亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)的回彈預(yù)測研究

        2019-01-10 01:48:14楊釬許益民
        現(xiàn)代電子技術(shù) 2019年1期

        楊釬 許益民

        關(guān)鍵詞: V形自由折彎; 回彈; BP神經(jīng)網(wǎng)絡(luò); 改進(jìn)粒子群算法; 全局搜索能力; 收斂精度; 泛化能力

        中圖分類號: TN711?34; TP301.6 ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)01?0161?05

        Abstract: The accurate prediction of sheet metal springback in V?shape air bending is conducive to the accurate springback control in actual production, and improve the production efficiency. The springback of sheet metal is influenced by multiple factors, and appears as the complex nonlinear change characteristic. The traditional BP neural network is difficult to meet the high?precision forecasting requirements. Therefore, the prediction model based on improved particle swarm optimization algorithm optimizing BP neural network is proposed to further predict the springback of sheet metal effectively. The defect of standard particle swarm optimization algorithm is improved, and the global search ability of the improved particle swarm optimization algorithm is used to optimize and solve the weights and thresholds of the BP neural network, which can improve the convergence accuracy and generalization ability of the BP neural network prediction model. The improved PSO?BP neural network prediction model is used in sheet metal springback prediction, and compared with LM?BP neural network prediction model for simulation. The simulation results show that the improved PSO?BP neural network prediction model has higher nonlinear fitting goodness and prediction precision.

        Keywords: V?shape air bending; springback; BP neural network; improved particle swarm optimization algorithm; global search ability; convergence accuracy; generalization ability

        0 ?引 ?言

        目前國內(nèi)外回彈預(yù)測方法大致可歸納為理論計算法、有限元分析法和人工智能預(yù)測法三種。文獻(xiàn)[1]基于材料本構(gòu)模型的假設(shè),通過對板料折彎時的應(yīng)力應(yīng)變以及彎矩進(jìn)行分析來求解回彈角公式。由于此方法是建立在假設(shè)的基礎(chǔ)上,因此很難得到非常精確的數(shù)學(xué)模型來計算回彈角,且應(yīng)用范圍也具有一定的局限性。有限元分析法是一種數(shù)值模擬計算法,如文獻(xiàn)[2?3]中分別采用ABAQUS和ANSYS軟件對板料成形和回彈過程進(jìn)行數(shù)值模擬,并通過實驗驗證了回彈計算結(jié)果的可靠性,也是目前回彈預(yù)測最為主流的方法。但由于板料沖壓成形和回彈的有限元分析屬于高度非線性分析問題,因此該方法對折彎有限元分析模型要求很高,若建立的模型不合理,會經(jīng)常出現(xiàn)計算不收斂的情況,以至于浪費大量的時間對折彎模型進(jìn)行反復(fù)修改和計算,所以這種方法存在計算效率和速度不高的問題。

        在前面兩種回彈預(yù)測方法難以滿足實際需求的情況下,人工智能預(yù)測法為板料回彈預(yù)測提供了一條新的有效途徑。相比傳統(tǒng)的回彈預(yù)測方法,人工智能預(yù)測法既不需要對折彎工藝條件進(jìn)行假設(shè),也不需要建立系統(tǒng)精確的數(shù)學(xué)模型,只需合理的樣本數(shù)據(jù)進(jìn)行學(xué)習(xí)訓(xùn)練即可,表現(xiàn)出很強的模型辨識能力。如文獻(xiàn)[4]基于BP神經(jīng)網(wǎng)絡(luò)建立了板料回彈的預(yù)測模型,并通過測試樣本進(jìn)行離線仿真測試,從而驗證了人工智能預(yù)測法的有效性,但由于BP神經(jīng)網(wǎng)絡(luò)具有自身的局限性,使得預(yù)測效果并不理想。

        本文在綜合板料回彈已有研究的基礎(chǔ)上,提出基于改進(jìn)粒子群算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型來進(jìn)一步提高回彈的預(yù)測精度。由于改進(jìn)粒子群算法采用記憶動態(tài)跟蹤方式進(jìn)行搜索,沒有遺傳算法的選擇、交叉等復(fù)雜操作,因此算法易于實現(xiàn),且具有收斂速度快、協(xié)調(diào)程度高和可靠性強的優(yōu)點。

        5) 粒子自適應(yīng)搜索與變異:粒子在自適應(yīng)改變的慣性權(quán)重下進(jìn)行迭代搜索,當(dāng)粒子在搜索后期滿足變異條件時,則算法返回步驟3)重新進(jìn)行計算,直到滿足循環(huán)終止條件為止。

        6) 將最優(yōu)解進(jìn)行解碼并重新賦值給BP神經(jīng)網(wǎng)絡(luò),輸入樣本數(shù)據(jù)重新進(jìn)行訓(xùn)練和網(wǎng)絡(luò)測試,查看預(yù)測結(jié)果。

        在Matlab中對改進(jìn)粒子群算法的優(yōu)化流程進(jìn)行編程和仿真,并跟蹤粒子適應(yīng)度函數(shù)的曲線,其跟蹤結(jié)果如圖5所示。由圖5可知,粒子的適應(yīng)度值在迭代次數(shù)為80代左右時達(dá)到最大,其最大適應(yīng)度值為0.33左右,在80~100代時粒子適應(yīng)度值保持不變,因此算法的最優(yōu)解對應(yīng)于粒子適應(yīng)度值為0.33的位置。

        4 ?仿真研究

        4.1 ?仿真依據(jù)與評價指標(biāo)

        以正交實驗法提供的32組樣本數(shù)據(jù)為依據(jù),提取樣本數(shù)據(jù)中的26組數(shù)據(jù)作為預(yù)測模型的訓(xùn)練樣本,通過訓(xùn)練用以預(yù)測其余6組數(shù)據(jù)的測試樣本。為了驗證本文建立的改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的有效性與預(yù)測精度,本文將傳統(tǒng)的LM?BP神經(jīng)網(wǎng)絡(luò)與改進(jìn)模型進(jìn)行仿真對比,采用均方根誤差MSE、決定系數(shù)[R2]和平均預(yù)測誤差百分比作為回彈預(yù)測模型的評價指標(biāo)。

        兩種神經(jīng)網(wǎng)絡(luò)訓(xùn)練后的收斂情況如圖6,圖7所示,測試結(jié)果如圖8,圖9所示。其中LM?BP神經(jīng)網(wǎng)絡(luò)的預(yù)測誤差見表1,改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)的預(yù)測誤差見表2,兩種預(yù)測模型的評價指標(biāo)對比結(jié)果見表3。

        4.2 ?仿真結(jié)果分析

        對比圖6和圖7的收斂結(jié)果可知,LM?BP神經(jīng)網(wǎng)絡(luò)在訓(xùn)練步數(shù)經(jīng)過1步后達(dá)到4.052 9×10-3的收斂精度,而改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)在訓(xùn)練步數(shù)經(jīng)過3步后達(dá)到8.382 2×10-4的收斂精度。相比LM?BP神經(jīng)網(wǎng)絡(luò),改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)在收斂精度上提高了一個數(shù)量級,因此通過改進(jìn)粒子群算法對BP神經(jīng)網(wǎng)絡(luò)進(jìn)行優(yōu)化是有效的。

        由圖8、圖9、表1和表2的預(yù)測結(jié)果與誤差可知,LM?BP神經(jīng)網(wǎng)絡(luò)的預(yù)測值整體小于測試樣本值,最大預(yù)測誤差可達(dá)18.85%,預(yù)測精度不高;而改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)的預(yù)測值與測試樣本值十分接近,最大預(yù)測誤差僅為3.42%,表明改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)具有更高的泛化能力。

        由表3的評價指標(biāo)結(jié)果對比可知,改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)的決定系數(shù)[R2]比LM?BP神經(jīng)網(wǎng)絡(luò)更接近于1,在平均預(yù)測誤差百分比上降低了7.71%,進(jìn)而表明,改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的擬合優(yōu)度和預(yù)測精度更高,更能反映出回彈預(yù)測模型的非線性關(guān)系。

        5 ?結(jié) ?語

        板料加工回彈預(yù)測是實現(xiàn)回彈補償和控制的一項重要前提工作。由于板料回彈呈現(xiàn)出復(fù)雜的非線性變化特征,難以通過傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò)滿足高精度預(yù)測的要求,因此提出一種基于改進(jìn)粒子群算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)回彈預(yù)測模型。通過變異思想和自適應(yīng)慣性權(quán)重兩個優(yōu)化策略改進(jìn)標(biāo)準(zhǔn)粒子群算法,利用改進(jìn)粒子群算法的全局搜索能力克服BP神經(jīng)網(wǎng)絡(luò)的缺陷。最后與傳統(tǒng)的LM?BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型進(jìn)行對比,仿真結(jié)果表明,改進(jìn)PSO?BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的擬合優(yōu)度和預(yù)測精度更高,具有實際生產(chǎn)應(yīng)用價值。

        參考文獻(xiàn)

        [1] 高丙坤,鄭仁謙,尹淑欣,等.基于RBF神經(jīng)網(wǎng)絡(luò)的天然氣管道泄漏檢測技術(shù)研究[J].電子設(shè)計工程,2016,24(16):78?81.

        GAO Bingkun, ZHENG Renqian, YIN Shuxin, et al. The na?tural gas pipeline leak detection technology based on RBF neural network research [J]. Electronic design engineering, 2016, 24(16): 78?81.

        [2] 王炳萱,李國勇,王艷暉.基于LM?PSO算法和BP神經(jīng)網(wǎng)絡(luò)的非線性預(yù)測控制[J].太原理工大學(xué)學(xué)報,2016,47(2):207?211.

        WANG Bingxuan, LI Guoyong, WANG Yanhui. Nonlinear predictive control based on LM?PSO algorithm and BP neural network [J]. Journal of Taiyuan University of Technology, 2016, 47(2): 207?211.

        [3] XING Y, YOU Z, ZHANG B, et al. City water demand forecasting based on improved BP neural network [J]. Journal of residuals science & technology, 2017, 14(S1): S111?S117.

        [4] 胡丙坤.基于神經(jīng)網(wǎng)絡(luò)的金屬板材折彎回彈預(yù)測與研究[D].上海:上海應(yīng)用技術(shù)學(xué)院,2015.

        HU Bingkun. Prediction and research on bending springback of sheet metal based on neural network [D]. Shanghai: Shanghai Institute of Applied Technology, 2015.

        [5] ZHAO Z, XU Q, JIA M. Improved shuffled frog leaping algorithm?based BP neural network and its application in bearing early fault diagnosis [J]. Neural computing & applications, 2016, 27(2): 375?385.

        [6] SUN Y S, ZHANG Q. Optimization design and reality of the virtual cutting process for the boring bar based on PSO?BP neural networks [J]. Neural computing & applications, 2018, 29(5): 1357?1367.

        [7] LIU C, DING W, LI Z, et al. Prediction of high?speed grin?ding temperature of titanium matrix composites using BP neural network based on PSO algorithm [J]. International journal of advanced manufacturing technology, 2016, 89(5/8): 1?9.

        [8] 陳金輝,陳辰,董飚.基于自適應(yīng)策略的改進(jìn)粒子群算法[J].計算機(jī)仿真,2015,32(3):298?303.

        CHEN Jinhui, CHEN Chen, DONG Biao. An improved particle swarm algorithm based on adaptive strategy [J]. Computer simulation, 2015, 32(3): 298?303

        [9] JIN Gou, YU Xianglei, WANG Pingguo, et al. A novel improved particle swarm optimization algorithm based on individual difference evolution [J]. Applied soft computing, 2017, 57: 468?481.

        [10] 謝延敏,孫新強,田銀,等.基于改進(jìn)粒子群算法和小波神經(jīng)網(wǎng)絡(luò)的高強鋼扭曲回彈工藝參數(shù)優(yōu)化[J].機(jī)械工程學(xué)報,2016,52(19):162?167.

        XIE Yanmin, SUN Xinqiang, TIAN Yin, et al. Optimization of parameters in twist springback process for high?strength sheets based on improved particle swarm optimization algorithm and wavelet neural network [J]. Journal of mechanical engineering, 2016, 52(19): 162?167.

        日本久久精品在线播放| 久久精品国产91精品亚洲| 婷婷五月深深久久精品| 成人免费一区二区三区| av片在线观看免费| 大地资源网更新免费播放视频| 亚洲AV秘 无码一区二区三区| 中文字幕亚洲乱亚洲乱妇| 国产av在线观看91| 蜜桃精品人妻一区二区三区| 人妻少妇精品无码专区动漫| 亚洲欧美日韩综合久久久| 特级黄色毛片视频| 中文字幕第一页亚洲观看| 亚洲精品中文字幕乱码二区 | 丝袜美腿av免费在线观看| 蜜桃在线视频一区二区| 美女人妻中出日本人妻| www夜片内射视频在观看视频| 中文字幕无码av波多野吉衣| 中文字幕美人妻亅u乚一596| 涩涩国产在线不卡无码| 亚洲中文字幕乱码免费看| 美女免费视频观看网址| 午夜精品久久久久久久| 人妻少妇看a偷人无码精品| 伊人色网站| 少妇高潮无码自拍| 午夜视频在线观看国产| 国产成人亚洲综合| 亚洲精品天堂成人片av在线播放| 成人爽a毛片一区二区免费| 国产免费99久久精品| 中文字幕人妻在线少妇| 一本无码av中文出轨人妻| 欧美成人a在线网站| 看黄色亚洲看黄色亚洲| 久久久天堂国产精品女人| 闺蜜张开腿让我爽了一夜| 狠狠色狠狠色综合网老熟女| 国产精品高清国产三级国产av|