Fine mapping and candidate gene analysis of the quantitative trait locusassociated with grain length in rice., 2018, 40(4): 389-397.
[34] Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice (Griff.) segments in cultivated rice (L.) background and characterization of introgressed segments associated with yield-related traits., 2006, 112(3): 570-580.
[35] 張亞東, 張穎慧, 董少玲, 陳濤, 趙慶勇, 朱鎮(zhèn), 周麗慧, 姚姝, 趙凌, 于新, 王才林. 特大粒水稻材料粒型性狀QTL檢測. 中國水稻科學(xué), 2013, 27(2): 122-128.
Zhang Y D, Zhang H Y, Dong S L, Chen T, Zhao Q Y, Zhu Z, Zhou L H, Yao S, Zhao L, Yu X, Wang C L. Identification of QTL for rice grain traits based on extra-large grain material., 2013, 27(2): 122-128. (in Chinese with English abstract)
[36] Hittalmani S, Shashidhar H E, Bagali P G, Huang N, Sidhu J S, Singh V P, Khush G S. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population., 2002, 125(2): 207-214.
[37] Li S, Cui G, Guan C, Wang J, Lian G. QTL detection for rice grain shape using chromosome single segment substitution lines., 2011, 18(4): 273-278.
[38] 楊占烈, 戴高興, 翟榮榮, 林澤川, 王會民, 曹立勇, 程式華. 多環(huán)境條件下超級雜交稻協(xié)優(yōu)9308重組自交系群體粒形性狀QTL定位. 中國水稻科學(xué), 2013, 27(5): 482-490.
Yang Z L, Dai G X, Zhai R R, Lin Z C, Wang H M, Cao L Y, Cheng S H. QTL analysis of rice grain shape traits by using recombinant inbred lines from super hybrid rice Xieyou 9308 in multi-environments., 2013, 27(5): 482-490. (in Chinese with English abstract)
[39] Oh J M, Balkunde S, Yang P, Yoon D B, Ahn S N. Fine mapping of grain weight QTL,using near isogenic lines from a cross betweenand., 2011, 33(3): 259-265.
[40] 周夢玉, 宋昕蔚, 徐靜, 付雪, 李婷, 朱雨晨, 肖幸運, 毛一劍, 曾大力, 胡江, 朱麗, 任德勇, 高振宇, 郭龍彪, 錢前, 吳明國, 林建榮, 張光恒. 秈稻C84和粳稻春江16B重組自交系遺傳圖譜構(gòu)建及籽粒性狀QTL定位與驗證. 中國水稻科學(xué), 2018, 32(3): 207-218.
Zhou M Y, Song X W, Xu J, Fu X, Li T, Zhu Y C, Xiao X Y, Mao Y J, Zeng D L, Hu J, Zhu L, Ren D Y, Gao Z Y, Guo L B, Qian Q, Wu M G, Lin J R, Zhang G H. Construction of genetic map and mapping and verification of grain traits QTLs using recombinant inbred lines derived from a cross betweenC84 andCJ16B., 2018, 32(3): 207-218. (in Chinese with English abstract)
Identification of QTL for Grain Weight and Grain Shape Using Populations Derived from Residual Heterozygous Lines ofRice
ZHU Andong1, SUN Zhichao1, ZHU Yujun1, ZHANG Hui2, 3, NIU Xiaojun1, FAN Yeyang1, ZHANG Zhenhua1, ZHUANG Jieyun1, *
(State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement,;College of Crop Science,;Rice Research Institute, Fujian Academy of Agricultural Science,,;*,:)
【Objective】Grain weight and grain shape are important factors influencing grain yield and quality in rice. There are quantitative traits controlled by a large number of quantitative trait loci (QTL) that vary greatly in effect, but not much attention has been paid to minor QTL. This study was conducted to detect minor QTL for grain weight and shape in the absence of major-QTL segregation. 【Method】Following results of a previous QTL mapping study, a residual heterozygous plant was identified from the original population. The new population derived was homozygous in regions where major QTL for grain weight and shape were detected in the previous study, but segregated in 13 segments of other genomic regions. The population was planted in Hangzhou, Zhejiang and Lingshui, Hainan. Thousand-grain weight, grain length and grain width were tested and used for QTL analysis using Windows QTL Cartographer 2.5. 【Result】A total of 22 QTL were detected, distributing on 12 intervals of 10 chromosomes. Ten of them were significant in both locations, and the other two were detected in Hangzhou only. One plant that was only heterozygous in four of the 12 QTL regions was identified, from which one new population was constructed and tested. The QTL effects of the four regions were well validated. 【Conclusion】Our results indicate that the power of detecting minor QTL could be efficiently increased by eliminating the influence of major-QTL segregation. It is also suggested that minor QTL could have a stable effect though it is believed that they are generally subjected to large influence of the genetic background and environmental conditions. Our results also lay a foundation for fine mapping, cloning and marker-assisted selection of minor QTL for grain weight and grain shape in rice.
quantitative trait locus; 1000-grain weight; grain shape; residual heterozygous line; rice
10.16819/j.1001-7216.2019.8120
Q343.1+5; S511.032
A
1001-7216(2019)02-0144-08
2018-11-06;
2018-12-14。
國家自然科學(xué)基金資助項目(31521064); 中央級公益性科研院所所基本業(yè)務(wù)費專項(2017RG001-2)。