亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        CENTRAL LIMIT THEOREM AND MODERATE DEVIATION FOR NONHOMOGENENOUS MARKOV CHAINS

        2019-01-18 09:17:10XUMingzhouDINGYunzhengZHOUYongzheng
        數(shù)學雜志 2019年1期

        XU Ming-zhou,DING Yun-zheng,ZHOU Yong-zheng

        (School of Information and Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,China)

        Abstract:In this article,we study central limit theorem for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense.By Grtner-Ellis theorem and exponential equivalent method,we obtain a corresponding moderate deviation theorem for countable nonhomogeneous Markov chain.

        Keywords:central limit theorem;moderate deviation;nonhomogeneous Markov chain;martingle

        1 Introduction

        Huang et al.[1]proved central limit theorem for nonhomogeneous Markov chain withfinite state space.Gao[2]obtained moderate deviation principles for homogeneous Markov chain.De Acosta[3]studied moderate deviations lower bounds for homogeneous Markov chain.De Acosta and Chen[4]established moderate deviations upper bounds for homogeneous Markov chain.It is natural and important to study central limit theorem and moderate deviation for countable nonhomogeneous Markov chain.We wish to investigate a central limit theorem and moderate deviation for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense.

        Suppose that{Xn,n≥0}is a nonhomogeneous Markov chain taking values inS={1,2,···}with initial probability

        and the transition matrices

        wherepn(i,j)=P(Xn=j|Xn?1=i).Write

        When the Markov chain is homogeneous,P,Pkdenote,respectively.

        IfPis a stochastic matrix,then we write

        where[a]+=max{0,a}.

        LetA=(aij)be a matrix defined asS×S.Write.

        Ifh=(h1,h2,···),then we write.Ifg=(g1,g2,···)0,then we write|.The properties below hold(see Yang[5,6])

        (a)kABk≤kAkkBkfor all matricesAandB;

        (b)kPk=1 for all stochastic matrixP.

        Suppose thatRis a‘constant’stochastic matrix each row of which is the same.Then{Pn,n≥1}is said to be strongly ergodic(with a constant stochastic matrixR)if for all.The sequence{Pn,n≥1}is said to converge in the Cesro sense(to a constant stochastic matrixR)if for everym≥0,

        The sequence{Pn,n≥1}is said to uniformly converge in the Ces`aro sense(to a constant stochastic matrixR)if

        Sis divided intoddisjoint subspacesC0,C1,···,Cd?1,by an irreducible stochastic matrixP,of periodd(d≥1)(see Theorem 3.3 of Hu[7]),andPdgivesdstochastic matrices{Tl,0≤l≤d?1},whereTlis defined onCl.As in Bowerman et al.[8]and Yang[5],we shall discuss such an irreducible stochastic matrixP,of perioddthatTlis strongly ergodic forl=0,1,···,d?1.This matrix will be called periodic strongly ergodic.

        Remark 1.1IfS={1,2,···},d=2,P=(p(i,j)),p(1,2)=1,p(k,k?1)=,thenPis an irreducible stochastic matrix of period 2.Moreover,

        fork≥2.

        where

        fork≥1.The solution ofπP=πandare

        forn≥3.

        Theorem 1.1Suppose{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution of(1.1)and transition matrices of(1.2).Assume thatfis a real function satisfying|f(x)|≤Mfor allx∈R.Suppose thatPis a periodic strongly ergodic stochastic matrix.Assume thatRis a constant stochastic matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Assume that

        and

        Moreover,if the sequence ofδ-coefficient satisfies

        then we have

        Theorem 1.2Under the hypotheses of Theorem 1.1,if moreover

        then for each open setG?R1,

        and for each closed setF?R1,

        In Sections 2 and 3,we prove Theorems 1.1 and 1.2.The ideas of proofs of Theorem 1.1 come from Huang et al.[1]and Yang[5].

        2 Proof of Theorem 1.1

        Let

        WriteFn=σ(Xk,0≤k≤n).Then{Wn,Fn,n≥1}is a martingale,so that{Dn,Fn,n≥0}is the related martingale difference.Forn=1,2,···,set

        and

        It is clear that

        As in Huang et al.[1],to prove Theorem 1.1,we first state the central limit theorem associated with the stochastic sequence of{Wn}n≥1,which is a key step to establish Theorem 1.1.

        Lemma 2.1Assume{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution of(1.1)and transition matrices of(1.2).Supposefis a real function satisfying|f(x)|≤Mfor allx∈R.Assume thatPis a periodic strongly ergodic stochastic matrix,andRis a constant stochastic matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Suppose that(1.4)and(1.5)are satisfied,and{Wn,n≥0}is defined by(2.2).Then

        As in Huang et al.[1],to establish Lemma 2.1,we need two important statements below such as Lemma 2.2(see Brown[9])and Lemma 2.3(see Yang[6]).

        Lemma 2.2Assume that(?,F,P)is a probability space,and{Fn,n=1,2,···}is an increasing sequence ofσ-algebras.Suppose that{Mn,Fn,n=1,2,···}is a martingale,denote its related martingale difference byξ0=0,ξn=Mn?Mn?1(n=1,2,···).Forn=1,2,···,write

        whereF0is the trivialσ-algebra.Assume that the following holds

        (i)

        (ii)the Lindeberg condition holds,i.e.,for any?>0,

        whereI(·)denotes the indicator function.Then we have

        Writeδi(j)=δij,(i,j∈S).Set

        Lemma 2.3Assume that{Xn,n≥0}is a countable nonhomogeneous Markov chain taking values inS={1,2,···}with initial distribution(1.1),and transition matrices(1.2).Suppose thatPis a periodic strongly ergodic stochastic matrix,andRis matrix each row of which is the left eigenvectorπ=(π(1),π(2),···)ofPsatisfyingπP=πand.Assume(1.4)holds.Then

        Now let’s come to establish Lemma 2.1.

        Proof of Lemma 2.1Applications of properties of the conditional expectation and Markov chains yield

        where

        and

        We first use(1.4)and Fubini’s theorem to obtain

        Hence,it follows from(2.10)andπP=πthat

        We next claim that

        Indeed,we use(1.4)and(2.9)to have

        Thus we use Lemma 2.3 again to obtain

        Therefore(2.12)holds.Combining(2.11)and(2.12)results in

        which gives

        Since{V(Wn)/n,n≥1}is uniformly bounded,{V(Wn)/n,n≥1}is uniformly integrable.By applying the above two facts,and(1.5),we have

        Therefore we obtain

        which implies that the Lindeberg condition holds.Application of Lemma 2.2 yields(2.3).This establishes Lemma 2.1.

        Proof of Theorem 1.1Note that

        Write

        Let’s evaluate the upper bound of|E[f(Xk)|Xk?1]?E[f(Xk)]|.In fact,we use the C-K formula of Markov chain to obtain

        here

        Application of(1.6)yields

        Combining(1.6),(2.3),(2.16),and(2.17),results in(1.7).This proves Theorem 1.1.

        3 Proof of Theorem 1.2

        In fact,by(1.8),

        and the claim is proved.Hence,by using Grtner-Ellis theorem,we deduce thatWn/a(n)satisfies the moderate deviation theorem with rate function.It follows from(1.8)and(2.17)that??>0,

        Thus,by the exponential equivalent method(see Theorem 4.2.13 of Dembo and Zeitouni[10],Gao[11]),we see thatsatisfies the same moderate deviation theorem aswith rate function.This completes the proof.

        欧美天欧美天堂aⅴ在线| 亚洲无精品一区二区在线观看| 在线观看av网站永久| 午夜福利院电影| av中文字幕不卡无码| 男女性搞视频网站免费| 亚洲国产精品久久婷婷| 熟女少妇内射日韩亚洲| 亚洲人成无码网www| 日韩不卡无码三区| 亚洲国产人成综合网站| 久久国产色av免费观看| 成人片黄网站色大片免费观看app 亚洲av无码专区亚洲av | 永久天堂网av手机版| 亚洲中文字幕无码一区| 天堂在线观看av一区二区三区| 青青草视频在线播放观看| 日韩亚洲欧美久久久www综合| 少妇人妻偷人精品视蜜桃| 国产欧美亚洲另类第一页| 亚洲乱码中文字幕三四区| 国产成人无码精品久久久露脸| 97人妻熟女成人免费视频| 丝袜 亚洲 另类 欧美| 日本一二三区免费在线| 精品丰满人妻无套内射| 可以免费在线看黄的网站| 最近中文字幕一区二区三区| 老女老肥熟女一区二区| 射死你天天日| 国产精品国产自线拍免费| 日韩一级精品视频免费在线看| 欧美最猛黑人xxxx黑人猛交| 久久AV老司机精品网站导航 | 天堂在线资源中文在线8| 久久精品国内一区二区三区| 国产亚洲女人久久久久久| 亚洲中文字幕日韩综合| 狠狠色婷婷久久一区二区三区| 亚洲国产成人AV人片久久网站| 亚洲蜜臀av一区二区三区漫画|