談明高,陸友東,吳澤瑾,吳賢芳,劉厚林
葉片數(shù)對離心泵振動噪聲性能的影響
談明高1,陸友東1,吳澤瑾1,吳賢芳2,劉厚林1
(1. 江蘇大學(xué)流體機(jī)械及工程技術(shù)研究中心,鎮(zhèn)江 212013; 2. 江蘇大學(xué)能源與動力工程學(xué)院,鎮(zhèn)江 212013)
葉片數(shù)是離心泵的主要幾何參數(shù)之一。為研究葉片數(shù)對離心泵振動噪聲性能的影響,以比轉(zhuǎn)速為97的離心泵為例,對比了不同葉片數(shù)下的水力和振動噪聲性能,并采用FEMBEM聲振耦合計(jì)算方法對流動激勵(lì)下的振動及其聲輻射噪聲進(jìn)行了數(shù)值模擬,同時(shí)與試驗(yàn)數(shù)據(jù)進(jìn)行對比分析。結(jié)果表明:提出的數(shù)值模擬方法可用于預(yù)測泵的流動誘導(dǎo)振動和聲輻射性能,且在模擬中考慮口環(huán)泄漏的影響能夠提高計(jì)算精度,有口環(huán)方案預(yù)測得到的振幅較無口環(huán)方案的預(yù)測精度提高了13.5%。隨著葉片數(shù)的增加,揚(yáng)程和軸功率均逐漸增大,最大增幅分別為15.9%和14.1%;效率隨葉片數(shù)的增加呈先增大后減小再增大的趨勢。離心泵蝸殼的壓力脈動幅值隨葉片數(shù)的減小而增大。由于葉輪蝸殼動靜干涉的作用,蝸殼隔舌處、第1到第2斷面間和擴(kuò)壓管壁面等3個(gè)區(qū)域的壓力脈動幅值相對較高。隨著葉片數(shù)的減少,蝸殼壁面的振動位移有所增大,最大位移主要發(fā)生蝸殼第8斷面處。振動速度隨著葉片數(shù)的增大后減小,與振動位移的規(guī)律有一定的差異,振動高速區(qū)主要集中在隔舌、蝸殼的第4與第6斷面之間和靠近擴(kuò)壓管的第8斷面處。設(shè)計(jì)工況下,泵在葉頻對應(yīng)的聲壓級和聲強(qiáng)隨著葉片數(shù)的增加先增大后減小,高聲壓級區(qū)域主要出現(xiàn)在泵出口附近的高振動速度引起的垂直方向。綜合考慮水力和振動噪聲性能,確定該模型泵的最佳葉片數(shù)為6。
離心泵;數(shù)值模擬;壓力;口環(huán)泄漏;葉片數(shù);振動;噪聲
離心泵是通過葉輪旋轉(zhuǎn)來驅(qū)動流體的機(jī)械,廣泛應(yīng)用于各種工業(yè)和民用領(lǐng)域[1]。泵在運(yùn)行過程中產(chǎn)生的振動和噪聲,不僅對設(shè)備的使用壽命和系統(tǒng)性能有很大影響[2],而且還會破壞工作環(huán)境,影響人的身心健康。隨著經(jīng)濟(jì)和社會的發(fā)展,對泵的振動和噪聲的要求越來越高[3-5]。因此,降低泵振動和噪聲水平了成為研究熱點(diǎn)[6-8]。
目前,國內(nèi)外對離心泵振動噪聲的研究主要集中在理論[9-10]和試驗(yàn)研究[11-13]方面。近幾十年來,基于聲學(xué)分析的計(jì)算流體動力學(xué)已取得了一些進(jìn)展。研究提出了根據(jù)CFD數(shù)值計(jì)算[14-15]的方法或者離散渦法[16-17]來預(yù)測聲源的方法,然后采用邊界元法(boundary element method,BEM)完成聲輻射計(jì)算[15,18-19]。Kato等[20]提出了一種離心泵外表面噪聲預(yù)測的流體和結(jié)構(gòu)分析的單向耦合模擬方法?;诖鬁u模擬(large eddy simulation,LES)進(jìn)行內(nèi)流計(jì)算,后運(yùn)用有限元法計(jì)算壓力脈動,最終與測量結(jié)果進(jìn)行對比,研究發(fā)現(xiàn)該方法下葉頻對應(yīng)的預(yù)測振動噪聲和實(shí)測吻合較好。針對流體與結(jié)構(gòu)網(wǎng)格的傳輸,Jiang等[21]開發(fā)了一種數(shù)據(jù)接口工具來解決網(wǎng)格匹配的問題,并采用有限元法對結(jié)構(gòu)振動進(jìn)行了數(shù)值模擬,提取了葉頻對應(yīng)的振動模態(tài),結(jié)果闡明了振動噪聲產(chǎn)生和傳播的機(jī)理。
葉片數(shù)對葉輪流道內(nèi)流體流動的不均勻性有明顯的影響[22]。隨著葉片數(shù)的減少,葉片間距的增大,流體沿圓周流動的不均勻性增加。針對泵性能的不同要求,國內(nèi)外對葉片數(shù)的優(yōu)化[23-24]進(jìn)行了許多研究,研究表明葉片數(shù)對泵的振動噪聲性能具有較大影響[25-26]。以往的研究大多是在不考慮葉輪和蝸殼中泄漏流場的情況下研究兩者之間的相互作用。事實(shí)上,位于定子和轉(zhuǎn)子的流體泄漏對離心泵的能量性能有很大影響,葉輪出口的主流通過間隙流入蝸殼,主流與間隙內(nèi)流體相互作用,引起間隙內(nèi)不均勻的壓力分布。同時(shí),泵內(nèi)泄漏對離心泵的非定常特性也起著重要作用[27-28]。
本文考慮葉輪和蝸殼間泄漏的影響后,建立了分析離心泵振動和噪聲的預(yù)測模型,研究了葉片數(shù)對流體激勵(lì)下引起的泵殼振動輻射噪聲的影響,研究結(jié)果能夠?yàn)殡x心泵減振降噪設(shè)計(jì)提供一定的參考。
選取比轉(zhuǎn)速s=97的單級離心泵作為研究對象,其設(shè)計(jì)參數(shù)d=50 m3/h、轉(zhuǎn)速=2 900 r/min、揚(yáng)程=30 m。模型泵主要結(jié)構(gòu)參數(shù):葉輪入口直徑1=0.072 m,出口直徑2=0.168m,出口寬度2=0.01 m,葉片出口角2=33°,包角=115°,口環(huán)間隙為0.2 mm。
為分析不同葉片數(shù)對離心泵性能的影響,給出了4種不同葉片數(shù)的葉輪,將葉片數(shù)為4、5、6和7的離心泵分別記為泵I、泵II、泵III和泵IV。對圖1所示的葉輪進(jìn)行快速成型加工,進(jìn)行性能測試。
注:z為葉片數(shù)。
離心泵閉式試驗(yàn)臺如圖2所示,試驗(yàn)系統(tǒng)主要包括模型泵、渦輪流量計(jì)、電機(jī)、數(shù)據(jù)采集器、壓阻式壓力傳感器、霍爾傳感器等。泵轉(zhuǎn)矩由傳感器測試,通過計(jì)算機(jī)采集數(shù)據(jù)。流量計(jì)安裝在距出口管1 m處,流量由閥門控制。壓力傳感器測量進(jìn)出口靜壓,其測量范圍為?100~100 kPa和0~600 kPa。泵的振動加速度由PCB 352A60加速度計(jì)測試,安裝在泵進(jìn)口處,其靈敏度為10 mV/(m/s2)。加速度計(jì)的位置如圖3所示。用PXI-6251數(shù)據(jù)采集模塊采集電信號,并由Lab View軟件進(jìn)行分析。壓力傳感器、渦輪流量計(jì)、加速度計(jì)和霍爾傳感器的測量不確定度范圍分別為±0.5%、±0.5%、±2%、±1.5%。
1.真空泵 2.汽蝕筒 3、4、8、10.碟閥 5.渦輪流量計(jì) 6.壓力變送器 7.模型泵 9.電機(jī) 11.穩(wěn)壓罐 12.球閥
研究模型由三維造型軟件Pro/E 5.0生成,并由ICEM進(jìn)行網(wǎng)格劃分,運(yùn)用六面體結(jié)構(gòu)化網(wǎng)格劃分確保網(wǎng)格的質(zhì)量,網(wǎng)格域共分為4部分:進(jìn)口域,葉輪域,蝸殼和出口域,泄露流道域。其中葉輪域與其他3個(gè)域之間設(shè)置動靜交界面,如圖3所示。
注:將進(jìn)口域和泄露流道域間為交界面記為A,泄露流道域和蝸殼及出口域交界面記為F,泄露流道域和葉輪交界面分別交界面B,C,D,E。
為分析有無口環(huán)泄漏對離心泵噪聲數(shù)值計(jì)算的影響,對有無口環(huán)泄漏分別進(jìn)行了造型,圖4a和4b分別為2種模型的源網(wǎng)格。
圖4 模型源網(wǎng)格
利用CFX軟件進(jìn)行求解,采用多重參考系模擬葉輪蝸殼的相互作用。葉輪流場處于旋轉(zhuǎn)坐標(biāo)系中,蝸殼和泄漏流道在靜止坐標(biāo)系中計(jì)算。通過動靜交界面進(jìn)行數(shù)據(jù)交換,設(shè)置一般網(wǎng)格界面,穩(wěn)態(tài)計(jì)算采用凍結(jié)轉(zhuǎn)子交界面,瞬態(tài)計(jì)算采用瞬態(tài)動靜交界面。瞬態(tài)計(jì)算初始條件設(shè)置為定常計(jì)算結(jié)果,計(jì)算時(shí)長為5圈。
綜合考慮間隙流動的精確性和計(jì)算周期,采用SST湍流模型[29],并通過標(biāo)準(zhǔn)壁面函數(shù)計(jì)算邊界層變量。相對壓力設(shè)為0,計(jì)算域中所有表面均采用無滑移壁面條件。收斂殘差設(shè)置為10-4。進(jìn)口條件設(shè)為1 atm的恒定總壓,出口條件設(shè)為質(zhì)量流量。
蝸殼材料為鑄鋼,其彈性模量=211 GPa,密度=7 870 kg/m3,泊松比=0.29。蝸殼結(jié)構(gòu)網(wǎng)格如圖5所示。
注:地腳螺栓孔節(jié)點(diǎn)處的速度為ux= uy= uz=0;進(jìn)出口法蘭速度為uz=0和ux=0;軸承孔上的節(jié)點(diǎn)速度為ux= uy=uz=0。
通過5套不同數(shù)量的網(wǎng)格檢查網(wǎng)格相關(guān)性,分別記為方案A、方案B、方案C、方案D和方案E,如表2所示。根據(jù)不同網(wǎng)格數(shù)下泵揚(yáng)程的變化確定最佳網(wǎng)格數(shù)量,如圖6所示。隨著網(wǎng)格數(shù)量的增加,泵揚(yáng)程系數(shù)逐漸接近恒定值,揚(yáng)程系數(shù)為該網(wǎng)格數(shù)下計(jì)算揚(yáng)程與設(shè)計(jì)揚(yáng)程的比值,因此最終選取網(wǎng)格D進(jìn)行研究分析。
表1 5種不同網(wǎng)格方案
圖6 網(wǎng)格數(shù)對揚(yáng)程的影響
結(jié)構(gòu)動態(tài)響應(yīng)和周圍空氣中輻射聲壓的控制方程如下
式中[]為質(zhì)量矩陣;[]為阻尼矩陣;[]為剛度矩陣;{}為節(jié)點(diǎn)結(jié)構(gòu)位移矢量;{P(t)}為施加在節(jié)點(diǎn)結(jié)構(gòu)上的外部激勵(lì)力矢量,由CFD計(jì)算得到。
阻尼矩陣[]由Rayleigh理論給出,包含剛度矩陣和質(zhì)量矩陣的線性組合
式中、分別表示質(zhì)量和剛度比例阻尼常數(shù)。
式中和分別為第、的固有頻率,和分別為第、的阻尼比,根據(jù)文獻(xiàn)[30-31],假設(shè)2種模式具有相同的阻尼比,==,則阻尼比約為0.04。
因此式(3)可簡化為
運(yùn)用蝸殼聲學(xué)仿真用商用程序SYSNOISE中的邊界元法進(jìn)行模擬。蝸殼結(jié)構(gòu)振動引起的空氣輻射聲壓的控制方程如下
提取結(jié)構(gòu)外表面并將其網(wǎng)格化,作為邊界元計(jì)算中使用的聲學(xué)模型,如圖7所示。聲學(xué)網(wǎng)格共包括14 706個(gè)元素和13 573個(gè)節(jié)點(diǎn)。根據(jù)文獻(xiàn)[32],本研究中所研究模型的最大有效頻率為4 366 Hz,因此,對于葉片通過頻率而言,網(wǎng)格足夠精細(xì)。將結(jié)構(gòu)外表面節(jié)點(diǎn)的法向速度轉(zhuǎn)移到聲學(xué)模型的表面節(jié)點(diǎn),將其設(shè)置為蝸殼聲學(xué)計(jì)算的邊界條件,最終采用邊界元法求解聲壓分布。
圖7 蝸殼聲網(wǎng)格
圖8為4臺不同葉片數(shù)的泵在設(shè)計(jì)工況下的性能曲線。
圖8 設(shè)計(jì)工況下不同葉片數(shù)的泵性能曲線
由圖8可知,數(shù)值計(jì)算結(jié)果與試驗(yàn)結(jié)果較為吻合。揚(yáng)程、效率和軸功率誤差值分別在在5.06%、5.34%和5.68%以內(nèi)。隨著葉片數(shù)的增加,揚(yáng)程總體上呈上升趨勢,軸功率逐漸增大,最大增幅分別為15.9%和14.1%。效率隨葉片數(shù)的增大呈先增大后減小再增大的趨勢,泵Ⅱ(葉片數(shù)為5)的效率達(dá)到最大值。這可能是因?yàn)楫?dāng)葉片數(shù)減少后,葉片對水流的約束減弱,泵內(nèi)出現(xiàn)流動分離,導(dǎo)致泵效率下降。當(dāng)葉片數(shù)增加時(shí),泵內(nèi)流體流態(tài)更加均勻,但摩擦損失也隨之增加,效率因此出現(xiàn)變化。就泵的能量性能而言,最佳葉片數(shù)為5。
為了驗(yàn)證了數(shù)值模擬方法的正確性,對比了設(shè)計(jì)工況下A1測點(diǎn)振動加速度的試驗(yàn)測試和數(shù)值預(yù)測的頻譜,并分析了口環(huán)泄漏對計(jì)算結(jié)果的影響,如圖9所示。
圖9 監(jiān)測點(diǎn)振動加速度頻譜
從圖9中可以看出,數(shù)值計(jì)算能夠很好地預(yù)測出特征頻率,振動頻譜中分別出現(xiàn)48和240 Hz 2個(gè)峰值。其中48 Hz時(shí)的振動由軸旋轉(zhuǎn)產(chǎn)生,是由機(jī)械不平衡或水力不平衡引起,240 Hz時(shí)的峰值是由轉(zhuǎn)子-定子相互作用激發(fā)的葉頻引起。
進(jìn)一步對比圖9中有無口環(huán)泄漏的結(jié)果,可以發(fā)現(xiàn)有口環(huán)方案預(yù)測得到的葉頻處對應(yīng)的振幅較無口環(huán)方案更為精確,預(yù)測精度提高了13.5%。這表明了離心泵口環(huán)泄漏對水力振動性能的具有顯著影響。因此,考慮口環(huán)泄漏的離心泵振動模擬能夠提高數(shù)值計(jì)算的精確性。
圖10為設(shè)計(jì)工況下泵在葉頻對應(yīng)的壓力脈動幅值。
圖10 設(shè)計(jì)工況蝸殼的壓力脈動幅值
從圖10可以看出,蝸殼出口處的壓力脈動幅值均較大,壓力脈動幅值隨葉片數(shù)的減小而增大,最大增幅為23.6%。由于葉片與隔舌的相互作用,蝸殼隔舌、第1到第2斷面間和擴(kuò)壓管壁面等3個(gè)區(qū)域的壓力脈動幅值相對較高,這可能是因?yàn)槿~輪和隔舌間的動靜干涉作用的影響。在葉頻對應(yīng)的壓力值下,葉片后緣剛好經(jīng)過隔舌前緣,導(dǎo)致了劇烈的壓力脈動。隨著葉片數(shù)減少,葉片間距逐漸增大,葉輪出口流動不均勻度增大,泵的振動和噪聲也隨之增大。
設(shè)計(jì)工況下4臺泵的振動位移如圖11所示。圖11表明,隨著葉片數(shù)的減少,振動位移有明顯的上升,泵I(葉片數(shù)為4)的變化最大,振動位移的最大增幅為36.4%,這與壓力脈動的變化相一致。因此,葉片數(shù)對振動位移有很大影響,最大位移主要發(fā)生第8斷面處。
圖12是設(shè)計(jì)工況下的振動速度圖。由圖可知,振動速度隨著葉片數(shù)的增加先增大后減小,泵Ⅱ(葉片數(shù)為5)的振動速度幅值最大。根據(jù)圖12中的速度變化,振動的高速區(qū)主要集中在隔舌周圍、蝸殼第4到第6斷面間和擴(kuò)壓管第8斷面處。但對比圖11可以發(fā)現(xiàn),速度的變化與位移不完全一致,這可能是因?yàn)檎駝铀俣炔粌H與位移有關(guān),還與振動頻率有關(guān)。總體看葉片數(shù)為5時(shí)泵的振動最大。
圖11 設(shè)計(jì)流量下的振動位移
圖12 設(shè)計(jì)流量下的振動速度
采用以蝸殼為中心的半徑為0.5 m的球形聲網(wǎng)格,計(jì)算了泵輻射聲壓級的方向性分布。圖13給出了4臺泵在設(shè)計(jì)工況下葉頻對應(yīng)的聲壓級。從圖13可以看出,隨著葉片數(shù)的增加,泵在設(shè)計(jì)條件下的聲壓級(sound pressure level,SPL)先增大后減小,泵Ⅱ(葉片數(shù)為5)的SPL最大,與振動速度的變化一致,5葉片較4葉片增幅較大,最大增幅達(dá)138.5%。高聲壓級區(qū)域主要出現(xiàn)在泵出口附近的高振動速度引起的垂直方向上。
圖14給出了設(shè)計(jì)流量下聲強(qiáng)方向性分布。由圖可以看出,聲強(qiáng)隨葉片數(shù)的增加先增大后減小,與聲壓級變化趨勢一致。5葉片較4葉片增幅較大,最大增幅為237.4%。但泵Ⅱ(葉片數(shù)為5)的聲強(qiáng)明顯高于其他3個(gè)方案,這表明了葉片數(shù)的確定應(yīng)充分考慮振動噪聲的影響。
圖13 設(shè)計(jì)流量下的聲壓級
圖14 設(shè)計(jì)工況下聲強(qiáng)方向性分布
綜合以上分析,從水力性能來看,泵I(葉片數(shù)為4)的性能最差,泵III(葉片數(shù)為6)的性能略差于泵Ⅱ(葉片數(shù)為5),但優(yōu)于泵Ⅳ(葉片數(shù)為7)??紤]振動噪聲的影響后,泵III的預(yù)測數(shù)據(jù)遠(yuǎn)小于泵Ⅱ,接近泵Ⅳ。因此,綜合考慮到離心泵的外特性、壓力脈動和振動噪聲性能后,對于模型泵而言,最佳葉片數(shù)為6。
通過數(shù)值仿真和試驗(yàn)研究的對比分析了葉片數(shù)對離心泵蝸殼的振動噪聲的影響,研究發(fā)現(xiàn):
1)隨著葉片數(shù)的增加,揚(yáng)程和軸功率逐漸增大,最大增幅分別為15.9%和14.1%;效率隨葉片數(shù)的增大呈先增大后減小再增大的趨勢。
2)在數(shù)值模擬中考慮口環(huán)泄漏情況能夠提高離心泵振動仿真的精確度,有口環(huán)方案預(yù)測得到的葉頻對應(yīng)的振幅較無口環(huán)方案更為精確,預(yù)測精度提高了13.5%。
3)離心泵蝸殼的壓力脈動幅值和振動位移隨著葉片數(shù)的減小均有所增大,最大增幅分別為23.6%和36.4%;蝸殼隔舌、蝸殼第1到第2斷面間和擴(kuò)壓管壁面這3個(gè)區(qū)域的壓力脈動幅值相對較大;蝸殼壁面上的最大位移主要發(fā)生第8斷面處。
4)蝸殼表面振動速度隨著葉片數(shù)的增加先增大后減小,在隔舌周圍、蝸殼的第4與第6斷面之間和靠近擴(kuò)壓管的第8斷面的振動速度較高。
5)隨著葉片數(shù)的增加,泵在設(shè)計(jì)條件下的聲壓級和聲強(qiáng)先增大后減小;高聲壓級區(qū)域主要出現(xiàn)在泵出口附近的高振動速度引起的垂直方向上。
6)考慮離心泵的外特性、壓力脈動和振動噪聲性能后,模型泵的最佳葉片數(shù)為6。
[1]張克危. 流體機(jī)械原理(上冊)[M]. 北京:機(jī)械工業(yè)出版社,2000.
[2]Birajdar R, Patil R, Khanzode K. Vibration and noise in centrifugal pumps-sources and diagnosis methods[C] Porto: Reliability and Failure, 2009.
[3]Gulich J F. Centrifugal Pumps[M]. Berlin: Springer, 2010.
[4]Baun D O, Flack R D. Effects of volute design and number of impeller blades on lateral impeller forces and hydraulic performance[J]. International Journal of Rotating Machinery, 2003, 9(2): 145-152.
[5]何濤,鐘榮,孫玉東. 離心泵水動力噪聲計(jì)算方法研究[J].船舶力學(xué),2012,16(4):449-455.
He Tao, Zhong Rong, Sun Yudong. Numerical method on hydrodynamic noise of centrifugal pump[J]. CSSRC Reports, 2012, 16(4): 449-455. (in Chinese with English abstract)
[6]Chakraborty S, Choudhuri K, Dutta P, et al. Performance prediction of Centrifugal Pumps with variations of blade number[J]. Journal of Scientific & Industrial Research, 2013, 72(6): 373-378.
[7]馮濤,王晶,吳瑞. 蝸舌間隙對離心泵流動噪聲影響的研究[J]. 食品與機(jī)械,2012,28(2):75-78.
Feng Tao, Wang Jing, Wu Rui. Research on the influence to the flow noise of the centrifugal pumps with different gap between impeller and tongue[J]. Food & Machinery, 2012, 28(2): 75-78. (in Chinese with English abstract)
[8]譚永學(xué),王宏光,楊愛玲,等. 離心泵水動力噪聲預(yù)測[J].上海理工大學(xué)學(xué)報(bào),2011,33(1):89-94.
Tan Yongxue, Wang Hongguang, Yang Ailing, et al. Numerical prediction of hydrodynamic noise for a centrifugal pumps[J]. Journal of University of Shanghai for Science and Technology, 2011, 33(1): 89-94. (in Chinese with English abstract)
[9]Simpson H C, Clark T A, Weir G A. A theoretical investigation of hydraulic noise in pumps[J]. Journal of Sound and Vibration, 1967, 5(3): 456-488.
[10]Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump-part B: Effects of blade-tongue interactions[J]. Journal of Fluids Engineering, 1995, 117(1): 30-35.
[11]Morgenroth M, Weaver D S. Sound generation by a centrifugal pump at blade passage frequency[J]. Journal of Turbomachinery, 1998, 120(4): 736-743.
[12]Rzentkowski G, Zbroja S. Experimental characterization of centrifugal pumps as an acoustic source at the blade-passing frequency[J]. Journal of Fluids and Structures, 2000, 14(4): 529-558.
[13]Choi J S, McLaughlin D K, Thompson D E. Experiments on the unsteady flow field and noise generation in a centrifugal pump impeller[J]. Journal of Sound and Vibration, 2003, 263(3): 493-514.
[14]董亮,代翠,孔繁余,等. 葉片出口安放角對離心泵作透平噪聲的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015(6):77-83.
Dong Liang, Dai Cui, Kong Fanyu, et al. Effect of blade outlet angle on turbine noise of centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CASE), 2015(6): 77-83. (in Chinese with English abstract)
[15]Kato C, Kaiho M, Manabe A. An overset finite-element large-eddy simulation method with applications to turbomachinery and aeroacoustics[J]. Journal of Applied Mechanics, 2003, 70(1): 32-43.
[16]Jeon W H, Lee D J. A numerical study on the flow and sound fields of centrifugal impeller located near a wedge[J]. Journal of Sound and Vibration, 2003, 266(4): 785-804.
[17]Langthjem M A, Olhoff N. A numerical study of flow-induced noise in a two dimensional centrifugal pump. Part I. Hydrodynamics[J]. Journal of Fluids and Structures, 2004, 19: 349-368.
[18]Langthjem M A, Olhoff N. A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part II. Hydroacoustics[J]. Journal of Fluids and Structures, 2004, 19: 369-386.
[19]李躍,施衛(wèi)東,韓笑笑. 不同結(jié)構(gòu)形式對串并聯(lián)離心泵振動特性的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(9):744-749.
Li Yue, Shi Weidong, Han Xiaoxiao. Effects of pump hydraulic structure on vibration characteristics of series-parallel centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(9): 744-749. (in Chinese with English abstract)
[20]Kato C, Yamade Y, Wang H, et al. Numerical prediction of sound generated from flows with a low Mach number[J]. Computers & Fluids, 2007, 36(1): 53-68.
[21]Jiang Y Y, Yoshimura S, Imai R, et al. Quantitative evaluation of flow-induced structural vibration and noise in turbomachinery by full-scale weakly coupled simulation[J]. Journal of Fluids and Structures, 2007, 23(4): 531-544.
[22]Adkins D R, Brennen C E. Analysis of hydrodynamic radial forces on centrifugal pump impellers[J]. Journal of Fluids Engineering, 1988, 110(1): 20-28.
[23]Guinzburg A, Brennen C E, Acosta A J, et al. Experimental results for the rotor dynamic characteristics of leakage flows in centrifugal pumps[J]. Journal of Fluid Engineering, 1994, 116(1): 110-115.
[24]王勇,劉厚林,袁壽其,等. 葉片數(shù)對離心泵空化誘導(dǎo)振動噪聲的影響[J]. 哈爾濱工程大學(xué)學(xué)報(bào),2012,33(11):1405-1409.
Wang Yong, Liu Houlin, Yuan Shouqi, et al. Effects of the blade number on cavitation-induced vibration and noise of centrifugal pumps[J]. Journal of Harbin Engineering University, 2012, 33(11): 1405-1409. (in Chinese with English abstract)
[25]Tucker P G, Lardeau S. Introduction: Applied large eddy simulation[J]. Phil Trans Roy Soc Lond A-Math Phys Eng Sci, 2009, 367(1899): 2809-2818.
[26]Bonet J, Peraire J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1): 1-17.
[27]Samareh J A. Discrete data transfer technique for fluid-structure interaction[C]//Hampton: NASA Langley Research Center, 2007: 1-12.
[28]邵春雷,顧伯勤,陳曄. 離心泵內(nèi)部非定常壓力場的數(shù)值研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(1):87-92.
Shao Chunlei, Gu Boqin, Chen Ye. Numerical simulation of unsteady pressure field in centrifugal pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CASE), 2009, 25(1): 87-92
[29]鄭水華,錢亨,牟介剛,等. 交錯(cuò)葉片對三通道蝸殼離心泵水動力性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):51-59.
Zheng Shuihua, Qian Heng, Mou Jiegang, et al. Effect of staggered blades on hydrodynamic performance of three channel volute centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CASE), 2015, 31(23): 51-59. (in Chinese with English abstract)
[30]李德順,王成澤,李銀然,等. 葉片前緣磨損形貌特征對風(fēng)力機(jī)翼型氣動性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):277-283.
Li Deshun, Wang Chengze, Li Yinran, et al. Effect of blade leading edge wear morphology on aerodynamic performance of wind wing type[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CASE), 2017, 33(22): 277-283. (in Chinese with English abstract)
[31]Kaiser T F, Osman R H, Dickau R O. Analysis guide for variable frequency drive operated centrifugal pumps[C]// Texas: Texas A & M University, 2008: 81-106.
[32]Marburg S. Six boundary elements per wave length: Is that enough[J]. Journal of Computational Acoustics, 2002, 10(1): 25-51.
Effects of blade number on flow induced vibration and noise in centrifugal pump
Tan Minggao1, Lu Youdong1, Wu Zejin1, Wu Xianfang2, Liu Houlin1
(1.,212013,; 2.,,212013,)
The number of blades is one of the main geometric parameters of centrifugal pump, which is widely used in agricultural machinery, and it has an important influence on the vibration and noise of centrifugal pumps. Both vibration and noise can affect the centrifugal pump performance and its life, and the sources of vibration and noise may lie in hydraulic or mechanical aspects. In fact, most previous works for vibration and noise of centrifugal pumps mostly focused on theoretical and experimental studies. However, these studies seem to simulate the volute and impeller interactions only, without consideration of the leakage flow paths. The leakage flow paths between the rotating impeller and the stationary housing play an important role in centrifugal pumps. Therefore, understanding the influence of the blade number and the leakage flow paths in centrifugal pump is an urgent problem to be solved. In this paper, the vibration and sound radiation of volute under flow excitation was simulated by FEM/BEM acoustic-vibration method. The experiment was carried out to study the effects of blade number on the vibration and noise based on a centrifugal pump with a single entry and a single volute.Comparing the different performances of centrifugal pump with various blade numbers, it was found that with the increase of blade number, the head and shaft power increased gradually, and the efficiency increased first, then decreased and increased with the increase of blade number. In addition, the numerical simulation results of volute with and without leakage flow paths were compared. The vibration and noise induced by inner flow of the pump with different blade number were analyzed under design flow condition. It was found that the results of simulation were validated by the vibration acceleration of the monitoring points on volute compared with the experimental vibration acceleration. The numerical simulation method proposed in this paper could be used to predict flow-induced vibration and acoustic radiation of volutes under design conditions. The errors value of head, efficiency and shaft power between numerical calculation and experiments were within 5.06%, 5.34% and 5.68% respectively. The amplitudes of simulation with the leakage flow paths were coincident with the experimental results than the results without the leakage. The peak error between the simulation amplitude with and without leakage flow paths was 13.5%. To reveal the effects of the blade number on pressure fluctuation and vibration, the contrast with different blade numbers was considered objectively. As the number of blades decreased, the pressure fluctuation and vibration displacement of the volute of centrifugal pump increased. High amplitude regions appeared at the volute tongue, the first and second hydraulic profile of the volute and the eighth hydraulic profile were close to the diffuser. The maximum vibration displacement mainly concentrated at the eighth hydraulic profile. According to the analysis, the significant high levels of vibration velocity can mainly classify in three regions, around the tongue, between the fourth and the sixth hydraulic profile of the volute, and the eighth hydraulic profile was close to the diffuser. However, the variation of the velocity disagreed with the displacement. That meant the vibration velocity was not only relative to the displacement, but also relative to the frequency. In terms of the noise on these impeller with diverse blade number, the vibration speed and radiated sound pressure level of the volute surface first increased and then decreased with the increase of the number of blades, besides, when the impeller was five blades, the vibration speed and noise reached the maximum value. The region of high noise level mainly appears in the vertical direction. The results can provide a reference for the further analysis on vibration and noise reduction design of centrifugal pump.
centrifugal pump; numerical simulation; pressure; leakage flow paths; number of blades; vibration; noise
談明高,陸友東,吳澤瑾,吳賢芳,劉厚林. 葉片數(shù)對離心泵振動噪聲性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):73-79.doi:10.11975/j.issn.1002-6819.2019.23.009 http://www.tcsae.org
Tan Minggao, Lu Youdong, Wu Zejin, Wu Xianfang, Liu Houlin. Effects of blade number on flow induced vibration and noise in centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 73-79. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.009 http://www.tcsae.org
2019-07-20
2019-10-30
國家自然科學(xué)基金(51679110、51779108);江蘇省自然科學(xué)基金B(yǎng)K20161350;江蘇省農(nóng)業(yè)重點(diǎn)研發(fā)計(jì)劃(BE2017356)
談明高,研究員,主要研究高效高可靠性葉片泵水力模型。Email:tmgwxf@ujs.edu.cn
10.11975/j.issn.1002-6819.2019.23.009
TH312
A
1002-6819(2019)-23-0073-07