鄭佳瑤 蘇中 李擎
關(guān)鍵詞: 行人導(dǎo)航; 自主定位; 航向發(fā)散; 步態(tài)約束; 序列檢測(cè); 航向約束
中圖分類(lèi)號(hào): TN96?34; TP391 ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? ? ? 文章編號(hào): 1004?373X(2019)01?0157?04
Abstract: Since the MEMS inertial device for pedestrian autonomous positioning has drift error caused by the accumulation of time, which would lead to heading divergence, a sequence detection method with gait constraints (turning angle is 0°, 90° or 180°) is proposed. The gait sequence template is obtained by training the different walking behavior data of pedestrians. According to the heading constraints of matched templates, the heading drift error is corrected in real time. The 500 m walking experiments are carried out in the corridor with indoor structure regularization to verify the effectiveness of the algorithm. The experimental results show that the proposed method can effectively suppress the heading divergence of pedestrian navigation, and the positioning error is about 0.7% of the total distance.
Keywords: pedestrian navigation; autonomous positioning; heading divergence; gait constraint; sequence detection; heading constraint
基于低成本的MEMS?IMU導(dǎo)航系統(tǒng)已廣泛應(yīng)用于室內(nèi)自主定位中,然而MEMS慣性器件存在隨時(shí)間累積的漂移誤差導(dǎo)致航向發(fā)散的問(wèn)題,使定位精度越來(lái)越低。為了解決這一問(wèn)題,國(guó)內(nèi)外研究人員[1]借助一些附加信息提出建筑物信息融合算法、磁航向輔助算法等方法,但這些附加信息增加了系統(tǒng)的復(fù)雜度,易受客觀條件的干擾,容易影響導(dǎo)航系統(tǒng)的應(yīng)用效果。Foxlin提出基于鞋式行人導(dǎo)航的零速修正技術(shù),利用行人行走過(guò)程中腳接觸地面瞬間速度為零的事實(shí),并結(jié)合卡爾曼濾波的方法修正導(dǎo)航系統(tǒng)的速度、位置和水平姿態(tài)誤差,但是由于航向誤差可觀測(cè)性差[2],該方法在行人自主定位的過(guò)程中仍存在航向發(fā)散現(xiàn)象。文獻(xiàn)[3]利用大多數(shù)人構(gòu)造建筑室內(nèi)結(jié)構(gòu)規(guī)則化的事實(shí),提出一種基于主方向的啟發(fā)式漂移消除算法(HDE),通過(guò)直接修正陀螺儀積分得到的航向角來(lái)抑制航向發(fā)散,但是該方法限制了行人在規(guī)則的室內(nèi)環(huán)境中沿直線行走,當(dāng)行人轉(zhuǎn)彎時(shí)無(wú)法修正航向[4],并且陀螺儀積分計(jì)算角度的過(guò)程仍會(huì)引入一系列的累積誤差。文獻(xiàn)[5]在HDE方法的基礎(chǔ)上進(jìn)行了改進(jìn),稱(chēng)為iHDE,滿足了行人轉(zhuǎn)彎時(shí)繼續(xù)航向的修正,后來(lái)將磁場(chǎng)統(tǒng)計(jì)信息集成到iHDE中,獲得了更好的定位解決方案,該方法稱(chēng)為MiHDE[6]。
從圖5a)可以看出,由于慣性器件隨時(shí)間累積的漂移誤差較大,行人在行走的過(guò)程中只能得到行人起始點(diǎn)的航位信息,無(wú)法得到行人終止點(diǎn)的航位信息,這說(shuō)明行人的航跡是發(fā)散的,無(wú)法真實(shí)地反映出行人的運(yùn)動(dòng)情況,失去了定位的意義。
圖5b)為在純慣導(dǎo)的基礎(chǔ)上引入適當(dāng)?shù)姆椒▉?lái)抑制航向發(fā)散得到的航跡信息,起始點(diǎn)和終止點(diǎn)的位置均已給出。其中,虛線為INS+EKF+ZUPT方法得到的軌跡,ZUPT雖然能修正系統(tǒng)誤差,但由于航向誤差的可觀測(cè)性差,系統(tǒng)仍存在航向發(fā)散的現(xiàn)象,使得行人的航跡與真實(shí)的軌跡存在偏差;實(shí)線為在INS+EKF+ZUPT方法上引入了本文所提出的基于序列檢測(cè)的模板匹配法得到的運(yùn)動(dòng)軌跡,利用轉(zhuǎn)彎時(shí)的航向約束(轉(zhuǎn)彎0°,90°或180°)信息,有效地抑制了慣性器件的漂移誤差,從而得到與實(shí)際軌跡基本吻合的航跡信息,通過(guò)對(duì)起始點(diǎn)與終點(diǎn)的誤差分析,得到定位精度約為0.7%,可以反映出行人的真實(shí)運(yùn)動(dòng)情況。
針對(duì)MEMS慣性器件隨時(shí)間累積的零漂誤差大及航向誤差可觀測(cè)性差,ZUPT無(wú)法修正航向,使得導(dǎo)航系統(tǒng)仍存在航向發(fā)散的問(wèn)題,本文提出一種基于序列檢測(cè)的模板匹配法實(shí)時(shí)地消除航向漂移誤差。首先基于室內(nèi)結(jié)構(gòu)規(guī)則化的事實(shí)將行人在室內(nèi)行走時(shí)的航向變化限制在0°,90°或180°,然后通過(guò)訓(xùn)練行人第1~5步常見(jiàn)的步行行為(如直線、左轉(zhuǎn)、右轉(zhuǎn)、左后轉(zhuǎn)、右后轉(zhuǎn))數(shù)據(jù)得到典型的步態(tài)序列模板,根據(jù)行人當(dāng)前的步態(tài)序列匹配相應(yīng)的序列模板,利用模板下的航向約束(轉(zhuǎn)彎0°,90°或180°)實(shí)時(shí)地消除航向漂移誤差,最后利用EKF融合系統(tǒng)的誤差,進(jìn)一步提高導(dǎo)航定位的精度。最終通過(guò)仿真實(shí)驗(yàn)驗(yàn)證了本文所提算法能有效地抑制航向發(fā)散,證明了所提算法的有效性和準(zhǔn)確性。為了更好地驗(yàn)證本文所提方法的有效性,今后將在更復(fù)雜的室內(nèi)環(huán)境中進(jìn)行行走實(shí)驗(yàn),并在該方法的基礎(chǔ)上融入地圖或超寬帶UWB等定位信息,進(jìn)一步提高導(dǎo)航定位的精度。
參考文獻(xiàn)
[1] 謝波,江一夫,嚴(yán)恭敏,等.個(gè)人導(dǎo)航融合建筑平面信息的粒子濾波方法[J].中國(guó)慣性技術(shù)學(xué)報(bào),2013,21(1):1?6.
XIE Bo, JIANG Yifu, YAN Gongmin, et al. Particle filter method for building plane information fusion in personal navigation [J]. Chinese journal of inertial technology, 2013, 21(1): 1?6.
[2] JIM?NEZ A R, SECO F, PRIETO J C, et al. Indoor pedes?trian navigation using an INS/EKF framework for yaw drift reduction and a foot?mounted IMU [C]// 2010 IEEE the 7th Workshop on Positioning Navigation and Communication. Dresden: IEEE, 2010: 135?143.
[3] BORENSTEIN J, OJEDA L, KWANMUANG S. Heuristic reduction of gyro drift in IMU?based personnel tracking systems [J]. Journal of navigation, 2009, 62(1): 41?58.
[4] 樓喜中,周樂(lè)宇,葉敏展,等.基于角度的HDE算法在室內(nèi)行人航跡定位中的研究[J].傳感技術(shù)學(xué)報(bào),2015,15(4):598?602.
LOU Xizhong, ZHOU Leyu, YE Minzhan, et al. Research on indoor pedestrian track location using angle?based HDE algorithm [J]. Chinese journal of sensors and actuators, 2015, 15(4): 598?602.
[5] JIMENEZ A R, SECO F, ZAMPELLA F, et al. Improved heuristic drift elimination (iHDE) for pedestrian navigation in complex buildings [C]// 2011 IEEE International Conference on Indoor Positioning and Indoor Navigation. Guimaraes, Portugal: IEEE, 2011: 1?8.
[6] JIMENEZ A R, SECO F, ZAMPELLA F, et al. Improved heuristic drift elimination with magnetically?aided dominant directions (MiHDE) for pedestrian navigation in complex buildings [J]. Journal of location based services, 2012(6): 186?210.
[7] 李超,蘇中,朱嘉林,等.可穿戴式自主定位技術(shù)的零速觸發(fā)算法研究[J].傳感技術(shù)學(xué)報(bào),2014,27(5):627?632.
LI Chao, SU Zhong, ZHU Jialin, et al. Zero?speed triggering algorithm for wearable autonomous positioning technology [J]. Chinese journal of sensors and actuators, 2014, 27(5): 627?632.
[8] JU H J, LEE M S, PARK C G, et al. Advanced heuristic drift elimination for indoor pedestrian navigation [C]// 2014 IEEE International Conference on Indoor Positioning and Indoor Navigation. Busan: IEEE, 2014: 729?732.
[9] LI Y, SONG Q, MA M, et al. Near real time heading drift correction for indoor pedestrian tracking based on sequence detection [C]// 2016 IEEE International Conference on Indoor Positioning and Indoor Navigation. Alcala de Henares: IEEE, 2016: 1?4.
[10] ZHANG X, RONG Z, GUO M F, et al. Yaw error self?observation algorithm for pedestrian navigation via foot?mounted inertial navigation system [J]. Journal of Chinese inertial technology, 2015, 23(4): 457?466.