亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        越橘VcNAC072克隆及其促進(jìn)花青素積累的功能分析

        2019-02-20 05:34:14宋楊劉紅弟王海波張紅軍劉鳳之

        宋楊,劉紅弟,王海波,張紅軍,劉鳳之

        ?

        越橘克隆及其促進(jìn)花青素積累的功能分析

        宋楊,劉紅弟,王海波,張紅軍,劉鳳之

        (中國(guó)農(nóng)業(yè)科學(xué)院果樹(shù)研究所/農(nóng)業(yè)部園藝作物種質(zhì)資源利用重點(diǎn)實(shí)驗(yàn)室/遼寧省落葉果樹(shù)礦質(zhì)營(yíng)養(yǎng)與肥料高效利用重點(diǎn)實(shí)驗(yàn)室,遼寧興城 125100)

        【目的】分離越橘(NAM,ATAF1/2,CUC2)轉(zhuǎn)錄因子,分析其表達(dá)模式并探討其在調(diào)控花青素合成過(guò)程中的功能,為進(jìn)一步研究越橘花青素積累的調(diào)控機(jī)理提供理論基礎(chǔ)?!痉椒ā恳浴簟介伲ā瓺uke’)為試材,克隆。通過(guò)農(nóng)桿菌介導(dǎo)法獲得轉(zhuǎn)基因擬南芥,比較轉(zhuǎn)基因和野生型擬南芥花青素積累的差異。利用酵母單雜交和瞬時(shí)表達(dá)試驗(yàn),分析對(duì)MYB轉(zhuǎn)錄因子的轉(zhuǎn)錄調(diào)控。【結(jié)果】克隆獲得越橘,該基因CDS為1 032 bp,編碼含有343個(gè)氨基酸的蛋白質(zhì),含有1個(gè)保守的NAC結(jié)構(gòu)域。表達(dá)分析顯示,該基因在不同發(fā)育階段的果實(shí)中均可表達(dá),但表達(dá)差異明顯,在粉色和藍(lán)色果實(shí)中表達(dá)量較高,在綠色果實(shí)中表達(dá)量最低。隨著表達(dá)的升高,果實(shí)中花青素含量呈遞增的趨勢(shì)。分析啟動(dòng)子序列,發(fā)現(xiàn)其序列中包含NAC轉(zhuǎn)錄因子的結(jié)合位點(diǎn)。酵母單雜交和煙草瞬時(shí)表達(dá)試驗(yàn)結(jié)果表明,VcNAC072可與的啟動(dòng)子相互作用,并激活其表達(dá)。在野生型擬南芥中異位表達(dá),其種子中花青素積累量顯著高于野生型。【結(jié)論】推測(cè)在越橘果實(shí)中正向調(diào)節(jié)花青素的積累。

        越橘;NAC轉(zhuǎn)錄因子;花青素;表達(dá)分析;功能鑒定

        0 引言

        【研究意義】越橘亦稱藍(lán)莓,作為一種新興的果樹(shù)作物之一,近年來(lái)其栽培面積和產(chǎn)量穩(wěn)步增長(zhǎng)[1-2]。越橘果實(shí)中富含花青素、黃酮醇等次生代謝產(chǎn)物,在提高植物抗逆性和人體免疫力等方面具有一定作用[3-4]。通過(guò)分子生物學(xué)方法挖掘優(yōu)異基因,闡釋果實(shí)花青素積累的調(diào)控機(jī)理,對(duì)越橘新品種選育和品質(zhì)改良具有重要意義?!厩叭搜芯窟M(jìn)展】NAC(NAM,ATAF1/2,CUC2)轉(zhuǎn)錄因子是一類植物中特有的轉(zhuǎn)錄因子,其家族成員最顯著的結(jié)構(gòu)特征是其編碼蛋白質(zhì)的N端含有約150個(gè)氨基酸的NAC保守結(jié)構(gòu)域。研究表明,NAC轉(zhuǎn)錄因子的生物學(xué)功能涉及廣泛,包括生長(zhǎng)發(fā)育[5]、信號(hào)轉(zhuǎn)導(dǎo)[6]、非生物脅迫[7-8]和次生代謝產(chǎn)物合成[9-11]等方面。ODA-YAMAMIZO等[12]發(fā)現(xiàn),擬南芥正調(diào)控葉綠素降解和葉片衰老,過(guò)量表達(dá)使植株表現(xiàn)早衰和葉綠素含量降低。TAKASAKI等[13]也發(fā)現(xiàn),7個(gè)擬南芥NAC轉(zhuǎn)錄因子均表現(xiàn)受ABA誘導(dǎo)表達(dá)并調(diào)控葉片衰老。玉米Calcium/calmodulin-dependent protein kinase(CCaMK)可通過(guò)磷酸化ZmNAC84的絲氨酸位點(diǎn),調(diào)控植株由ABA介導(dǎo)的抗氧化性[14]。在調(diào)控次生代謝物質(zhì)積累方面,最近研究發(fā)現(xiàn)紅肉桃可通過(guò)激活的表達(dá)促進(jìn)果肉中花青素積累[15]。在蘋果中也發(fā)現(xiàn)MdNAC029可通過(guò)激活的轉(zhuǎn)錄,促進(jìn)愈傷組織中花青素合成[16]。研究表明,NAC蛋白可通過(guò)結(jié)合靶基因的CACG或GATTGGAT(AT)CA位點(diǎn)調(diào)控靶基因的表達(dá),從而影響植物的抗性、衰老和次生代謝物質(zhì)合成[7-8,16]?!颈狙芯壳腥朦c(diǎn)】NAC轉(zhuǎn)錄因子的研究主要集中在水稻[17]和擬南芥[18]等模式植物。目前,越橘中NAC轉(zhuǎn)錄因子的研究尚無(wú)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】從‘公爵’越橘中分離并鑒定一個(gè)NAC轉(zhuǎn)錄因子,通過(guò)表達(dá)模式分析、轉(zhuǎn)基因分析、酵母單雜交及瞬時(shí)表達(dá)試驗(yàn),探討在調(diào)控越橘花青素積累過(guò)程中的作用,為揭示NAC轉(zhuǎn)錄因子調(diào)控花青素積累提供理論基礎(chǔ)。

        1 材料與方法

        試驗(yàn)于2016年6月—2018年7月在中國(guó)農(nóng)業(yè)科學(xué)院果樹(shù)研究所農(nóng)業(yè)部園藝作物種質(zhì)資源利用重點(diǎn)實(shí)驗(yàn)室和山東農(nóng)業(yè)大學(xué)作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室進(jìn)行。

        1.1 試驗(yàn)材料

        試驗(yàn)所用的植物材料為8年生越橘品種‘公爵’(‘Duke’)、野生型擬南芥()和本氏煙草()。

        1.2 基因克隆和序列分析

        從越橘轉(zhuǎn)錄組數(shù)據(jù)庫(kù)[19]查找NAC基因,并從中篩選發(fā)現(xiàn)高表達(dá)且在果實(shí)成熟過(guò)程中呈持續(xù)上調(diào)表達(dá)。根據(jù)篩選到的序列設(shè)計(jì)引物- F/R擴(kuò)增CDS(coding domain sequence)序列。以越橘果實(shí)的cDNA為模板進(jìn)行PCR擴(kuò)增。PCR反應(yīng)程序?yàn)椋?8℃預(yù)變性3 min;98℃變性10 s,57℃退火30 s,72℃延伸2 min,30個(gè)循環(huán);72℃延伸10 min。PCR產(chǎn)物用1.2%瓊脂糖凝膠電泳并回收目的條帶,連接到克隆載體pEAST blunt zero進(jìn)行測(cè)序。所用的引物序列見(jiàn)表1。

        利用軟件CLC Sequence Viewer 6(http://www. cacbio. com)分析VcNAC072蛋白的保守序列。利用軟件Mega 6.0(http://www. megasoftware.net)引入擬南芥NAC蛋白(http://www.arabidopsis.org)對(duì)VcNAC072蛋白進(jìn)行聚類分析。利用NCBI網(wǎng)站上的BLASTx程序進(jìn)行同源序列比對(duì)。

        1.3 總RNA提取與實(shí)時(shí)熒光定量PCR分析

        總RNA提取采用TaKaRa公司的植物總RNA提取試劑盒(Code No.9769,Takara,Dalian,China)。以總RNA為模板,反轉(zhuǎn)錄合成cDNA。在越橘中,qRT-PCR內(nèi)參基因?yàn)?。在擬南芥中,以作為內(nèi)參基因。儀器為Bio-Rad公司的CFX Connect PCR system,試劑為ThermoFisher公司的PowerUpTMSYBRGreen Master Mix(Code No.A25742,Thermo Fisher, China)。反應(yīng)體系:SYBR Mixture 10.0μL,cDNA 2.0 μL,上、下游引物各0.5 μL,加去離子水至20 μL。PCR反應(yīng)程序:95℃預(yù)變性2 min,95℃變性15 s,58℃退火15 s,72℃延伸1 min,40個(gè)循環(huán),每次循環(huán)第2步進(jìn)行熒光采集。最后采用2-ΔΔCT法分析定量數(shù)據(jù)。所有PCR都設(shè)3次重復(fù)。實(shí)時(shí)熒光定量PCR引物見(jiàn)表1。

        1.4 基因轉(zhuǎn)化擬南芥

        構(gòu)建pRI101-過(guò)量表達(dá)載體,并將其轉(zhuǎn)化農(nóng)桿菌GV3101,利用農(nóng)桿菌侵染花序法轉(zhuǎn)化野生型擬南芥。在含有卡那霉素的MS固體培養(yǎng)基上篩選T1代轉(zhuǎn)基因植株。將抗性苗移栽至基質(zhì)中并放入光照培養(yǎng)箱中進(jìn)行培養(yǎng),收獲的T2代種子用于試驗(yàn)。載體構(gòu)建時(shí)使用的引物見(jiàn)表1。

        1.5 酵母單雜交試驗(yàn)(Y1H)

        Y1H具體試驗(yàn)方法參照Clontech說(shuō)明書,設(shè)計(jì)引物擴(kuò)增的CDS序列,重組至pGADT7酵母表達(dá)載體,生成pGADT7-。擴(kuò)增擬南芥中調(diào)控花青素合成的MYB轉(zhuǎn)錄因子的啟動(dòng)子序列,連接至pAbAi酵母表達(dá)載體,生成pAbAi-pro。將pAbAi-pro轉(zhuǎn)化至酵母菌株Y1H Gold中,轉(zhuǎn)化后涂布在氨基酸缺陷培養(yǎng)基SD/-Ura上,并篩選AbA(Aureobasidin A)濃度。再將pGADT7-轉(zhuǎn)化至重組酵母菌株中,轉(zhuǎn)化后涂布在含有AbA的氨基酸缺陷培養(yǎng)基SD/-Leu上進(jìn)行互作篩選。

        1.6 煙草瞬時(shí)表達(dá)試驗(yàn)

        具體試驗(yàn)方法參照YIN等[20]和JEFFERSON等[21]。把(GenBank登錄號(hào):NM_104541)的啟動(dòng)子序列重組至pCAMBIA1301-GUS載體,生成pro-GUS,轉(zhuǎn)化農(nóng)桿菌GV3101,再與轉(zhuǎn)化農(nóng)桿菌的pRI101-共注射煙草葉片。使用熒光分光光度計(jì)測(cè)定GUS活性。

        1.7 花青素含量測(cè)定

        參照PERTUZATTI等[22]方法,利用高效液相色譜-質(zhì)譜法對(duì)花青素總量進(jìn)行測(cè)定。儀器為島津LP- 10Avp液相色譜儀,SPD-M10Avp二極管陣列檢測(cè)器。根據(jù)色譜峰面積計(jì)算花青素總量。

        1.8 統(tǒng)計(jì)學(xué)分析

        使用SPSS軟件進(jìn)行差異顯著性分析。不同字母代表差異顯著(<0.05)。

        表1 本研究中使用的引物

        下劃線表示酶切位點(diǎn)Underlines indicate digestion sites

        2 結(jié)果

        2.1 VcNAC072的克隆、保守結(jié)構(gòu)域和系統(tǒng)發(fā)生分析

        通過(guò)RT-PCR技術(shù)獲得1條大約1 000 bp的條帶。對(duì)克隆所得片段測(cè)序分析,結(jié)果顯示,的CDS長(zhǎng)度為1 032 bp,編碼含有343個(gè)氨基酸的蛋白質(zhì)。使用CLC軟件分析VcNAC072及其他植物NAC蛋白的保守結(jié)構(gòu)域。結(jié)果表明,VcNAC072含有保守的NAC結(jié)構(gòu)域(圖1)。將VcNAC072蛋白序列與多個(gè)擬南芥NAC蛋白序列進(jìn)行系統(tǒng)發(fā)生分析,以及NCBI序列比對(duì)分析發(fā)現(xiàn),VcNAC072與擬南芥ANAC072同源性最高(圖2)。因此將該基因命名為(GenBank登錄號(hào):MH784502)。

        2.2 VcNAC072的表達(dá)

        在果實(shí)不同發(fā)育時(shí)期,的相對(duì)表達(dá)量與花青素含量變化見(jiàn)圖3。結(jié)果發(fā)現(xiàn),在綠果中表達(dá)量最低,隨著果實(shí)成熟,表達(dá)量持續(xù)升高,在藍(lán)果中最大??偦ㄇ嗨睾孔兓厔?shì)與的變化相似,這暗示的持續(xù)上調(diào)表達(dá)可能促進(jìn)了花青素積累。

        2.3 異位表達(dá)VcNAC072對(duì)花青素積累的影響

        轉(zhuǎn)基因株系(L1和L2)的種子中明顯積累了花青素(圖4-A),其花青素含量均顯著高于野生型,分別為野生型的38.99倍和32.90倍(圖4-B)。qRT-PCR檢測(cè)花青素合成相關(guān)基因的表達(dá),結(jié)果發(fā)現(xiàn),過(guò)量表達(dá)顯著促進(jìn)了及花青素合成基因、的表達(dá)(圖4-C)。

        2.4 VcNAC072對(duì)AtPAP1啟動(dòng)子的調(diào)控

        VcNAC072可與的啟動(dòng)子互作(圖5)。為進(jìn)一步研究VcNAC072對(duì)的調(diào)控方式,構(gòu)建了pRI101-和pro-GUS載體,在煙草中瞬時(shí)表達(dá)。結(jié)果顯示,共轉(zhuǎn)VcNAC072和啟動(dòng)子的煙草葉片中,其GUS相對(duì)活性顯著高于對(duì)照,為對(duì)照的3.57倍,說(shuō)明VcNAC072可激活的表達(dá)(圖6)。

        3 討論

        目前,在擬南芥中已鑒定了117個(gè)NAC轉(zhuǎn)錄因子[18]。其中,在植物生長(zhǎng)發(fā)育和脅迫方面發(fā)揮重要作用。例如,正調(diào)控植物葉綠素降解,促使葉片衰老[23-24]。被發(fā)現(xiàn)能夠響應(yīng)病原菌侵染[25]。還可正調(diào)控植物的干旱和高鹽脅迫響應(yīng)[26],但NAC072在調(diào)控花青素積累過(guò)程中的分子機(jī)理還不清楚。本研究利用前期轉(zhuǎn)錄組測(cè)序數(shù)據(jù),從越橘中分離出1個(gè)編碼NAC蛋白的轉(zhuǎn)錄因子,該基因在花青素含量最高的藍(lán)果中表達(dá)量最高,并通過(guò)轉(zhuǎn)基因試驗(yàn)驗(yàn)證了在野生型擬南芥中過(guò)量表達(dá)促進(jìn)花青素積累。Li等[27]和SUN等[28]也利用轉(zhuǎn)錄測(cè)序技術(shù),在越橘中挖掘出多個(gè)與果實(shí)中花青素積累緊密相關(guān)的花青素合成結(jié)構(gòu)基因,如二氫黃酮醇-4-還原酶(Dihydroflavonol-4-Reductase,DFR)和花青素合成酶(Anthocyanin synthase,ANS)等。

        圖3 果實(shí)發(fā)育不同階段VcNAC072表達(dá)和花青素含量變化

        A:轉(zhuǎn)基因(L1和L2)和野生型(WT)擬南芥種子中花青素積累情況;B:轉(zhuǎn)基因和野生型擬南芥種子中花青素含量;C:qRT-PCR檢測(cè)花青素合成相關(guān)基因的表達(dá),其在WT中的表達(dá)量設(shè)為1。不同小寫字母表示差異顯著(P<0.05)。下同

        圖5 酵母單雜交檢測(cè)VcNAC072與AtPAP1啟動(dòng)子的相互作用

        A:相對(duì)GUS活性。B:瞬時(shí)表達(dá)試驗(yàn)。a:共注射pRI101空載體和AtPAP1pro-GUS;b:共注射pRI101-VcNAC072和AtPAP1pro-GUS A: Quantitative analysis of relative GUS activity. B: Transient expression assay. a: pRI101 empty vector and AtPAP1pro-GUS. b: pRI101-VcNAC072 and AtPAP1pro-GUS

        在擬南芥、蘋果和梨等多種植物中,MYB轉(zhuǎn)錄因子在調(diào)節(jié)花青素合成過(guò)程中起關(guān)鍵作用。MYB可通過(guò)調(diào)控、等花青素合成結(jié)構(gòu)基因的表達(dá)影響花青素合成[29-31]。JAAKOLA等[32]的研究也認(rèn)為歐洲越橘M(fèi)ADS-box轉(zhuǎn)錄因子可直接或間接調(diào)控MYB轉(zhuǎn)錄因子的表達(dá),進(jìn)而調(diào)控、等基因的轉(zhuǎn)錄,從而影響幼嫩果實(shí)中種子和胎座中花青素的積累。

        在本研究中,對(duì)轉(zhuǎn)基因野生型擬南芥進(jìn)行基因表達(dá)分析發(fā)現(xiàn),異位表達(dá)可顯著促進(jìn)MYB轉(zhuǎn)錄因子及花青素合成結(jié)構(gòu)基因的表達(dá)。NAC轉(zhuǎn)錄因子可通過(guò)與其靶基因上的CACG位點(diǎn)結(jié)合,調(diào)控靶基因的表達(dá)[33-34]。本研究通過(guò)Y1H技術(shù)驗(yàn)證了VcNAC072能夠與包含CACG位點(diǎn)的啟動(dòng)子互作,并通過(guò)瞬時(shí)表達(dá)試驗(yàn)發(fā)現(xiàn)VcNAC072可激活的表達(dá)。后期將利用凝膠電泳遷移率試驗(yàn)(EMSA),進(jìn)一步驗(yàn)證VcNAC072對(duì)啟動(dòng)子的結(jié)合。

        4 結(jié)論

        本研究克隆獲得越橘NAC轉(zhuǎn)錄因子,該基因轉(zhuǎn)化野生型擬南芥表現(xiàn)出促進(jìn)花青素積累的表型。Y1H和瞬時(shí)表達(dá)試驗(yàn)表明VcNAC072可與MYB轉(zhuǎn)錄因子的啟動(dòng)子相結(jié)合并促進(jìn)其表達(dá)。研究結(jié)果為揭示NAC轉(zhuǎn)錄因子調(diào)控花青素積累提供了參考。

        [1] 李亞?wèn)|, 孫海悅, 陳麗. 我國(guó)藍(lán)莓產(chǎn)業(yè)發(fā)展報(bào)告. 中國(guó)果樹(shù), 2016(5): 1-10.

        LI Y D, SUN H Y, CHEN L. Report on the development of blueberry industry in China., 2016(5): 1-10. (in Chinese)

        [2] 吳林. 中國(guó)藍(lán)莓35年—科學(xué)研究與產(chǎn)業(yè)發(fā)展. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào), 2016, 38(1): 1-11.

        WU L. Thirty-five years of research and industry development of blueberry in China., 2016, 38(1): 1-11. (in Chinese)

        [3] GORDILLO G, FANG H Q, KHANNA S, HARPER J, PHILIPS G, SEN C K. Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm., 2009, 11(1): 47-58.

        [4] BASU A, RHONE M, LYONS T J. Berries: Emerging impact on cardiovascular health., 2010, 68(3): 168-177.

        [5] SHAHNEJAT-BUSHEHRI S, TARKOWSKA D, SAKURABA Y, BALAZADEH S.NAC transcription factor JUB1 regulates GA/BR metabolism and signalling., 2016, 2: 16013.

        [6] KIM H S, PARK B O, YOO J H, JUNG M S, LEE S M, HAN H J, KIM K E, KIM S H, LIM C O, YUN D J, LEE S Y, CHUNG W S. Identification of a calmodulin-binding NAC protein as a transcriptional repressor in., 2007, 282(50): 36292-36302.

        [7] HONG Y B, ZHANG H J, HUANG L, LI D Y, SONG F M. Overexpression of a stress-responsive NAC transcription factor geneimproves drought and salt tolerance in rice., 2016, 7(e0116646): 4.

        [8] YU X W, LIU Y M, WANG S, TAO Y, WANG Z K, MIJITI A, WANG Z, ZHANG H, MA H. A chickpea stress-responsive NAC transcription factor,, confers enhanced tolerance to drought stress in transgenic., 2016, 79(2): 187-197.

        [9] KO J H, YANG S H, PARK A H, LEROUXEL O, HAN K H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in., 2007, 50(6): 1035-1048.

        [10] ZHONG R, DEMURA T, YE Z H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of., 2006, 18(11): 3158-3170.

        [11] YAMAGUCHI M, KUBO M, FUKUDA H, DEMURA T. Vascular-related NAC-domain7 is involved in the differentiation of all types of xylem vessels inroots and shoots., 2008, 55(4): 652-664.

        [12] ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, OGAWA D, OHME-TAKAGI M, OHMIYA A. ANAC046 is a positive regulator of chlorophyll degradation and senescence inleaves., 2016, 6: 23609.

        [13] TAKASAKI H, MARUYAMA K, TAKAHASHI F, FUJITA M, YOSHIDA T, NAKASHIMA K, MYOUGA F, TOYOOKA K, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence., 2015, 84(6): 1114-1123.

        [14] ZHU Y, YAN J W, LIU W J, LIU L, SHENG Y, SUN Y, LI Y Y, SCHELLER H, JIANG M Y, HOU X L, NI L, ZHANG A Y. Phosphorylation of a NAC transcription factor by a calcium/ calmodulin-dependent protein kinase regulates abscisic acid-induced antioxidant defense in maize., 2016, 171(3): 1651-1664.

        [15] ZHOU H, WANG K L, WANG H L, GU C, DARE A, ESPLEY R, HE H P, ALLAN A, HAN Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors., 2015, 82(1): 105-121.

        [16] 安建平, 宋來(lái)慶, 趙玲玲, 由春香, 王小非, 郝玉金. 蘋果愈傷組織超表達(dá)促進(jìn)花青苷積累. 園藝學(xué)報(bào), 2018, 45(5): 845-854.

        AN J P, SONG L Q, ZHAO L L, YOU C X, WANG X F, HAO Y J. Overexpression ofpromotes anthocyanin accumulation in apple calli., 2018, 45(5): 845-854. (in Chinese)

        [17] NURUZZAMAN M, MANIMEKALAI R, SHRRONI A M. Genome-wide analysis of NAC transcription factor family in rice., 2010, 465(1/2): 30-44.

        [18] KIM S G, LEE S, SEO P J, KIM S K, KIM J K, PARK C M. Genome-scale screening and molecular characterization of membrane- bound transcription factors inand rice., 2010, 95(1): 56-65.

        [19] SONG Y, LIU H D, ZHOU Q, ZHANG H J, ZHANG Z D, LI Y D, WANG H B, LIU F Z. High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors., 2017, 16(3): 591-604.

        [20] YIN X R, ALLAN A C, CHEN K S, FERGUSON I B. Kiwifruit EIL and ERF genes involved in regulating fruit ripening., 2010, 153(3): 1280-1292.

        [21] JEFFERSON R A, KAVANAGH T A, BEVAN M W. GUS fusions:-glucuronidase as a sensitive and versatile gene fusion marker in higher plants., 1987, 6(13), 3901-3907.

        [22] Pertuzatti P B, Barcia M T, Rebello L P G, Gómez- Alonso S, Duarte R M T, Duarte M C T, Godoy H T, Hermosín-Gutiérrez I. Antimicrobial activity and differentiation of anthocyanin profiles of rabbiteye and highbush blueberry using HPLC-DAD-ESI-MS and multivariate analysis., 2016, 26: 506-516.

        [23] ZHU X Y, CHEN J Y, XIE Z K, GAO J, REN G D, GAO S, ZHOU X, KUAI B K. Jasmonic acid promotes degreening via MYB2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes., 2015, 84(3): 597-610.

        [24] LI S, GAO J, YAO L Y, REN G D, ZHU X Y, GAO S, QIU K, ZHOU X, KUAI B K. The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark- induced leaf senescence., 2016, 35(8): 1729-1741.

        [25] HUANG J C, PIATER L A, DUBERY I A. The NAC transcription factor gene ANAC072 is differentially expressed inin response to microbe-associated molecular pattern (MAMP) molecules., 2012, 80(80): 19-27.

        [26] TRAN L S, NAKASHIMA K, SAKUMA Y, SIMPSON S D, FUJITA Y, MARUYAMA K, FUJITA M, SEKI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Isolation and functional analysis ofstress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter., 2004, 16(9): 2481-2498.

        [27] LI X Y, SUN H Y, PEI J B, DONG Y Y, WANG F W, CHEN H, SUN Y P, WANG N, LI H Y, LI Y D.sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidant., 2012, 511(1): 54-61.

        [28] SUN H Y, LIU Y S, GAI Y Z, GENG J M, CHEN L, LIU H D, KANG L M, TIAN Y W, LI Y D.sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation., 2015, 16(1): 652.

        [29] BOREVITZ J O, XIA Y J, BLOUNT J, DIXON R, LAMB C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis., 2000, 12(12): 2383-2393.

        [30] TAKOS A, JAFFé F, JACOB S, BOGS J, ROBINSON S, WALKER A. Light-induced expression of agene regulates anthocyanin biosynthesis in red apples., 2006, 142(3): 1216-1232.

        [31] YAO G F, MING M L, ALLAN A, GU C, LI L T, WU X, WANG R Z, CHANG Y J, QI K J, ZHANG S L, WU J. Map-based cloning of the pear geneidentifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis., 2017, 92: 437-451.

        [32] JAAKOLA L, POOLE M O, JONES M, K?M?R?INEN- KARPPINEN T, KOSKIM?KI J, HOHTOLA A, H?GGMAN H D, FRASER P, MANNING K J, KING G. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits., 2010, 153(4): 1619-1629.

        [33] SAKURABA Y, KIM Y S, HAN S H, LEE B D, PAEK N C. Thetranscription factor NAC016 promotes drought stress responses by repressingtranscription through a trifurcate feed-forward regulatory loop involving NAP., 2015, 27(6): 1771-1787.

        [34] QU Y T, DUAN M, ZHANG Z Q, DONG J L, WANG T. Overexpression of theNAC transcription factorenhances cold tolerance in., 2016, 129: 67-76.

        Molecular Cloning and Functional Characterization ofReveals Its Involvement in Anthocyanin Accumulation in Blueberry

        SONG Yang, LIU HongDi, WANG HaiBo, ZHANG HongJun, LIU FengZhi

        (Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture/Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province, Xingcheng 125100, Liaoning)

        【Objective】The objective of this study was to isolate a transcription factor(NAM, ATAF1/2, CUC2) from blueberry by PCR technology and studying its expression, and to identify its role in anthocyanin biosynthesis. This study laid the foundation for further study of the molecular mechanism ofaffecting anthocyanin biosynthesis in blueberry. 【Method】The blueberrygene was cloned by PCR technology from the fruits of blueberry (‘Duke’). The transgenicwere generated via-mediated transformation. The differences in the anthocyanin accumulation were compared between transgenic and wild-type. The yeast one-hybrid (Y1H) and transient expression assays were carried out to test the transcriptional regulation of MYB transcription factorby. 【Result】A blueberrywas cloned from blueberry. Sequence analysis showed that the coding domain sequence (CDS) ofwas 1 032 bp, which encoded 343 amino acids. Protein structure analysis showed that VcNAC072 contained a NAC domain. Expression analysis showed thatwas expressed at different developmental stages of the blueberry fruits. However, the expression levels varied, with the highest expression level in pink fruits and blue fruits and the relatively low transcript levels in green fruits. The content of anthocyanin in fruits was increased with the elevation of relative expression of. The sequence ofpromoter was analyzed and a NAC binding motif was found. The VcNAC072 protein could interact with the promoter of. Moreover, the VcNAC072 could induce the expression ofand favorably contributed to anthocyanin accumulation in seeds of transgenic. 【Conclusion】It was speculated thatup-regulated anthocyanin accumulation in fruits of blueberry.

        blueberry; NAC transcription factor; anthocyanin; expression analysis; functional identification

        10.3864/j.issn.0578-1752.2019.03.010

        2018-08-27;

        2018-09-28

        山東農(nóng)業(yè)大學(xué)作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題項(xiàng)目(2018KF08)、遼寧省農(nóng)業(yè)領(lǐng)域青年科技創(chuàng)新人才培養(yǎng)計(jì)劃項(xiàng)目(2015059)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程、國(guó)家自然科學(xué)基金(31301754)、中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)

        宋楊,E-mail:songyang1225@163.com。通信作者劉鳳之,E-mail:liufengzhi6699@126.com

        (責(zé)任編輯 趙伶俐)

        久久久久久夜精品精品免费啦 | av网站国产主播在线| 狠狠色噜噜狠狠狠777米奇| 久久99热久久99精品| 亚洲AV综合久久九九| av在线手机中文字幕| 丰满少妇人妻久久精品| 成人欧美一区二区三区| 日韩精品中文字幕无码专区| 亚洲人妻中文字幕在线视频| 日本一二三区免费在线| 国产亚洲一本大道中文在线| 丝袜AV在线一区二区三区| 男女发生关系视频网站| 一区二区黄色在线观看| 精品少妇一区二区三区免费观| 精品中文字幕久久久人妻| 久久国产精品一区二区| 美丽的小蜜桃在线观看| 无码人妻av免费一区二区三区| 亚洲男人天堂2017| 色婷婷亚洲一区二区在线| 国产高颜值女主播在线| 鲁鲁鲁爽爽爽在线视频观看| 欧美日韩区1区2区3区| 国产自拍精品在线视频| 99在线精品免费视频| 亚洲av无码av吞精久久| 中文字幕高清无码不卡在线| 极品尤物在线精品一区二区三区| 影音先锋男人av鲁色资源网| chinesefreexxxx国产麻豆| 国产精品视频免费一区二区三区 | 亚洲a∨无码一区二区| 国产成人AV乱码免费观看| 国产在线91精品观看| 国产免费av片无码永久免费 | 亚洲一区二区三区国产| 国产女主播精品大秀系列| 麻豆国产av尤物网站尤物| 在线观看国产自拍视频|