亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        THE COMPUTING FORMULA FOR TWO CLASSES OF GENERALIZED EULER FUNCTIONS

        2019-01-18 09:17:00LIAOQunyingLUOWenli
        數(shù)學(xué)雜志 2019年1期

        LIAO Qun-ying,LUO Wen-li

        (1.College of Mathematics,Sichuan Normal University,Chengdu 610066,China)

        (2.The Middle School Attached to Sichuan University(No.12 Middle School),Chengdu 610061,China)

        Abstract:In this paper,we study the computing formula of the generalized Euler function.By using elementary methods and techniques,we obtain the computing formula of the generalized Euler function ?pq(n)for some cases and the computing formula of ?e(n)(e=p,p2)for any prime factor m|nwith m≡1 or?1(mod e)and gcd(m,e)=1,where pand qare distinct primes,which are the generalizations for the corresponding main results given in[5].

        Keywords:Euler function;generalized Euler function;Mbius function

        1 Introduction

        In 18th century,as one of the most outstanding mathematician,Euler first defined the Euler function?(n)of a positive integernto be the number of positive integers not greater thannbut prime ton[1].It’s well known that as one of the important number theory functions,Euler function was applied widely.Euler function played a key role in RSA public-key cryptosystem since 1970’s,and it is also one of the important tools to seek the theoretical basis for the generators of circle groups.There were many interesting open problems on Euler function[2].For example,Carmichael conjectured that for any positive integern,there exists a positive integermsuch thatm 6=nand?(m)=?(n).And then Schinzel conjectured that for any fixed positive integerk,the equation?(n+k)=?(n)has infinitely many positive integer solutions forn.

        On the other hand,in 1938,for any odd primep,Lehmer[3]established the following important congruence identity

        whereqr(n)denotes the Euler quotient,i.e.,,nandr≥2 are both natural numbers with gcd(n,r)=1.

        By using(1.1)and the others similar congruences identity,Lehmer obtained many ways to prove the first case of the well-known Fermat’s last theorem[4].Until 2002 and 2007,basing on(1.1)and the other congruence identities given by Lehmer,Cai,etc[5,6]generalized the modulo from the square of a prime to the square of any positive integer,and defined the generalized Euler function for any positive integernto be

        i.e.,?e(n)is the number of positive integers not greater thanbut prime ton,whereeis a positive integer and[x]is the greatest integer which is not greater thanx.It’s easy to verify that?1(n)=?(n)is the known Euler function ofn,and

        whereμ(n)is the Mbius function,i.e.,

        On the other hand,fore=1,the following computing formula for the generalized Euler function is well-known

        Therefore one can naturally to ask the following

        QuestionFor any fixed positive integere,determine the explicit algorithm formula for the generalized Euler function?e(n).

        In recent years,Cai etc[7,8]obtained the accurate calculation formula for?e(n)(e=2,3,4,6),and then,by using properties for Legendre or Jacobi symbols,they also got some necessary and sufficient conditions for that?e(n)and?e(n+1)(e=2,3,4)are both odd or even numbers.

        Proposition 1.1[7,8]Letp1,···,pkbe distinct primes,α1,···,αkbe positive integers,and.

        (1) If gcd(pi,3)=1(i=1,···,k)andn=3αn1>3,then

        (2) Ifαis a nonnegative integer andn=2αn1>4,then

        (3) If gcd(pi,6)=1(i=1,···,k)andn=2α3βn1>6,then

        Recently,we[9]obtained the formula for?5(n)and some sufficient conditions for 2|?5(n).The present paper continues the study,based on the elementary methods and techniques,the computing formula for?e(n)(e=p,p2,pq)is obtained,wherepandqare distinct primes(Theorems 1.1–1.5).

        For convenience,throughout the paper,we assume thatp,q,p1,···,pkare distinct primes,α1,···,αkare positive integers,αandβare both nonnegative integers,and

        Theorem 1.1Ifn=pαn1>p,then

        Theorem 1.2Ifn=pαn1>p2,then

        Theorem 1.3Forn=pαn1>p2andα≤2.

        (1) Ifα=0,then

        (2) Ifα=1,then

        (3) Ifα=2,then

        Theorem 1.4Ifn=pαqβn1>pq,then

        Theorem 1.5Forn=pαqβn1>pq.

        (1) Ifα=β=0,then

        (2) Ifα=1 andβ=0,then

        (3) Ifα=0 andβ=1,then

        (4) Ifα=β=1,then

        (5) Ifα≥2 andβ=0,then

        (6) Ifα≥2 andβ=1,then

        (7) Ifβ≥2 andα∈{0,1},then

        RemarkBy takingp=3 in Theorem 1.1,orp=2 in Theorems 1.2–1.3,one can get(1)or(2)of Proposition 1.1,respectively.And by takingp=2 andq=3 in Theorems 1.4–1.5,one can get(3)of Proposition 1.1.The details is left to interested readers.

        2 Proofs for Main Results

        Proof for Theorem 1.1(1) Ifα=0 andpi≡?1(modp)(i=1,···,k),i.e.,n=n1and for anyd|n1,d≡±1(modp).Then by(1.2)–(1.4),we have

        (a) If 2|?(n)and 2|k,then by(2.1)andn=n1,we have ?(n)= ?(n1),ω(n)=ω(n1)and

        (b) If 2|?(n)and 2-k,then by(2.1)we have

        For the case 2-?(n)and 2-kor 2-?(n)and 2|k,in the same proof,we can get

        (2) Ifα=1 and for anyi=1,···,k,pi≡?1(modp),i.e.,n=pn1and for anyd|n1,d≡±1(modp).Then by(1.2)–(1.3),(2.2)and gcd(p,n1)=1,we have

        and then

        (3) Ifα≥2,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

        and then

        (4) Ifα=0 andpi≡1(modp)(i=1,···,k),i.e.,n=n1and for anyd|n1,d≡1(modp).Then by(1.2)and(1.4),we have

        (5) Ifα=1 andpi≡1(modp)(i=1,···,k),i.e.,n=pn1,then?(n)=(p?1)?(n1)and for anyd|n1,d≡1(modp).Thus by(1.2)–(1.3),gcd(p,n1)=1 and(4)we have

        Now from(2.2)–(2.6),Theorem 1.1 is proved.

        Proof for Theorem 1.2(1) For the caseα=0,the result is obvious.

        (2) Ifα=1,i.e.,n=pn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

        (3) Ifα=2,i.e.,n=p2n1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have

        (4) Ifα≥3,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we have?(n)=p2(pα?2?pα?3)?(n1),and then

        Now from(2.7)–(2.9),we complete the proof of Theorem 1.2.

        Proof for Theorem 1.3(1) Ifα=0,i.e.,n=n1,and then gcd(n,p)=1.Suppose thatpi≡1(modp2)(i=1,···,k),then for anyd|n,d≡1(modp2),thus by(1.2)–(1.4),we have

        Suppose thatpi≡?1(modp2)(i=1,···,k),i.e,for anyd|n,d≡±1(modp2),and then by(1.2),(1.4)and the proof of Theorem 1.1(1),we can get

        Now from(2.10)–(2.11),we complete the proof of(1).

        (2) Ifα=1,i.e,n=pn1,then by gcd(p,n1)=1,we have

        And so by Theorems 1.1–1.2,(2.12)and(1),we can obtain

        This completes the proof of(2).

        (3) Ifα=2,i.e,n=p2n1,then by gcd(p,n1)=1,we have

        Thus by Theorems 1.1–1.2 and(2.13),in the same proof as that of Theorem 1.3(2),(3)is immediate.

        This completes the proof of Theorem 1.3.

        Proof for Theorem 1.4(1) Ifα=0,β=0,the result is obvious.

        (2) Ifα=1,β=0,i.e.,n=pn1,then by gcd(pq,n1)=gcd(p,q)=1 and(1.2)–(1.3),we have

        (3) For the caseα=1,β=0,in the same proof of(2),the result is obvious.

        (4) Ifα=β=1,i.e.,n=pqn1,then by gcd(pq,n1)=gcd(p,q)=1 and(1.2)–(1.3),in the same proof as that of(2),(4)is immediate.

        (5) Ifα≥2 andβ=0,i.e.,n=pαn1,then by gcd(p,n1)=1 and(1.2)–(1.3),we can obtain

        While byα≥2 and(1.2)–(1.4),we know that

        thus by(2.15)–(2.16),we have?pq(n)=?q(pα?1n1).Thus(5)is proved.

        (6) Ifα≥2 andβ=1,i.e.,n=pαqn1,then by gcd(p,n1)=1,we have

        Thus by(1.2)–(1.4),(2.16)and(2.17),we can get

        (7) Ifα≥2 andβ≥2,then by gcd(pq,n1)=gcd(p,q)=1,and(1.2)–(1.4),we have

        and then

        This completes the proof of(7).

        Proof for Theorem 1.5(1) For the caseα=β=0,i.e.,n=n1.

        (i) Ifpi≡1(modpq)(i=1,···,k),then for anyd|n,d≡1(modpq).Thus by(1.2)and(1.4),we have

        (ii) Ifpi≡?1(modpq)(i=1,···,k),i.e.,for anyd|n,d≡±1(modpq).Then by(1.2)–(1.4)and the proof of Theorem 1.1(1),we have

        From(2.18)–(2.19),we complete the proof of(1).

        (2) Forα=1 andβ=0,i.e.,n=pn1,then by gcd(pq,n1)=gcd(p,q)=1,we have

        (i) Ifpi≡1(modpq),thenpi≡1(modq)(i=1,···,k).And so by Theorem 1.1,Theorem 1.4 and(2.18),we have

        (ii) Ifpi≡?1(modpq),thenpi≡?1(modq)(i=1,···,k),thus by Theorem 1.1,Theorem 1.4,and(2.19),we have

        Now from(2.20)–(2.21),we complete the proof of(2).

        (3) Forα=0 andβ=1,in the same proof as that of(2),the result is immediate.

        (4) Forα=β=1,i.e.,n=pqn1,then by gcd(pq,n1)=gcd(p,q)=1,we have

        (i) Ifpi≡1(modpq),i.e.,pi≡1(modq)andpi≡1(modq)(i=1,···,k).Then by Theorem 1.1,Theorem 1.4 and(2.18),we have

        (ii) Ifpi≡?1(modpq),then by Theorem 1.1,Theorem 1.4 and(2.19),we have

        Now from(2.22)–(2.23),we complete the proof of(4).

        (5) Forα≥2 andβ=0,i.e.,n=pαn1,then by gcd(n1,pq)=gcd(p,q)=1,we have

        (i) Ifp≡pi≡1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.24),we have

        (ii) Ifp≡pi≡?1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.24),we have

        Now from(2.25)–(2.26),we complete the proof of(5).

        (6) Forα≥2 andβ=1,i.e.,n=pαqn1,then by gcd(n1,pq)=gcd(p,q)=1,we have

        (i) Ifp≡pi≡1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.27),we have

        (ii) Ifp≡pi≡?1(modq)(i=1,···,k),then by Theorem 1.1,Theorem 1.4 and(2.27),in the same proof as that of case(5)(ii),one can get

        Now from(2.28)–(2.29),we complete the proof of(6).

        (7) Ifβ≥2 andα=0 or 1,in the same proofs as those of(4)and(5),the result is obvious.

        From the above,Theorem 1.5 is proved.

        成人女同av在线观看网站| 伊人婷婷色香五月综合缴激情| 亚洲精品97久久中文字幕无码| 日本精品人妻无码77777| 亚洲天堂2017无码中文| 国产福利97精品一区二区| 亚洲高清国产拍精品熟女| 按摩少妇高潮在线一区| 精品国产中文字幕久久久| 精品免费国产一区二区三区四区| 色哟哟精品视频在线观看| 欧美国产成人精品一区二区三区| 98在线视频噜噜噜国产| 亚洲av永久综合网站美女| 校园春色人妻激情高清中文字幕| 桃花影院理论片在线| 天堂а√在线最新版中文| 国产韩国精品一区二区三区| av在线天堂国产一区| 色www永久免费视频| 在线免费日韩| 草莓视频中文字幕人妻系列| 一区二区午夜视频在线观看| 少妇激情一区二区三区99| 丰满少妇a级毛片| 荡女精品导航| 亚洲中文字幕在线第二页| 91在线视频在线视频| 国产精品久久国产三级国不卡顿| 91热久久免费精品99| 亚洲av熟女少妇一区二区三区| 欧美激情在线播放| 又爽又黄无遮挡高潮视频网站| 亚洲视频一区二区久久久| 精品国产亚洲av麻豆| 成熟丰满熟妇高潮xxxxx视频| 国产精品原创av片国产日韩| 高清中文字幕一区二区三区| 国产成人无码18禁午夜福利p| 亚洲人成电影在线无码| 69av视频在线|