孟燕萍, 申慢慢
(上海海事大學 物流研究中心,上海 201306)
自然災害的發(fā)生,包括地震、洪澇、臺風和沙塵暴等,往往伴隨著人類生命和財產的巨大損失。2013年4月20日上午08:02,四川省雅安市蘆山縣發(fā)生7.0級地震,震中位于蘆山縣龍門鄉(xiāng),截止2013年5月1日,雅安地震共造成196人死亡,13 484人受傷(1 062人重傷),失蹤21人,累計受災人數超過200萬,累計經濟損失高達1 693.58億元[1]。
目前人類對自然災害的發(fā)生只能預測,不能完全規(guī)避;故災后救援應急等一系列活動就顯得尤為重要。災難發(fā)生后需要大量應急物資,包括救助傷員的醫(yī)藥用品、搶救被困人員的機械設備和滿足災民的日常生活用品等。災后應急物資不同于一般物資,具有時效性、不確定性、弱經濟性和非常規(guī)性等特征,而災后道路恢復狀況直接影響著救災物資運輸時效性。因此,考慮災后道路恢復情況,不同道路恢復情況下對應不同應急救災物資選址方案,可確保應急救災物資有效、及時、合理的運送到受災區(qū),降低災害造成的損失。
目前國內外學者在災后應急物資選址問題上進行了深入研究。比如:S.L.HAKIMI[2-3]、C.TOREGAS等[4]、J.R.WEAVER等[5]分別針對應急選址問題將其分成3類來考慮,并對每類做出具體研究;J.DALAL等[6]通過建立颶風避難所的選址模型,進行算例分析,確定了避難所位置和容量,驗證了模型實用性和有效性;C.G.RAWLS等[7]通過建立雙層隨機混合整數規(guī)劃模型來研究應急物資分配選址問題;M.S.CANBOLAT等[8]通過建立隨機模擬模型,確定了需求隨機選址方案;S.DAVARI等[9]采用模擬退火算法求解選址問題,并提出了模糊最大覆蓋問題;P.MURALI等[10]研究了應急物流選址距離因素和需求的不確定性,考慮容量限制的設施選址問題,建立了最大覆蓋選址模型;王國利等[11]考慮了因意外事件導致設備癱瘓而造成的需求和供應不確定,并采用模糊理論方法建立了設施選址模型;詹沙磊等[12]考慮了多出救點、多受災點和多應急物資的出救點選址問題,建立了多目標隨機規(guī)劃模型;張敏等[13]通過分析應急設施失效場景,建立最大覆蓋選址模型來解決應急設施選址問題;陶莎等[14]考慮應急需求和物流網絡均不確定情況,建立隨機規(guī)劃模型,并應用于應急物資配送點選址問題;陳洪凱[15]等研究公路受泥石流毀壞的程度及物資需求變化;P.MURALI等[10]考慮運輸時間與需求的不確定性,建立了最大覆蓋選址模型,并研究重大襲擊事件發(fā)生后醫(yī)療設施選址問題。
這些學者多是以靜態(tài)考慮設施選址問題,筆者則主要針對災后不同時段道路恢復情況,對災后應急物資選址進行了動態(tài)化研究。以最小化運輸成本和災民等待物資心理懲罰成本為目標,并權衡二次運輸成本和災民等待物資心理懲罰成本,提出多目標混合整數規(guī)劃模型,基于不同道路恢復情況下選擇最優(yōu)應急物資選址方案,并以雅安地震為案例背景,驗證了該模型的有效性和實用性。
地震災害發(fā)生后,需要及時向受災區(qū)提供應急物資救援。但災害發(fā)生后道路破壞及恢復情況不確定,使得災后應急救災物資運輸難度加大,救災情況更為復雜。根據災后道路恢復情況合理分配應急物資選址,不僅能滿足災區(qū)對救援物資需求,而且能降低災民等待物資的心理懲罰成本。
災后道路恢復情況與救災物資供給量密切相關,C.G.RAWLS等[7]以災后72 h黃金救援時間為節(jié)點,給出了累計物資供應量,如圖1。圖1中:每12 h為一段,將災后72 h分成了6段,每時段累計物資供應量不同,總體呈上升趨勢。根據災后道路恢復情況和累計物資供應量關系規(guī)律,可得出災后道路恢復情況變化趨勢,隨著時間推移,災后道路恢復情況呈上升趨勢,如圖2。動態(tài)化考慮應急物資選址是由災后道路恢復情況所決定的。假設災后某條被毀道路經修復后,某時段能正常通路,為滿足最小化應急物資運輸成本和災民等待物資心理懲罰成本,需重新改變應急物資選址方案。同時,當選址方案變動,針對應急物資處理就會產生二次運輸成本,即原應急物資選址點剩余物資需運送到新的應急物資選址點所產生的運輸成本和新物資選址點設施建設固定成本。災后道路恢復情況對災民等待物資心理懲罰成本也有一定影響,新應急物資選址方案產生了二次運輸成本,但能降低災民等待物資心理懲罰成本。并非所有道路恢復情況變動都伴隨著應急物資選址方案的變動,只有當災民等待物資心理懲罰成本大于二次運輸成本時,才會采取新的應急物資選址方案。
筆者考慮災后道路恢復情況,以最小化應急物資運輸成本和災民等待物資心理懲罰成本為目標,建立多目標混合整數規(guī)劃模型;并以雅安地震為例,實際分析了應急物資選址方案,驗證了該模型的實用性和有效性。
圖1 72 h物資累計供應量Fig. 1 72 h cumulative supply of materials
圖2 災后道路恢復程度Fig. 2 Degree of road rehabilitation after disaster
2.1.1 集 合
時段集合為T={1, 2, …,NT},t∈T為其中一個時段;受災點集合為D={1, 2, …,ND},通過d∈D索引;供應點集合為S={1, 2, …,NS},通過s∈S索引;道路集合為R={1, 2, …,NR},通過r∈R索引。
2.1.2 參 數
2.1.3 決策變量
基于集合、參數和決策變量的定義,筆者給出了以最小化運輸成本fc和災民等待物資心理懲罰成本fpw為目標的模型,具體模型如式(1)~(11):
Minimizef=fc+fpw
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
di≥0,i∈{1,2,…,15}
(11)
模型中:式(4)表示以災后初始道路情況和道路恢復因子來量化災后道路恢復情況;式(5)表示滿足受災點對受災物資需求量,任意時段的救災物資供應量須大于或等于需求量;式(6)表示受災點缺貨物資量是由總供應量減去總需求量決定的;式(7)表示供應點的總供應物資量不得超過供應點的物資容量;式(8)表示在任意時段內,只有一個供應點和一條道路滿足受災點的需求物資運輸;式(9)表示任意時段內,總的物資運輸量小于等于供應物資量;式(10)表示任意時段內物資運輸量不為零;式(11)表示受災點到供應點的道路距離大于零。
筆者基于以上分析,考慮到目標重要性和決策者的偏好問題,引入權重;為將目標函數的數量級差異統一化,引入統一量綱化處理。因此,為目標函數中運輸成本和災民等待物資心理懲罰成本賦予了相應的權重Wc和Ww,則目標函數模型如式(12)。
(12)
文中所建立的目標函數和約束條件考慮到災民等待物資心理懲罰成本,考慮到受災點需求物資被滿足的約束條件,這樣更符合實際。災難應急物資更多考慮的是人道主義,人民生命安全需求大于一切。在實際救災過程中,決策者寧愿花費高一點的成本也要滿足災民物資需求。筆者建立多目標混合整數規(guī)劃模型,采用MATLAB求解,并得出最優(yōu)解決方案。
四川雅安受災點根據道路距離蘆山縣的距離來判斷道路恢復情況,以縮短運送物資距離為目的改變供應點,降低災民等待物資心理懲罰成本。
筆者選取寶應縣、蘆山縣和滎經縣這3個受災點;德陽市、成都市、眉山市、樂山市和資陽市這5供應點,供應點和受災點經緯度如表1。根據實際經緯度的地理位置,為便于分析,轉化成平面坐標(圖3)。圖3中:di表示供應點與受災點的道路。統計分析供應點到受災點的道路路線,災害發(fā)生前這些道路處于完全通暢狀態(tài),見表2。
表1 受災點和供應點的經緯度Table 1 Latitude and longitude of damage points and supply points
表2 供應點到受災點的道路線Table 2 Road routes from supply points to disaster points
圖3 供應點與受災點之間道路線Fig. 3 Routes between supply points and disaster points
表3 道路恢復狀況下受災點需求量Table 3 Demand of disaster-stricken areas under road restorationconditions
表4 各時段下災民等待物資的心理懲罰系數Table 4 Psychological punishment coefficients of disaster victimswaiting for supplies at various time periods
表5 供應點的物資供應量Table 5 Material supply at supply points 萬個
表6 受災點到供應點的道路距離Table 6 The road distance from the disaster points to the supply points
表7 道路恢復等級Table 7 Road restoration level
考慮到動態(tài)化分析道路恢復情況及應急物資選址問題,筆者根據實際情況假設了3種場景,并分析了算例結果。
3.2.1 場景1
災害發(fā)生后,道路d4、d7、d8完全摧毀,在實際案例數據基礎上,采用MATLAB算出最優(yōu)解,得出最小運輸成本fc=2 271.5和最小災民等待物資心理懲罰成本fpw=780,確定了最佳供應點選址為德陽市、成都市和樂山市,使用道路為d1、d3、d14,如圖4。
圖4 供應點與受災點之間道路線(場景1)Fig. 4 Road line between supply point and disaster point(scenario 1)
由圖4可看出:在道路d4、d7、d8被摧毀的情況下,選出最優(yōu)應急物資選址為d1、d3、d14,德陽市經過道路d1向受災點寶應縣供應救災物資,成都市經過道路d3向受災點蘆山縣供應救災物資,樂山市經過道路d14向受災點滎經縣供應救災物資。特別需要注意的是,由于處于道路完全摧毀狀態(tài),還沒進入道路恢復階段,故不存在二次運輸成本。
3.2.2 場景2
圖5 供應點與受災點之間道路線(場景2)Fig. 5 Road line between supply point and disaster point (scenario 2)
由圖5可看出:d4、d7完全道路恢復,應急選址改變會產生二次運輸成本,德陽市部分物資運輸到成都市,資陽市部分物資運輸到眉山市,降低了運輸成本和災民等待物資的心理懲罰成本。
3.2.3 場景3
圖6 供應點與受災點之間道路線(場景3)Fig. 6 Road line between supply point and disaster point (scenario 3)
從圖6可看出:d4、d7、d8道路完全恢復,應急選址由3個改變?yōu)?個(成都市和眉山市),這其中產生了二次運輸成本,德陽市部分物資運輸到成都市,成都市、資陽市和樂山市的部分物資運輸到眉山市。由結果來看,降低了運輸成本和災民等待物資的心理懲罰成本。
從以上3個場景分析得出:考慮道路恢復情況,根據路狀及時改變應急物資供應更能節(jié)約救災成本,提高災民滿意程度。在改變應急物資選址方面,會產生二次運輸成本,這是由于原供應點與新供應點之間的運輸,考慮道路質量高,因此單位道路運輸成本大大下降(前文已給出單位二次物資運輸成本),權衡考慮災民等待物資心理懲罰成本和二次運輸成本,得出最優(yōu)供應物資選址方案。
基于以上結果,考慮模型中相關變量值和權重的影響,筆者設計了3種實驗,并對實驗進行分析。
3.3.1 實驗1
從實驗1得出:6個參數對運輸成本fc和災民等待物資心理懲罰成本fpw均有影響,隨著需求量增加,導致運輸成本增加和懲罰成本下降,這是因為滿足災民需求量,災民滿意度會提高,懲罰成本自然下降;供應量增加會帶來運輸成本和懲罰成本降低,因為供應量增加會出現單位運輸成本較小的供應點,整體運輸成本會降低;道路恢復因子逐漸增加,能夠降低運輸成本和懲罰成本,道路狀況越好物資運送越快,因此會降低運輸成本和懲罰成本;心理懲罰系數對運輸成本影響不太明顯,當心理懲罰系數越高時,懲罰成本也就越高;單位運輸成本對懲罰成本影響較小,單位運輸成本越高,則運輸成本就越高;二次運輸成本對運輸成本和懲罰成本影響較明顯,成正相關。
表8 6個參數的敏感性分析Table 8 Sensitivity analysis of six parameters
3.3.2 實驗2
對運輸成本fc和災民等待物資心理懲罰成本fpw進行Pareto分析。實驗中對權重Wc在(0,1)范圍內以0.01的梯度變化進行松弛,Ww=1-Wc,對目標函數進行求解,繪制出Pareto分析圖,如圖7。
圖7 運輸成本和災民等待物資心理懲罰成本Pareto圖Fig. 7 Pareto diagram of transportation costs and the psychological penalty costs of disaster victims waiting for supplies
3.3.3 實驗3
圖8 道路恢復因子對實驗結果的影響Fig. 8 Effect of road recovery factor on experiment results
通過圖7、8可得出:通過Pareto分析,運輸成本fc與災民等待物資心理懲罰成本fpw兩者成負相關,隨著運輸成本增加,災民等待物資心理懲罰成本減少,考慮到實際災難場景不難理解,運輸成本提高,運輸效率也會隨之提高,從物資供應點運送物資到災區(qū)花費的時間就少,應急物資能夠快速運送到災民手中,災民等待物資的懲罰成本就會相應減少;道路恢復程度對實驗結果均有影響,不同階段下道路恢復程度不同,隨著道路恢復因子數值增大,運輸成本和災民等待物資心理懲罰成本都會降低,其中懲罰成本的變化會更加明顯。
筆者研究了災后道路恢復情況下應急物資選址問題。以最小化物資運輸成本和災民等待物資心理懲罰成本為目標,建立多目標混合整數規(guī)劃模型,并以雅安地震為實際案例驗證模型的有效性。筆者根據道路恢復等級權衡災民等待物資心理懲罰成本和二次運輸成本,當懲罰成本大于二次運輸成本就會改變選址方案,重新規(guī)劃出最優(yōu)方案。通過雅安地震的3個場景分析得出,道路恢復情況不同,物資選址方案也不同,考慮道路恢復情況,權衡二次運輸成本和災民等待物資心理懲罰成本有利于降低物資運輸成本和災民等待物資的心理懲罰成本,對實際災后工作有很大幫助。
筆者通過研究3個實驗得出的:① 在物資選址方面,考慮災后道路恢復等級能夠選出最佳的選址方案;權衡考慮災民等待物資心理懲罰成本和二次運輸成本更加符合實際,災難發(fā)生,出于人道主義,災民的利益大于一切,把災民的利益和二次運輸成本量化比較,不僅能夠滿足災民,同時也降低經濟成本;② 物資運輸成本和災民等待物資心理懲罰成本在一定范圍內成負相關,當超過界限,兩者之間的關系是正相關,因為當災后道路完全恢復,災民等待物資的心理懲罰成本幾乎很小,這時物資運輸成本也會因為路況和物資供應量而變得很小。