孫井梅,劉曉朵,湯茵琪,李 檬,鄒亞男
?
微生物-生物促生劑協(xié)同修復河道底泥——促生劑投量對修復效果的影響
孫井梅*,劉曉朵,湯茵琪,李 檬,鄒亞男
(天津大學環(huán)境科學與工程學院,天津 300350)
采用5個110L的模擬河道反應器,在投加菌劑的基礎上(底泥穩(wěn)定后向底泥和水中分別注射濃度為0.09%和0.03%的菌劑),生物促生劑投量分別設計為0.08,0.09,0.10和0.11g/L,單獨投加菌劑組作為空白實驗.通過為期四十余天的實驗研究微生物與促生劑協(xié)同作用時的修復效果.結果表明,促生劑投量為0.10g/L時,上覆水COD去除率69%高于其余各組;各協(xié)同修復組上覆水中NO3--N基本無積累,且促生劑投量為0.11g/L時NO3--N去除率最高,可達96%;40d內(nèi)各組底泥TOC,TN含量變化不顯著,延長反應時間至84d,各協(xié)同修復組底泥TOC,TN去除率均有明顯提升.各協(xié)同修復組脲酶活性均波動下降,蛋白酶活性在15d左右時達到峰值,增幅可達106%~237%.通過高通量測序技術發(fā)現(xiàn),43d時,,_2,28_-等主要功能菌群的相對豐度與空白實驗組相比均增加,且促生劑投量為0.10g/L可使微生物群落向更適宜降解去除氮素及有機質的方向演替,有效改善底泥環(huán)境.協(xié)同修復對底泥,上覆水水質及微生物群落有良好改善效果,且促生劑投量為0.1g/L時整體修復情況更為理想.
底泥修復;高通量測序;酶活性;微生物群落結構
在河道生態(tài)系統(tǒng)的組成中,底泥不僅是河流中物質和能量循環(huán)的重要環(huán)節(jié),而且也是水體污染物質的“庫”和“源”,底泥的污染會造成水體水質的惡化和對水生生物的危害.調查表明[1],夏季時瑞典Erken湖水中多達99%的營養(yǎng)物質來自于底泥;美國的五大湖地區(qū),歐洲萊茵河流域,荷蘭阿姆斯特丹港口,德國的漢堡港等都曾因底泥污染產(chǎn)生局部甚至全流域黑臭現(xiàn)象.目前,國內(nèi)外底泥污染治理常用的方法有底泥疏浚[2],投加化學藥劑[3-4],微生物修復技術[5],協(xié)同修復技術[6]等.
協(xié)同修復技術一般包括化學-生物協(xié)同修復和微生物-植物協(xié)同修復,其優(yōu)勢為通過協(xié)同作用發(fā)揮各項修復技術的長處,達到更徹底,更高效的修復效果[6].Vezzulli等[7]發(fā)現(xiàn)投加生物強化劑和生物激活劑可提高底泥微生物總活性,并提升底泥微生物產(chǎn)酶量及其胞外酶活性,使得底泥污染物降解速率加大.林靜等[8]發(fā)現(xiàn)投加復合生物制劑可有效提高有機氮和氨氮的轉化率,促進底泥硝化菌和異養(yǎng)菌的生長,使其數(shù)量遠高于空白實驗.劉成[9]利用生物促生劑和微生物菌劑聯(lián)合修復,發(fā)現(xiàn)有機質降解率達18.98%,底泥生物降解能力增長率達336.00%.上覆水體中COD,TN,NH3+-N和TP的去除率分別達62.86%, 74.25%,99.42%和63.64%,基本消除了上覆水體黑臭現(xiàn)象.謝丹平[10]等在投加生物修復制劑和微生物制劑進行底泥修復后,COD,TP, NH3+-N含量分別降至20mg/L,2.5mg/L和0.1mg/L左右,效果顯著.
研究表明聯(lián)合投加微生物菌劑和生物促生劑可有效地降低水體氮磷元素含量,對河道污染修復效果較為徹底,但其對底泥微生物群落結構的影響鮮見報道.本文采用實驗室模擬河道裝置,研究了在微生物-生物促生劑協(xié)同修復情況下,底泥與上覆水體中碳氮元素變化規(guī)律,結合底泥中酶活性及微生物群落特征的變化,進而分析微生物群落特征改變與底泥污染物質變化的相關性,討論底泥微生物群落與河道底泥污染修復的關系,以期為河道底泥生態(tài)修復提供理論依據(jù)和支持.
1.1.1 樣品采集與處理 實驗原泥樣品為海河故道清淤底泥.取攪拌均勻后的底泥鋪入反應器中,厚度約13cm.底泥中TOC含量約為1.11%,總氮含量約為1.27mg/g,總磷含量約為0.839mg/g.為了排除外源污染對系統(tǒng)運行的干擾,反應器中原水為自來水,水深約 57cm.
1.1.2 異養(yǎng)硝化-好氧反硝化菌 所選用的異養(yǎng)硝化-好氧反硝化菌由本課題組篩選馴化而來,具有較好的硝化和反硝化性能[11].通過北京奧維森基因科技有限公司菌種鑒定,該菌種鑒定結果顯示為sp.(KP068655.1),屬于變形菌門(Proteobacteria).
1.1.3 生物促生劑 經(jīng)課題組前期調研和實驗篩選[12],從市售的生物制劑中選擇碧沃豐生物科技股份有限公司的反硝化制劑作為本實驗的生物促生劑,該生物促生劑為粉狀制劑,含有促進微生物生長和代謝的酶類和營養(yǎng)物質.
1.2.1 實驗裝置 實驗模擬河道裝置如圖1所示,主要組成包括反應器,高位儲水箱,集水箱,均為矩形玻璃容器.
實驗開始前以虹吸的方式向反應器中注入自來水,加水過程要避免對底泥產(chǎn)生擾動.靜置兩周,用于反應器中底泥的穩(wěn)定,待底泥穩(wěn)定后即認為反應器啟動.為模擬實際緩流河道水,通過蠕動泵將水打入高位水箱中,高位水箱底部裝有1個出水口,通過重力流向反應器進水.各個反應器出水通過出水管流到相應集水箱,再通過蠕動泵將集水箱中收集的出水打入高位水箱,如此循環(huán).通過輸液器調節(jié)進水流量,使進水流量控制在與實際河道水流速相近的(9.96±0.1)L/h.
圖1 模擬河道裝置
1.2.2 實驗方案 根據(jù)課題組前期實驗結果,反應器啟動時向各反應器底泥和水中分別注射比例為0.09%和0.03%,濃度為108cfu/mL的菌劑[11].根據(jù)促生劑使用說明書,綜合預實驗與課題組前期研究結果,在反應器啟動時向各反應器的上覆水中分別均勻注入濃度為0(空白實驗),0.08,0.09,0.10和0.11g/L的生物促生劑[12].
為估計測量的隨機誤差,所有樣品均設置三組平行實驗進行分析.使用SPSS 21.0和Excel 2013軟件確定實驗數(shù)據(jù)平均值,標準偏差和方差分析(ANOVA).使用單因素方差分析比較平均值,顯著性水平<0.05.
1.2.3 水樣及泥樣采集方法 使用注射器采集水下5cm處水樣20mL裝入離心管中,立即對水樣各項指標進行測定.用自制底泥采樣器采集表層底泥樣品,將泥樣在室內(nèi)自然風干后剔除粗雜質,之后用玻璃研缽將其研碎,過100目篩,備用.
1.2.4 水體及底泥指標測定 常規(guī)指標主要包括水樣的氨氮,硝酸鹽氮,COD和底泥TN,TOC等,水樣分析方法參照水和廢水監(jiān)測分析方法(第四版)[13]執(zhí)行,底泥TOC,TN分別采用燃燒-非分散紅外吸收法與凱氏定氮法[14-15]測定.
1.2.5 酶活性測定 脲酶活性測定采用靛酚藍比色法[16-18]測定,在578nm波長處分光比色,酶活性以每小時每克土壤中NH3+-N的毫克數(shù)表示,單位為mg/(g·h).
蛋白酶的測定以精制酪素為基質,比色測定酪氨酸的量,用分光光度計在波長680nm下測定光密度,可作為土壤蛋白酶的活性指標[18-19].蛋白酶活性以每小時每克土壤中酪氨酸的毫克數(shù)表示,單位為mg/(g·h).
多酚氧化酶的測定以左旋多巴(L-DOPA)為基質,在460nm處分光,酶活性以每克土樣每分鐘生成的反應生成物diqc的量來表示[20-21].
1.2.6 微生物群落結構分析
(1)DNA提取
利用Fast DNA?SPIN Kit for Soil土壤DNA快速提取試劑盒進行DNA提取將提取好的DNA存于-20℃冰箱長期保存或4℃暫時保存.
(2)DNA樣品的品質檢驗
利用凝膠成像儀對電泳后的條帶進行觀察,使用超微量紫外分光光度計測DNA總量和濃度.若電泳條帶清晰,DNA無降解,無或輕微粘稠,顏色異常,雜質污染,無雜帶,DNA總量3150ng,DNA濃度35ng/μL,樣品體積范圍15~100μL,則認為DNA品質檢驗合格.
(3)高通量測序
完成基因組DNA抽提及品質檢驗后,對環(huán)境樣本16S rDNA V3-V4區(qū)進行PCR擴增.每個樣本設置3個重復,將同一樣本的PCR產(chǎn)物混合后用2%瓊脂糖凝膠電泳檢測,使用AxyPrepDNA凝膠回收試劑盒(AXYGEN公司)切膠回收PCR產(chǎn)物,Tris_HCl洗脫;2%瓊脂糖電泳檢測.參照電泳初步定量結果,將PCR產(chǎn)物進行檢測定量,之后按照每個樣本的測序量要求,進行相應比例的混合.在構建好Miseq文庫的基礎上上機測序,獲到高通量測序數(shù)據(jù).根據(jù)需求用Excel和R語言等軟件對數(shù)據(jù)進一步處理分析和圖表繪制.
氮素累積及有機物污染是影響河道水體水質的重要因素.實驗期間內(nèi)每周定期采樣對底TOC, TN濃度進行監(jiān)測.由表1可知,與反應器啟動時相比,修復43d后各組TOC含量均無顯著變化(>0.05),空白實驗組底泥全氮含量由0.695mg/g下降至0.625mg/g,去除率達10%,協(xié)同修復組底泥全氮去除效果較低,且促生劑投量為0.08g/L,0.11g/L時底泥全氮含量均有小幅上升.由于實驗體系均為相對封閉體系,底泥氮素只能通過吸附,氨化,硝化和反硝化等作用,在底泥,孔隙水和上覆水之間進行遷移,轉化和再分配,并以氮氣形式釋放至大氣中,實現(xiàn)氮素的轉化[22].因此協(xié)同修復組底泥全氮的變化情況,推測主要是由于投加的生物促生劑中含有一定量的營養(yǎng)素,并且有機質可能影響厭氧氨氧化菌的生長[23],降低體系中的氮素轉化作用.
由于計劃反應期內(nèi)底泥修復效果不甚理想,因此延長反應時間至84d.反應后期,促生劑投量為0.10g/L時底泥TOC含量總體比其余各組的TOC含量低,且底泥TOC含量由初始值0.808%下降至第84d時0.762%,去除率5.6%高于其余各組.由表1知,反應進行至84d時,各協(xié)同修復組TN去除率整體均高于空白實驗,其中,促生劑投量為0.08g/L時,全氮去除率最高,達23.30%.底泥中TOC,TN變化情況說明,投加促生劑對底泥中有機質及氮素的去除主要在后期起效,促生劑對底泥修復效果的影響時間較為持久.
表1 底泥TOC,全氮含量變化情況
COD反映了水中受還原性物質污染的程度,是指示水體有機污染的一項重要指標.由圖2(a)可以看出,各反應器中上覆水COD濃度均在前期升高后波動下降.前期空白實驗上覆水中COD濃度增幅低于菌劑與促生劑協(xié)同修復組,說明投加促生劑可提升底泥微生物活性,底泥中有機質分解速度加快并釋放至上覆水中[24].實驗過程中,空白實驗組上覆水COD濃度由17.20mg/L上升至34.03mg/L,穩(wěn)定濃度及增幅均高于各協(xié)同修復組,表明菌劑與促生劑協(xié)同修復在后期可提高營養(yǎng)物質的供給,促進上覆水中微生物的代謝活動[25],進而增強對有機污染物的利用[26-27],提高上覆水中有機質去除率.其中,協(xié)同修復組中當促生劑投量為0.10g/L時,上覆水COD穩(wěn)定濃度5.35mg/L低于其余各組,去除率最高為69%,說明在協(xié)同修復組中投量為0.10g/L的促生劑對微生物的促進效果更優(yōu).
底泥氮素循環(huán)過程中,一部分被吸附和生物利用固定于底泥中,另一部分則釋放進入上覆水體,因此上覆水體中污染物質濃度的變化間接反映了底泥物質代謝活動[28].如圖2(b)所示,在第3d及第10d時,各組均出現(xiàn)較為明顯的波動峰值,這可能是產(chǎn)生了底泥與上覆水體氨氮之間的氮素轉化過程.空白實驗組氨氮濃度由1.63mg/L下降至0.99mg/L,去除率為39%,各協(xié)同修復組的去除率分別為35%,22%, 26%,31%,均低于空白實驗,結合圖2(c)推測,空白實驗中氨氮濃度的降低是其逐步轉化為NO3--N的結果,并且出現(xiàn)NO3--N積累情況.各協(xié)同修復組則不然,氨氮濃度與硝酸鹽氮濃度均下降,反硝化過程進行良好,脫氮過程中硝酸鹽氮基本無積累,且促生劑投量為0.11g/L時NO3--N去除率最高,可達96%.說明空白實驗中以硝化反應為主,反硝化反應進行程度較低導致NO3--N的積累;投加促生劑后可同時進行反硝化反應,將NO3--N還原為N2釋放至大氣中,實現(xiàn)單級生物脫氮[29].
圖3(a)反映了底泥脲酶活性的變化,各反應器中底泥脲酶活性均波動下降,研究發(fā)現(xiàn),脲酶活性與底泥中總可利用氮含量呈正相關關系[30],說明各促生劑投量條件下底泥中可利用氮含量均呈下降趨勢.其中,在促生劑投量為0.10g/L的菌劑與促生劑協(xié)同修復組中,脲酶活性在第20d左右時就已降至0.68mg/(g·h),并保持相對穩(wěn)定,說明促生劑投量為0.10g/L的協(xié)同修復組可加快底泥對可利用氮的降解,且降解效果良好.
底泥中蛋白酶活性變化情況如圖3(b)所示,空白實驗組蛋白酶活性基本無波動,始終維持在0.9~ 1.1mg/(g·h)的范圍內(nèi),協(xié)同修復組中蛋白酶活性均在15d左右時達到峰值,增幅可達106%~237%,后期逐漸下降,30d后蛋白酶活性整體穩(wěn)定在1.0mg/(g·h)左右.相比于單獨投加菌劑,蛋白酶活性的變化說明投加的促生劑能有效促進底泥微生物活性,加快前期底泥中蛋白酶的合成和分泌,后期隨著底泥中蛋白質類物質的降解,蛋白酶活性下降.當促生劑投量為0.11g/L時,前期蛋白酶活性增強最高,第15d時活性為3.17g/L,但后期各組之間蛋白酶活性無明顯差異.
由圖3(c)可知,各反應器中底泥多酚氧化酶活性變化情況基本相同,均呈現(xiàn)波動升高的趨勢,且在實驗期間多酚氧化酶活性未出現(xiàn)明顯下降,說明底泥中含有較多的酚類等難降解有機物,且由于反應時間不夠,對難降解物質去除還不完全.雖然表1中底泥中TOC含量變化不大,但多酚氧化酶維持較高的活性會有助于底泥TOC的去除,隨著反應時間的延長,底泥TOC會出現(xiàn)降低的趨勢.
通過圖4可以看出,反應器啟動第43d時底泥中門水平上相對豐度超過1%的微生物群落包括13種,其中,各樣本的優(yōu)勢菌門均為Proteobacteria. Proteobacteria (42.85%~52.31%), C-hloroflexi (8.52%~16.34%), Bacteroidetes (4.70%~11.84%), Nitrospirae (3.29%~6.31%), Acidobacteri-a (2.53%~ 4.23%), Aminicenantes (1.93%~3.66%), Firmicutes (2.40%~5.78%)七種菌群的相對豐度均超過2%.
研究表明,Proteobacteria(變形菌門)為革蘭氏陰性菌,在硝酸鹽降解,硫氧化以及有機物降解去除等方面具有重要作用[31],且其中的多數(shù)微生物可在厭氧條件下通過利用有機質進行反硝化脫氮過程[32-34]; Bacteroidetes(擬桿菌門)在蛋白質降解過程中起到重要作用[35];Aminicenantes與苯酚降解有關,并且對碳水化合物有較高的代謝能力[36]; Firmicutes (厚壁菌門)對某些有機污染物具有一定去除能力[37],且可參與反硝化脫氮過程[38].促生劑與菌劑協(xié)同修復組底泥中上述幾種功能菌群(門)相對豐度與空白實驗組相比,提升幅度最高可達150%,且促生劑投量為0.10g/L時平均增幅最大.說明投加促生劑增強底泥中的脫氮作用,提升微生物對有機物的轉化利用,且促生劑投量為0.10g/L時該促進效果可能更顯著.
底泥修復至第43d時屬水平上的微生物群落組成如圖5所示,反映出促生劑不同投量條件下底泥中微生物群落結構的差異性.相關研究表明[39-45],(2%~6%)一定條件下某些硫桿菌產(chǎn)生亞鐵氧化,硫氧化等作用;(0.7%~1.2%)對硫化物氧化起重要作用,可將硝酸鹽還原為亞硝酸鹽;(0.3%~0.9%)參與降解去除烴類等有機物質過程;(0.8%~6%)可氧化有機化合物,并在某些條件下還原硫氧化物;_2(0%~2%)參與纖維素降解過程;sludge_group(0%~1%)可能與反硝化脫氮有關.其中,與脫氮、有機質降解去除等過程相關的微生物群落,相對豐度均呈增加趨勢.空白實驗組_2(密螺旋體屬),28_-_兩種細菌相對豐度均為0%,投加促生劑后兩者含量明顯上升,且促生劑投量為0.10g/L時這兩種菌群的相對豐度分別為1.76%, 1.34%,均高于其余各組,說明該投量條件下可能得到更理想的底泥修復效果.
圖4 促生劑不同投量下底泥中細菌(門)群落結構組成
圖5 促生劑不同投量下底泥中細菌(屬)群落結構組成
可見,促生劑與菌劑協(xié)同修復時,反硝化細菌與有機質降解類細菌所占已知微生物菌屬的比例提升,硫氧化,重金屬解毒類細菌含量比例下降.表明投加促生劑可改變底泥生態(tài)環(huán)境,刺激底泥微生物群落向去除有機物,脫氮的方向演替.
3.1 協(xié)同修復組上覆水中COD,NO3--N去除率最高分別可達69%(促生劑投量為0.10g/L),96%(促生劑投量為0.11g/L). 43d時協(xié)同修復組底泥中主要功能菌群出現(xiàn)變化,底泥修復情況有改良趨勢,延長反應時間至84d,各協(xié)同修復組底泥TOC,TN去除率均有明顯提升,其中促生劑投量為0.08,0.10g/L時, TN、TOC去除率分別達到最高,為23.30%,5.6%.
3.2 促生劑投量為0.10g/L的協(xié)同修復組中,底泥脲酶活性更快穩(wěn)定在較低水平,對可利用氮的降解效果良好.在投加菌劑的基礎上加入的促生劑能加快前期底泥中蛋白酶的合成和分泌,當促生劑投量為0.11g/L時,前期蛋白酶活性增強最高為3.17g/L.多酚氧化酶維持較高活性使得隨著反應時間的延長,底泥TOC出現(xiàn)降低趨勢.
3.3 菌劑與促生劑協(xié)同修復可推動底泥微生物群落向更適宜降解去除污染物質的方向演替.與脫氮,有機物降解有關的微生物群落,如Bacteroidetes, Firmicutes,等的相對豐度均呈升高趨勢,當促生劑投量為0.10g/L時,底泥微生物群落結構演替情況可能使其比其余各組得到更良好的底泥修復效果.
[1] Rydin E, Brunberg A K. Seasonal dynamic of phosphorus in Lake Erken surface sediments [J]. Arch.hydrobiol.l Spec. issues Advanc. limno, 1998,51:157-167.
[2] 許煉烽,鄧紹龍,陳繼鑫,等.河流底泥污染及其控制與修復 [J]. 生態(tài)環(huán)境學報, 2014,(10):1708-1715. Xu L, Deng S, Chen J, et al. River sediment pollution and its control and restoration [J]. Ecology and Environment Sciences, 2014, (10):1708-1715.
[3] Lindell M J, Bremle G, Broberg O, et al. Monitoring of persistent organic pollutants (POPs): examples from Lake Vattern, Sweden [J]. Ambio, 2001,30(8):545-551.
[4] 孫 傅,曾思育,陳吉寧.富營養(yǎng)化湖泊底泥污染控制技術評估 [J]. 環(huán)境污染治理技術與設備, 2003,(8):61-64. Sun F, Zeng S, Chen J. Assessment of techniques for sediment pollution control within eutrophic lakes [J]. Techniques and Equipment for Environmental Pollution Control, 2003, (8):61-64.
[5] Dellagnezze B M, Vasconcellos S P, Angelim A L, et al. Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale [J]. Marine Pollution Bulletin, 2016,107(1).
[6] Agarwal A, Liu Y. Remediation technologies for oil-contaminated sediments. [J]. Marine Pollution Bulletin, 2015,101(2):483-490.
[7] Vezzulli L, Pruzzo C, Fabiano M. Response of the bacterial community to in situ bioremediation of organic-rich sediments [J]. Marine Pollution Bulletin, 2004,49(9):740-751.
[8] 林 靜,謝 冰,徐亞同. 復合微生物制劑對蘆葦人工濕地去除污染物的影響 [J]. 水處理技術, 2007,(2):38-41.Lin J, Xie B, Xu Y. Effect of compound microorganism preparation on pollutant removal in the reed constructed wetlands [J]. Technology of Water Treatment, 2007,(2):38-41.
[9] 劉 成.生物促生劑聯(lián)合微生物菌劑修復城市黑臭河道底泥實驗研究 [D]. 南寧:廣西大學, 2012. Liu C. Experimental research on the remediation of sediment in black-odorous rural river by using biostimulant and microbial agent [D]. Nanning: Guangxi University, 2012.
[10] 謝丹平,李開明,江 棟,等.底泥修復對城市污染河道水體污染修復的影響研究 [J]. 環(huán)境工程學報, 2009,3(8):1447-1453. Xie D, Li K, Jiang D, et al.Study on effect of polluted sediments bioremediation on water body remediation of polluted urban rivers [J]. Chinese Journal of Environmental Engineering, 2009,3(8):1447-1453.
[11] 楊曉杰.化學—生物生態(tài)協(xié)同修復受污染底泥的效果及評價[D]. 天津:天津大學, 2016. Yang X. Effect and evaluation of biochemical and biological collaborative remediation to polluted sediment [D]. Tianjin University, Tianjin, China, 2016.
[12] 呂夢怡.河道底泥的化學-生物協(xié)同修復效果及作用機制 [D]. 天津:天津大學, 2016.Lv M. Effect and mechanism of chemical and biological collaborative remediation to river sediment [D]. Tianjin University, Tianjin, China, 2016.
[13] 畢 彤,齊文啟,魏復盛.水和廢水監(jiān)測分析方法 [M]. 4版.北京:中國環(huán)境科學出版社, 2002:210-284. Bi T, Qi W, Wei F. Determination methods for examination of water and wastewater (Fourth edition) [M]. China Environmental Science Press, 2002:210-284.
[14] HJ 501-2009 水質總有機碳的測定:燃燒氧化-非分散紅外吸收法 [S].HJ 501-2009 Water quality-determination of total organic carbon- combustion oxidation nondispersive infrared absorption method [S].
[15] HJ 717-2014 土壤質量全氮的測定:凱氏法 [S].HJ 717-2014 Soil quality-determination of total nitrogen-modified Kjeldahl method [S].
[16] GB 19106-2003 次氯酸鈉溶液 [S]. GB 19106-2003 Solution of sodium hypochlorite [S].
[17] GB/T 601-2002 化學試劑:標準滴定溶液的制備 [S].GB/T 601-2002 Chemical reagent preparations of standard volumetric solutions [S].
[18] 關松蔭.土壤酶及其研究法 [M]. 北京:農(nóng)業(yè)出版社, 1986:294-306.Guan S. Soil enzyme and its research method [M]. China Agriculture Press, 1986:294-306.
[19] 林先貴.土壤微生物研究原理與方法 [M]. 北京:高等教育出版社, 2010:254-255.Lin X. Principles and methods of soil microbiology research [M]. Higher Education Press, 2010:254-255.
[20] Toberman H, Evans C D, Freeman C, et al. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland [J]. Soil Biology and Biochemistry, 2008,40(6).
[21] 高璟赟.稻田土壤氧化酶活性與有機碳轉化關系研究 [D]. 武漢:華中農(nóng)業(yè)大學, 2010. Gao J. Oxidase activities and organic carbon transformation of paddy soils [D]. Huazhong Agricultural University, Wuhan, China, 2010.
[22] Han L G. The Chemistry of Phosphate and Nitrogen Compounds in Sediments [M]. Springer Netherlands, 2004.
[23] 范改娜,祝貴兵,王 雨,等.河流濕地氮循環(huán)修復過程中的新型功能微生物 [J]. 環(huán)境科學學報, 2010,30(8):1558-1563. Fan G, Zhu G, Wang Y, et al. New functional microorganisms in nitrogen cycle restoration of river riparian ecosystems [J]. Acta Scientiae Circumstantiae, 2010,30(8):1558-1563.
[24] 孫遠軍.城市河流底泥污染與原位穩(wěn)定化研究[D]. 西安:西安建筑科技大學, 2009. Sun Y. A study on sediments contamination and in-situ stabilization of urban river [D]. Xi’an University of Architecture and Technology, Xi’an, China, 2009.
[25] 郗文君,張安龍,杜 飛,等.生物促生劑處理造紙廢水的最佳工藝條件 [J]. 紙和造紙, 2015,(11):61-65. Xi W, Zhang A, Du F, et al. Optimum the conditions of papermaking wastewater treatment by biological preparation [J]. Paper and Paper Making, 2015, (11):61-65.
[26] Mounteer A. Improvement of eucalyptus bleached kraft pulp effluent treatment through combined ozone-biological treatment [J]. World Pulp & Paper, 2009,7(7):26.
[27] Milestone C B, Stuthridge T R, Fulthorpe R R. Role of high molecular mass organics in colour formation during biological treatment of pulp and paper wastewater [J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2007,55(6):191.
[28] 劉曉偉,謝丹平,李開明,等.投加生物促生劑對底泥微生物群落及氮磷的影響 [J]. 中國環(huán)境科學, 2013,33(S1):87-92.Liu X, Xie D, Li K, et al. Influence of application of bio-energizer to sediment microbial community and the content of nitrogen and phosphorus element [J]. China Environmental Science, 2013,33(S1):87-92.
[29] 張秀芝,邱金泉,陳進斌,等.固體生物促生劑凈化河道水體的效果研究 [J]. 環(huán)境科學與技術, 2017,40(S1):196-199. Zhang X, Qiu J, Chen J, et al. Study on effects of solid bio-stimulant on remediation of black-odorous river water [J]. Environmental Science & Technology, 2017,40(S1):196-199.
[30] Reynolds C M, Wolf D C, Armbruster J A. Factors related to urea hydrolysis in soils [J]. Soil Science Society of America Journal, 1985,49(1):104-108.
[31] Chen C, Xu X, Xie P, et al. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations [J]. Chemosphere, 2017,171:294-301.
[32] Shen Z, Zhou Y, Hu J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. [J]. Journal of Hazardous Materials, 2013, s250–251(8):431-438.
[33] Thomsen T R, Kong Y, Nielsen P H. Ecophysiology of abundant denitrifying bacteria in activated sludge [J]. Fems Microbiology Ecology, 2007,60(3):370-382.
[34] 陳 誼,孫寶盛,張 斌,等.不同MBR反應器中硝化菌群落結構的研究 [J]. 中國環(huán)境科學, 2010,(1):69-75. Chen Y, Sun B, Zhang B, et al. Nitrifying bacteria structure community of different MBR reactor [J]. China Environmental Science, 2010, (1):69-75.
[35] Kampmann K, Ratering S, Kramer I, et al. Unexpected Stability of Bacteroidetes and Firmicutes Communities in Laboratory Biogas Reactors Fed with Different Defined Substrates [J]. Applied and Environmental Microbiology, 2012,78(7):2106-2119.
[36] Huang C, Shi Y, Gamal El-Din M, et al. Optimization of ozonation combined with integrated fixed-film activated sludge (IFAS) in the treatment of oil sands process-affected water (OSPW) [J]. International Biodeterioration & Biodegradation, 2016,112:31-41.
[37] He T, Guan W, Luan Z, et al. Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment. [J]. Applied Microbiology & Biotechnology, 2016, 100(3):1479-1488.
[38] 趙文莉,郝瑞霞,王潤眾,等.復合碳源填料反硝化脫氮及微生物群落特性 [J]. 中國環(huán)境科學, 2015,35(10):3003-3009. Zhao W, Hao R, Wang R, et al. Denitrification of composite carbon filler and character of microbial community [J]. China Environmental Science, 2015,35(10):3003-3009.
[39] Shi Y, Zhang T, Li M, et al. Bio-leaching of heavy metals from electroplating sludge by[J]. Ecology&Environment, 2008,17(5):1787-1791.
[40] Pfennig N, Biebl H.gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium [J]. Archives of Microbiology, 1976,110(1):3-12.
[41] Cunningham J A, Rahme H, Hopkins G D, et al. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate [J]. Environmental Science & Technology, 2001,35(8):1663-1670.
[42] Manman, Zhang, Wang, et al. Microbial community structure and diversity in deep-sea hydrothermal vent sediments along the Eastern Lau Spreading Centre [J]. Acta Oceanologica Sinica, 2013,32(2):42-51.
[43] Oliveri E, Salvagio Manta D, Bonsignore M, et al. Mobility of mercury in contaminated marine sediments: Biogeochemical pathways [J]. Marine Chemistry, 2016,186:1-10.
[44] 麥有斌,尹 華,葉錦韶,等.假單胞菌(sp.)表面活性物質產(chǎn)生與性能 [J]. 環(huán)境科學與技術, 2006,(2):12-13. Mai Y, Yin H, Ye J, et al. Production and Capability of Biosurfactant from Pseudomonas sp. [J]. Environmental Science & Technology, 2006,(2):12-13.
[45] 范軍輝,郝瑞霞,朱曉霞,等.溫度對SCSC-S/Fe復合系統(tǒng)脫氮除磷及微生物群落特性的影響 [J]. 環(huán)境科學, 2017,(5):2012-2020.Fan J, Hao R, Zhu X, et al. Effects of temperature on the characteristics of nitrogen and phosphorus removal and microbial community in SCSC-S/Fe [J]. Environmental Science, 2017,(5):2012-2020.
致謝:本實驗的前期采樣,試劑篩選工作由課題組呂夢怡,楊曉杰等完成,在此表示感謝.
Microorganism and biostimulant collaboratively remediate river sediment—Influence of biostimulant quantity on repair performance.
SUN Jing-mei*, LIU Xiao-duo, TANG Yin-qi, LI Meng, ZOU Ya-nan
(School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)., 2019,39(1):351~357
By using five 110L simulated river reactors, the biostimulant dosage was designed as 0.08, 0.09, 0.10 and 0.11g/L, respectively, with adding aerobic denitri?ers (sediment and water were injected at a concentration of 0.09% and 0.03% of the agent), and the aerobic denitri?ers supplement group was used as a blank experiment, to study the repair effect in the collaborative effect of microorganism and biostimulant through more than 40days’ experiment. The results showed that when the dosage of biostimulant was 0.10g/L, and the removal rate of COD in overlying water was 69%, which was higher than that of the other groups. NO3--N in the overlying water of each synergistic remediation group had no accumulation. The NO3--N removal rate is the highest at up to 0.11g/L, which is up to 96%; the TOC and TN content of sediments in each group did not change significantly within 40days. The TOC and TN removal rates of the sediment were significantly improved when the reaction time was extended to 84days. The urease activity of each collaborative group fluctuated, and the protease activity peaked at around 15d, with an increase of 106%~237%. Through high-throughput sequencing technology, the relative abundance of major functional groups, such as,,_2, and28_-_increased at 43rdday compared with the control group alone, and the biostimulant dosage was 0.10g/L can enable the microbial community to be more suitable for the degradation of nitrogen and organic matter in the direction of succession, effectively improving the sediment environment.
sediment remediation;high-throughput sequencing;enzyme activity;microbial community structure
X522
A
1000-6923(2019)01-0351-07
劉曉朵(1995-),女,陜西西安人,碩士研究生,主要研究方向為水污染控制理論與技術.
2018-05-14
國家自然科學基金(51378339,51778410)
* 責任作者, 教授, jmsun@tju.edu.cn