李世光 孟凡濤 趙沙沙 高正中 程建軍
關(guān)鍵詞: 配電網(wǎng); 重構(gòu); 蟻群算法; 小波變異粒子群算法; 有功損耗; 節(jié)點電壓
中圖分類號: TN911.1?34; TM732 ? ? ? ? ? ? ? ? ? 文獻標識碼: A ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)01?0124?05
Abstract: An ACO?IPSOWM algorithm combining ant colony optimization (ACO) and improved wavelet mutation particle swarm optimization (IPSOWM) is proposed to reconstruct the power distribution network after failure or adding DG efficiently and stably. The minimum active power loss and minimum node voltage deviation of the power distribution network are taken as the objective function, and converted into single?objective problem after weighting and normalization. The binary coded switching states and topological correction strategy are used to check the radiation of the power distribution network. The algorithm is preliminarily optimized by using ant colony optimization algorithm, and the wavelet mutation is used to extend the effective population space to avoid that the algorithm falls into the local optimum. The power distribution network reconfiguration is simulated after the fault of IEEE33 node system and DG output of system node. The experimental results show that the ACO?IPSOWM algorithm can combine the advantages of ACO and IPSOWM after selecting the appropriate parameters, and the reconstructed performance is better.
Keywords: power distribution network; reconfiguration; ant colony algorithm; wavelet mutation particle swarm optimization; active power loss; node voltage
配電網(wǎng)重構(gòu)是指在維持配電網(wǎng)輻射結(jié)構(gòu)同時滿足系統(tǒng)約束條件下,通斷配電網(wǎng)中的開關(guān)來改變其網(wǎng)絡結(jié)構(gòu),從而使配電網(wǎng)正常運行,最大程度上保證配電網(wǎng)絡供電的可靠性、安全性、穩(wěn)定性要求。目前解決重構(gòu)問題的方法有支路交換法[1]、最優(yōu)流模式法[2]、遺傳算法、免疫算法、模擬退火算法、差分進化算法等,均能較好地達到配電網(wǎng)重構(gòu)的效果。文獻[3]提出一種基于協(xié)同進化蟻群算法的含光伏發(fā)電的配電網(wǎng)重構(gòu)方法,但單一的蟻群算法處理時間較長。文獻[4]提出一種改進的二進制量子粒子群算法,對含DG的重構(gòu)模型進行求解,引入遺傳算法的交叉操作和變異操作來避免早熟,提高了算法的全局搜索能力。文獻[5]采用基于改進粒子群算法的含分布式電源(DG)配電網(wǎng)的優(yōu)化重構(gòu),由此可知重構(gòu)時DG的接入有利于減少網(wǎng)絡損耗,提高節(jié)點的電壓水平。粒子群算法雖然迭代次數(shù)少,但計算時容易早熟使尋優(yōu)結(jié)果不佳;蟻群算法不易早熟,但其迭代次數(shù)較多,收斂速度較慢。本文將蟻群算法與改進的小波變異粒子群算法結(jié)合使用,改進的小波變異可為粒子進化提供更好的方向,避免其陷入局部最優(yōu),分別通過故障后重構(gòu)與接入DG后重構(gòu)兩個案例證明了算法的可行性。
加入DG后采用算例1中ACO?IPSOWM算法,在實驗取值時將網(wǎng)絡損耗和電壓偏差納入一個數(shù)量級,并按單目標問題處理,在大量實驗中選取幾組具有代表性的加權(quán)優(yōu)化方案,如表2所示。
由表2可知,當網(wǎng)絡損耗的權(quán)重系數(shù)[α]大時,配電網(wǎng)最小網(wǎng)絡損耗相對較小;反之,節(jié)點電壓偏差的權(quán)重系數(shù)[β]大時,最大節(jié)點電壓的偏差相對較小。由于配電網(wǎng)是帶DG正常工作,故重構(gòu)優(yōu)化目標函數(shù)更偏重網(wǎng)絡損耗更小,故兩權(quán)重系數(shù)選為[α=0.8,β=0.2]。
選取合適的權(quán)重系數(shù)后,對含DG和不含DG應用本文算法進行Matlab仿真實驗,算例1已知不含DG時重構(gòu)后網(wǎng)損值為138.526 kW,含DG調(diào)和重構(gòu)后網(wǎng)損值為73.415 kW;圖5分別為含DG和不含DG時配電網(wǎng)重構(gòu)后的節(jié)點電壓偏差值,不含DG重構(gòu)后節(jié)點電壓最大偏差值約為0.052 p.u.,接入DG重構(gòu)后節(jié)點電壓最大偏差值為0.036,由此可見接入DG出力優(yōu)化對減少配電網(wǎng)網(wǎng)絡損耗、提高電壓質(zhì)量有很大幫助,但是由圖5可以看出一個問題,各個節(jié)點電壓之間存在明顯波動性,電壓不穩(wěn)定,這時可接入無功補償裝置彌補無功的缺失。
模擬仿真實驗結(jié)果表明,ACO?IPSOWM能夠結(jié)合蟻群算法和小波粒子群算法兩種算法的優(yōu)勢,對于配電網(wǎng)故障后重構(gòu)與接入DG重構(gòu)后網(wǎng)絡損耗更小,節(jié)點電壓偏差更小,且算法較單一的粒子群算法和蟻群算法能夠更好的尋優(yōu),但算法參數(shù)選取需要不斷修正調(diào)和,這是下一步需要改進的地方。
參考文獻
[1] 劉秋源,宮詩玖,袁琦.基于支路交換法的配網(wǎng)重構(gòu)方法分析[J].電氣開關(guān),2014,52(5):55?58.
LIU Qiuyuan, GONG Shijiu, YUAN Qi. Analysis of the distribution network reconstitution method based on branding exchange method [J]. Electric switchgear, 2014, 52(5): 55?58.
[2] 原亞飛.含分布式電源的配電網(wǎng)重構(gòu)研究[D].天津:天津理工大學,2016.
YUAN Yafei. Research on reconfiguration of distribution network with distributed generation [D]. Tianjin: Tianjin University of Technology, 2016.
[3] 劉科研,盛萬興,賈東梨,等.基于協(xié)同進化蟻群算法的含光伏發(fā)電的配電網(wǎng)重構(gòu)[J].可再生能源,2017,35(5):702?708.
LIU Keyan, SHENG Wanxing, JIA Dongli, et al. Distribution network reconfiguration with photovoltaic generation based on co?evolutionary ant colony algorithm [J]. ?Renewable energy resources, 2017, 35(5): 702?708.
[4] 張濤,史蘇怡,徐雪琴.基于二進制量子粒子群算法的含分布式電源配電網(wǎng)重構(gòu)[J].電力系統(tǒng)保護與控制,2016(4):22?28.
ZHANG Tao, SHI Suyi, XU Xueqin. Distribution network reconfiguration with distributed generation based on improved quantum binary particle swarm optimization [J] Power system protection and control, 2016(4): 22?28.
[5] 陳丹陽,張雪霞.基于AMOPSO考慮分布式電源的配電網(wǎng)重構(gòu)[J].太陽能學報,2017,38(8):2195?2203.
CHEN Danyang, ZHANG Xuexia. Distribution network reconfiguration of distributed generation based on AMOPSO algorithm [J]. Acta energiae solaris Sinica, 2017, 38(8): 2195?2203.
[6] TIAN Y, GAO D, LI X. Improved particle swarm optimization with wavelet?based mutation operation [C]// 2012 International Conference on Advances in Swarm Intelligence. Berlin: Springer?Verlag, 2012: 116?124.
[7] LING S H, IU H H, CHAN K Y, et al. Hybrid particle swarm optimization with wavelet mutation and its industrial applications [J]. IEEE transactions on systems, man & cybernetics Part B, 2008, 38(3): 743?763.
[8] 米文博,王宇,劉慶瑞.基于改進前推回代法的配電網(wǎng)的潮流計算與分析[J].科技展望,2017,27(5):87?88.
MI Wenbo, WANG Yu, LIU Qingrui. Power flow calculation and analysis based on improved forward?backward generation method [J]. Technology outlook, 2017, 27(5): 87?88.
[9] 王守相,王成山.現(xiàn)代配電系統(tǒng)分析[M].2版.北京:高等教育出版社,2014.
WANG Shouxiang, WANG Chengshan. Analysis of modern distribution network system [M]. 2nd ed. Beijing: Higher Education Press, 2014.
[10] 李國清.分布式電源對重要用戶供電可靠性的影響研究[J].科技創(chuàng)新與應用,2017(27):171.
LI Guoqing. Research on the influence of distributed power on reliability of power supply to important users [J]. Technology innovation and application, 2017(27): 171.