李仲釗
富寧縣新華鎮(zhèn)格當(dāng)小學(xué) 云南文山 663400
小學(xué)階段的數(shù)學(xué)教學(xué)是非?;A(chǔ)且重要的,因此,老師不能單純機械地給學(xué)生講解知識,還要在教學(xué)中滲透數(shù)學(xué)思想,讓學(xué)生掌握學(xué)習(xí)知識的方法,學(xué)會舉一反三等能力,這是非常重要的。
所謂數(shù)學(xué)思想,是指人們對數(shù)學(xué)理論與內(nèi)容的本質(zhì)認(rèn)識,它直接支配著數(shù)學(xué)的實踐活動。所謂數(shù)學(xué)方法,是指某一數(shù)學(xué)活動過程的途徑、程序、手段,它具有過程性、層次性和可操作性等特點。數(shù)學(xué)思想是數(shù)學(xué)方法的靈魂,數(shù)學(xué)方法是數(shù)學(xué)思想的表現(xiàn)形式和得以實現(xiàn)的手段,因此,人們把它們稱為數(shù)學(xué)思想方法。
小學(xué)數(shù)學(xué)教材是數(shù)學(xué)教學(xué)的顯性知識系統(tǒng),許多重要的法則、公式,教材中只能看到漂亮的結(jié)論,許多例題的解法,也只能看到巧妙的處理,而看不到由特殊實例的觀察、試驗、分析、歸納、抽象概括或探索推理的心智活動過程。因此,數(shù)學(xué)思想方法是數(shù)學(xué)教學(xué)的隱性知識系統(tǒng),小學(xué)數(shù)學(xué)教學(xué)應(yīng)包括顯性和隱性兩方面知識的教學(xué)。如果教師在教學(xué)中,僅僅依照課本的安排,沿襲著從概念、公式到例題、練習(xí)這一傳統(tǒng)的教學(xué)過程,即使教師講深講透,并要求學(xué)生記住結(jié)論,掌握解題的類型和方法,這樣培養(yǎng)出來的學(xué)生也只能是“知識型”、“記憶型”的,將完全背離數(shù)學(xué)教育的目標(biāo)。
在認(rèn)知心理學(xué)里,思想方法屬于元認(rèn)知范疇,它對認(rèn)知活動起著監(jiān)控、調(diào)節(jié)作用,對培養(yǎng)能力起著決定性的作用。學(xué)習(xí)數(shù)學(xué)的目的“就意味著解題”(波利亞語),解題關(guān)鍵在于找到合適的解題思路,數(shù)學(xué)思想方法就是幫助構(gòu)建解題思路的指導(dǎo)思想。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,提高學(xué)生的元認(rèn)知水平,是培養(yǎng)學(xué)生分析問題和解決問題能力的重要途徑[1]。
數(shù)學(xué)知識本身是非常重要的,但它并不是唯一的決定因素,真正對學(xué)生以后的學(xué)習(xí)、生活和工作長期起作用,并使其終生受益的是數(shù)學(xué)思想方法。未來社會將需要大量具有較強數(shù)學(xué)意識和數(shù)學(xué)素質(zhì)的人才。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,是未來社會的要求和國際數(shù)學(xué)教育發(fā)展的必然結(jié)果。
對于小學(xué)生我們應(yīng)該有選擇地滲透一些數(shù)學(xué)思想方法。筆者認(rèn)為,以下幾種數(shù)學(xué)思想方法學(xué)生不但容易接受,而且對學(xué)生數(shù)學(xué)能力的提高有很好的促進作用。例如化歸思想,化歸思想是把一個實際問題通過某種轉(zhuǎn)化、歸結(jié)為一個數(shù)學(xué)問題,把一個較復(fù)雜的問題轉(zhuǎn)化、歸結(jié)為一個較簡單的問題。應(yīng)當(dāng)指出,這種化歸思想不同于一般所講的“轉(zhuǎn)化”、“轉(zhuǎn)換”。它具有不可逆轉(zhuǎn)的單向性。此外,還有數(shù)形結(jié)合思想、變換思想、組合思想、符號思想、對應(yīng)思想、極限思想、集合思想等,在小學(xué)數(shù)學(xué)教學(xué)中都應(yīng)注意有目的、有選擇、適時地進行滲透。
數(shù)學(xué)概念、法則、公式、性質(zhì)等知識都明顯地寫在教材中,是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué)知識體系里,是無“形”的,并且不成體系地散見于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常常因教學(xué)時間緊而將它作為一個“軟任務(wù)”擠掉。對于學(xué)生的要求是能領(lǐng)會多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數(shù)學(xué)思想方法重要性的認(rèn)識,把掌握數(shù)學(xué)知識和滲透數(shù)學(xué)思想方法同時納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進行數(shù)學(xué)思想方法滲透的各種因素,對于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進行數(shù)學(xué)思想方法滲透,滲透哪些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個總體設(shè)計,提出不同階段的具體教學(xué)要求[2]。
數(shù)學(xué)思想方法的教學(xué)必須通過具體的教學(xué)過程加以實現(xiàn)。因此,必須把握好教學(xué)過程中進行數(shù)學(xué)思想方法教學(xué)的契機—概念形成的過程,結(jié)論推導(dǎo)的過程,方法思考的過程,思路探索的過程,規(guī)律揭示的過程等。同時,進行數(shù)學(xué)思想方法的教學(xué)要注意有機結(jié)合、自然滲透,要有意識地潛移默化地啟發(fā)學(xué)生領(lǐng)悟蘊含于數(shù)學(xué)知識之中的種種數(shù)學(xué)思想方法,切忌生搬硬套、和盤托出、脫離實際等適得其反的做法。
數(shù)學(xué)思想方法是在啟發(fā)學(xué)生思維過程中逐步積累和形成的。為此,在教學(xué)中,首先要特別強調(diào)解決問題以后的“反思”,因為在這個過程中提煉出來的數(shù)學(xué)思想方法,對學(xué)生來說才是易于體會、易于接受的。如通過分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題有規(guī)律的對比板演,指導(dǎo)學(xué)生小結(jié)解答這類應(yīng)用題的關(guān)鍵,找到具體數(shù)量的對應(yīng)分率,從而使學(xué)生自己體驗到對應(yīng)思想和化歸思想。其次要注意滲透的長期性,應(yīng)該看到,對學(xué)生數(shù)學(xué)思想方法的滲透不是一朝一夕就能見到學(xué)生數(shù)學(xué)能力提高的,而是有一個過程。數(shù)學(xué)思想方法必須經(jīng)過循序漸進和反復(fù)訓(xùn)練,才能使學(xué)生真正地有所領(lǐng)悟。
總之,在小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法要恰如其分,這樣才能達(dá)到理想的效果。