亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        意大利蜜蜂工蜂中腸發(fā)育過程中的差異表達環(huán)狀RNA及其調(diào)控網(wǎng)絡(luò)分析

        2018-12-11 10:57:26郭睿陳華枝熊翠玲鄭燕珍付中民徐國鈞杜宇王海朋耿四海周丁丁劉思亞陳大福
        中國農(nóng)業(yè)科學(xué) 2018年23期
        關(guān)鍵詞:意蜂中腸工蜂

        郭睿,陳華枝,熊翠玲,鄭燕珍,付中民,徐國鈞,杜宇,王海朋,耿四海,周丁丁,劉思亞,陳大福

        ?

        意大利蜜蜂工蜂中腸發(fā)育過程中的差異表達環(huán)狀RNA及其調(diào)控網(wǎng)絡(luò)分析

        郭睿,陳華枝,熊翠玲,鄭燕珍,付中民,徐國鈞,杜宇,王海朋,耿四海,周丁丁,劉思亞,陳大福

        (福建農(nóng)林大學(xué)蜂學(xué)學(xué)院,福州 350002)

        【目的】環(huán)狀RNA(circular RNA,circRNA)在可變剪接、轉(zhuǎn)錄調(diào)控和來源基因的表達調(diào)控等方面具有重要功能。本研究旨在探究意大利蜜蜂(,簡稱意蜂)工蜂中腸發(fā)育過程中circRNA的表達譜及其發(fā)育過程中的差異表達circRNA(differentially expressed circRNA,DEcircRNA),進而在轉(zhuǎn)錄組水平探究DEcircRNA在中腸發(fā)育中的作用。【方法】基于前期獲得的意蜂7和10日齡工蜂中腸樣品(Am7和Am10)的全轉(zhuǎn)錄組數(shù)據(jù),利用find_circ軟件從質(zhì)控后的數(shù)據(jù)中預(yù)測circRNA。采用RPM算法歸一化處理得到circRNA的表達量。利用DEGseq軟件對circRNA進行差異分析,按照差異倍數(shù)(fold change)≥2、<0.05及錯誤發(fā)現(xiàn)率(false discovery rate,F(xiàn)DR)<0.05條件篩選DEcircRNA。通過BLAST比對GO和KEGG數(shù)據(jù)庫,對DEcircRNA的來源基因進行功能和代謝通路注釋。利用TargetFinder軟件預(yù)測DEcircRNA-miRNA及DEcicRNA-miRNA-mRNA調(diào)控網(wǎng)絡(luò),通過Cytoscape v.3.2.1軟件對調(diào)控網(wǎng)絡(luò)進行可視化。通過實時熒光定量PCR(RT-qPCR)驗證測序數(shù)據(jù)的可靠性?!窘Y(jié)果】意蜂中腸各樣品比對上參考基因組的短序列讀段數(shù)平均為19 616 356條。Am7與Am10的組內(nèi)Pearson相關(guān)系數(shù)均≥0.950。共預(yù)測出256個DEcircRNA,包括105個上調(diào)circRNA和151個下調(diào)circRNA。Novel_circ_009675和novel_circ_013879分別在Am7和Am10中高量表達。DEcircRNA的來源基因可注釋到包括結(jié)合、單組織進程及細胞進程在內(nèi)的32個GO條目,其中分別有35、35和7個來源基因注釋到催化活性、代謝進程和應(yīng)激反應(yīng)。上述來源基因還可注釋到35條KEGG代謝通路,其中分別有5、5和4個來源基因注釋到Hippo信號通路、內(nèi)吞作用和吞噬體;進一步分析發(fā)現(xiàn)分別有1、2和2個來源基因注釋到磷酸肌醇代謝、淀粉和蔗糖代謝和半乳糖代謝等物質(zhì)代謝通路,5、4、3、1和1個來源基因注釋到內(nèi)吞作用、吞噬體、溶酶體、泛素介導(dǎo)的蛋白水解和MAPK信號通路等免疫通路。上述結(jié)果表明相應(yīng)的DEcircRNA廣泛參與意蜂工蜂中腸的生長發(fā)育、新陳代謝和免疫防御。DEcircRNA-miRNA調(diào)控網(wǎng)絡(luò)分析結(jié)果顯示,141個DEcircRNA可靶向結(jié)合107個miRNA,其中多數(shù)僅能結(jié)合1—2個miRNA,但novel_circ_011577和novel_circ_010719結(jié)合的靶miRNA數(shù)可達32和28個;此外,mir-136-y、ame-miR-6001-3p及mir-136-y結(jié)合的circRNA數(shù)最多,分別為15、14和14個,表明相應(yīng)的DEcircRNA可作為競爭性內(nèi)源RNA在意蜂中腸發(fā)育過程發(fā)揮作用。進一步構(gòu)建DEcircRNAs-ame-miR-6001-3p-mRNA調(diào)控網(wǎng)絡(luò),分析結(jié)果顯示14個DEcircRNA可共同靶向結(jié)合ame-miR-6001-3p,表明它們可能通過調(diào)控ame-miR-6001-3p對意蜂中腸干細胞的分裂和分化進行間接調(diào)控。隨機選取6個DEcircRNA進行RT-qPCR驗證,結(jié)果顯示5個DEcircRNA的表達量變化趨勢與測序結(jié)果一致,證實了本研究測序結(jié)果的可靠性。【結(jié)論】通過對意蜂工蜂中腸發(fā)育過程中的DEcircRNA深入分析,提供了circRNA在意蜂工蜂中腸發(fā)育過程中的表達譜和差異表達信息,揭示了DEcircRNA在中腸發(fā)育過程中的作用,為中腸發(fā)育相關(guān)的關(guān)鍵circRNA的篩選和功能研究打下了基礎(chǔ)。

        意大利蜜蜂;中腸;環(huán)狀RNA;調(diào)控網(wǎng)絡(luò);發(fā)育

        0 引言

        【研究意義】蜜蜂是自然界最重要的授粉昆蟲,也是社會行為學(xué)模式昆蟲,具有非常重要的經(jīng)濟和生態(tài)價值[1-2]。意大利蜜蜂(,簡稱意蜂)屬于西方蜜蜂(),具有優(yōu)越的采集能力、造脾能力和分泌蜂王漿能力,在世界各地的養(yǎng)蜂生產(chǎn)中廣泛使用[3]。目前,有關(guān)蜜蜂腸道的發(fā)育機理及調(diào)控機制的研究十分滯后。對于環(huán)狀RNA(circular RNA,circRNA)在蜜蜂腸道發(fā)育過程中的作用,相關(guān)信息仍然缺失。利用circRNA-seq技術(shù)對意蜂工蜂中腸進行測序,并對中腸發(fā)育過程中的差異表達circRNA(DEcircRNA)及其調(diào)控網(wǎng)絡(luò)進行深入分析,可揭示DEcircRNA在中腸發(fā)育過程中的作用,為關(guān)鍵circRNA的篩選和功能研究打下基礎(chǔ)?!厩叭搜芯窟M展】CircRNA是新近發(fā)現(xiàn)的一類非編碼RNA(non-coding RNA,ncRNA),通過外顯子或/和內(nèi)含子的反向剪切形成環(huán)化RNA分子[4]。CircRNA大量存在于真核細胞中,在不同物種中具有保守性、豐富性、穩(wěn)定性、組織表達特異性和時序表達特異性等特點[5]。CircRNA已被證明具有多種生物學(xué)調(diào)控功能,包括作為微小RNA(microRNA,miRNA)“海綿”,形成RNA-蛋白質(zhì)復(fù)合物(RNA-binding protein,RBP),以及調(diào)控靶基因的轉(zhuǎn)錄和可變剪接等[6]。最新的研究結(jié)果表明含有核糖體進入位點[7]的circRNA能夠翻譯蛋白[8]。與線性RNA相比,circRNA缺少5′帽子和3′尾巴結(jié)構(gòu),穩(wěn)定性更高且能抵抗核糖核酸外切酶RNase R的消化,因而成為理想的生物標志物[9]。利用最新的高通量測序技術(shù)和生物信息學(xué)分析方法,已在人類[10-12]、動物[13]、植物[14]及微生物[8,15-16]中預(yù)測和鑒定出circRNA。SALZMAN等[12]對人類15種細胞類型中的circRNA進行預(yù)測分析,發(fā)現(xiàn)circRNA具有組織特異性、保守性及潛在的調(diào)控功能;SHEN等[13]對斑馬魚肌肉、卵巢及眼睛等不同組織進行高通量測序,利用3種算法對circRNA進行預(yù)測,共預(yù)測到3 868個circRNA,進而對具有較高可信度的176個circRNA進行實驗驗證,發(fā)現(xiàn)其中84%真實存在;LU等[14]對水稻進行深度測序及生物信息學(xué)分析,共預(yù)測出2 354個circRNA,進一步分析發(fā)現(xiàn)circRNA具有相當數(shù)量的亞型;GUO等[16]對蜜蜂球囊菌()的菌絲及孢子混合樣品進行高通量測序,通過生物信息學(xué)分析發(fā)掘出551個長度介于200—600 nt的circRNA,并發(fā)現(xiàn)它們與miRNA存在復(fù)雜的調(diào)控關(guān)系。較之人類和哺乳動物,昆蟲的circRNA研究還處于初級階段,相關(guān)信息極為有限[17-19]。WESTHOLM等[17]在全基因組水平對果蠅()的circRNA進行分析,發(fā)現(xiàn)其circRNA具有組織表達特異性,并且可作為果蠅衰老的潛在生物標志物;GAN等[18]通過對家蠶()中腸和后腸進行高通量測序,共預(yù)測出來源于1 727個基因的3 155個circRNA,同樣具有組織表達特異性,進一步分析發(fā)現(xiàn)中腸和后腸中的來源基因的功能和代謝通路注釋信息類似;CHEN等[19]對西方蜜蜂蜂王的卵巢組織中的circRNA進行預(yù)測和分析,發(fā)掘出12 211個circRNA,并通過對剛產(chǎn)卵蜂王、處女王和限制產(chǎn)卵蜂王進行比較分析推測DEcircRNA可通過競爭性結(jié)合miRNA在蜂王卵巢組織活化及產(chǎn)卵過程中發(fā)揮作用。較多的研究表明circRNA可作為競爭性內(nèi)源RNA(competing endogenous RNA,ceRNA)與mRNA競爭性結(jié)合miRNA,間接調(diào)控基因表達[20-22]。CHENG等[21]對椎間盤退行性病變的病人髓核細胞和組織通過微距陣芯片分析,發(fā)現(xiàn)circVMA21能夠通過吸附miR-200c抑制細胞凋亡相關(guān)的X蛋白基因,將circVMA21注射到患有椎間盤退行性病變的大鼠模型可使疾病得到緩解;ZHENG等[22]通過對6個正常組織和7個癌變組織進行深度測序,發(fā)現(xiàn)與癌變相關(guān)的CircHIPK3包含結(jié)合9個miRNA的18個潛在結(jié)合位點,可靶向結(jié)合miR-124抑制腫瘤形成?!颈狙芯壳腥朦c】蜜蜂中腸既是消化食物、吸收營養(yǎng)的重要場所[23],也是多種病原微生物寄生的主要部位。筆者所在課題組前期已在mRNA組學(xué)水平探究了意蜂4、5和6日齡幼蟲腸道發(fā)育過程中的基因表達譜和差異表達規(guī)律[24],并在長鏈非編碼RNA(long non-coding RNA,lncRNA)組學(xué)水平探究了意蜂7和10日齡工蜂中腸的差異表達lncRNA及其調(diào)控網(wǎng)絡(luò)[25]。目前,蜜蜂circRNA的信息極為有限,circRNA在蜜蜂中腸發(fā)育中的作用尚不明確?!緮M解決的關(guān)鍵問題】通過生物信息學(xué)方法對意蜂7和10日齡工蜂中腸發(fā)育過程中的差異表達circRNA(DEcircRNA)及其調(diào)控網(wǎng)絡(luò)進行深入分析,提供意蜂工蜂中腸的circRNA表達譜及差異表達信息,并在組學(xué)水平探究DEcircRNA在中腸發(fā)育過程中的作用。

        1 材料與方法

        試驗于2017年在福建農(nóng)林大學(xué)蜂學(xué)學(xué)院蜜蜂保護實驗室完成。

        1.1 生物材料

        意蜂工蜂取自福建農(nóng)林大學(xué)蜂學(xué)學(xué)院教學(xué)蜂場。

        1.2 測序樣品及全轉(zhuǎn)錄組數(shù)據(jù)來源

        筆者所在課題組前期已利用二代測序技術(shù)對意蜂工蜂中腸進行深度測序,獲得了高質(zhì)量的全轉(zhuǎn)錄組數(shù)據(jù)[25]。其中,測序樣品的制備過程簡述如下:從外觀健康且群勢較強的意蜂蜂群中選擇蜂子狀況良好的封蓋子脾,迅速提至實驗室,放入(34±0.5)℃培養(yǎng)箱,將剛出房的工蜂(記為0 d)放入四周打孔的干凈塑料盒(10只/盒),每個塑料盒上方插入一支裝有50%(w/v)無菌糖水的飼喂器。(34±0.5)℃飼養(yǎng)工蜂至10 d。每日檢查工蜂存活情況,及時清理死亡工蜂。進行3次生物學(xué)重復(fù)。待意蜂工蜂7日齡和10日齡時,在超凈臺用干凈鑷子拉取工蜂中腸,放入RNA-Free的EP管,經(jīng)液氮速凍后迅速轉(zhuǎn)移至-80℃超低溫冰箱保存?zhèn)溆?。意?日齡工蜂中腸樣品的3個重復(fù)為Am7-1、Am7-2和Am7-3;意蜂10日齡工蜂中腸樣品的3個重復(fù)為Am10-1、Am10-2和Am10-3。

        上述6個中腸樣品的全轉(zhuǎn)錄組測序由廣州基迪奧生物科技有限公司完成,測序平臺為Illumina HiSeq 4000,測序策略為雙端(paired-end)測序,測序數(shù)據(jù)已上傳NCBI SRA數(shù)據(jù)庫,BioProject號:PRJNA406998。cDNA建庫過程簡述如下:利用RNA抽提試劑盒AxyPrepTMMultisource Total RNA Miniprep Kit(TaKaRa公司,中國)抽提蜜蜂中腸樣品的總RNA,為最大限度地保留所有非編碼RNA(ncRNA),去除核糖體RNA后的mRNA和ncRNA用裂解緩沖液隨機打斷為小片段,作為模板用六堿基隨機引物、緩沖液、dNTPs、RNase H和DNA polymerase I合成cDNA第2鏈;經(jīng)過QiaQuick PCR試劑盒(Qiagen公司,德國)純化并加EB緩沖液洗脫經(jīng)末端修復(fù)、加堿基A,加測序接頭,然后通過尿嘧啶-N-糖基化酶(UNG)降解cDNA第2鏈。

        1.3 測序數(shù)據(jù)質(zhì)控及circRNA預(yù)測

        對于測序得到的原始讀段(raw reads),去除N的比例大于10%的、質(zhì)量值Q≤10的和堿基數(shù)占整條讀段數(shù)的50%以上的讀段,過濾得到的有效讀段(clean reads)用于后續(xù)的數(shù)據(jù)分析。利用TopHat軟件[26]將各中腸樣品的有效讀段與西方蜜蜂參考基因組(Amel_4.5)[27]進行比對,從比對結(jié)果中提取未比對上讀段(unmapped reads),然后截取每一條未比對上讀段的兩端(默認20 nt),得到短序列讀段(anchors reads),繼而再次比對參考基因組,將得到的比對結(jié)果提交給find_circ軟件[11],從而對circRNA進行篩選和鑒定,篩選條件包括:(1)breakpoints=1,即只保留有且只有1個清晰breakpoint的環(huán)狀RNA;(2)anchor overlap≤2,即每條reads的兩個anchors reads比對到基因組上的位置overlap不能超過2 bp;(3)edit≤2,即只允許2 bp錯配;(4)n uniq>2,即uniq reads大于2條;(5)best qual A>35或best qual B>35,即每條reads的其中一個anchors reads比對到基因組上最好的mapping結(jié)果要比其排第二的結(jié)果的分值高35分以上;(6)n uniq>int (samples/2),即支持該circRNA的uniq reads要大于總樣品數(shù)的1/2;(7)circRNA的長度小于100 kb。

        1.4 CircRNA的表達量、差異表達及來源基因分析

        采用RPM(mapped back-splicing junction reads per million mapped reads)法計算circRNA的表達量。先計算Am7和Am10中所有circRNA的lg (RPM+1)值,再利用基迪奧在線工具平臺Omicshare(www. omicshare.com/tools)繪制Am7和Am10的circRNA的箱線圖,從而比較二者的circRNA的表達量,參數(shù)為默認參數(shù)。利用DEGseq軟件[28]對circRNA進行差異表達分析,DEcircRNA的篩選條件包括:(1)差異倍數(shù)(fold change,F(xiàn)C)≥2;(2)<0.05;(3)錯誤發(fā)現(xiàn)率(false discovery rate,F(xiàn)DR)<0.05。來源于內(nèi)含子或由內(nèi)含子和外顯子環(huán)化的circRNA能夠調(diào)節(jié)親本基因的表達[22,29],使用短reads比對工具Bowtie[30]分別將這些circRNA兩端的anchors reads比對西方蜜蜂參考基因組[27],兩端都比對上同一個基因即為該circRNA的來源基因,再將來源基因通過BLAST注釋到GO和KEGG數(shù)據(jù)庫,按照值≤0.5篩選顯著富集GO條目或KEGG代謝通路的DEcircRNA的來源基因注釋。

        1.5 DEcircRNA的靶miRNA預(yù)測及調(diào)控網(wǎng)絡(luò)構(gòu)建

        利用TargetFinder軟件[31]預(yù)測DEcircRNA靶向結(jié)合的miRNA,得到DEcircRNA-miRNA的靶向調(diào)控關(guān)系。按照≤0.05,自由能≤35的標準,從結(jié)果中提取DEcircRNA潛在的靶向結(jié)合miRNA的位點信息。進一步預(yù)測DEcircRNA的靶miRNA靶向結(jié)合的mRNA,根據(jù)DEcircRNA與靶miRNA、miRNA與靶mRNA的結(jié)合關(guān)系,得到DEcircRNA-miRNA-mRNA的靶向調(diào)控關(guān)系,最后通過Cytoscape v.3.2.1軟件[32]對各調(diào)控網(wǎng)絡(luò)進行可視化,參數(shù)采用默認參數(shù)。

        1.6 DEcircRNA的實時熒光定量PCR(RT-qPCR)驗證

        為了驗證circRNA-seq數(shù)據(jù)的可靠性,隨機選取6個DEcircRNA(novel_circ_000663、novel_circ_005547、novel_circ_014049、novel_circ_002507、novel_circ_ 012440及novel_circ_001915)進行RT-qPCR驗證。參照GUO等[16]的方法,利用DNAMAN軟件根據(jù)所選circRNA的堿基序列設(shè)計相應(yīng)的特異性反向引物,委托上海生工生物工程有限公司進行合成,相關(guān)引物信息詳見表1。利用RNA抽提試劑盒(TaKaRa公司,中國)分別提取Am7和Am10樣品的總RNA,分為兩份,其中一份總RNA用3 U/mg RNase R(吉賽生物公司,中國)進行消化以去除線性RNA,37℃處理15 min后以隨機引物進行反轉(zhuǎn)錄,得到circRNA的cDNA;另一份總RNA直接作為模板,以O(shè)ligo (dT)23作為引物進行反轉(zhuǎn)錄,得到所有含polyA的RNA對應(yīng)的cDNA,作為內(nèi)參基因的qPCR模板[33]。反應(yīng)體系(20 μL)包含正、反向引物(10.0 μmol·L-1)各1 μL,cDNA模板DNA 1 μL,SYBR Green Dye 10 μL,DEPC水7 μL。反應(yīng)在QuantStudio熒光定量PCR儀(ThermoFisher公司,美國)上進行,按照SYBR Green Dye試劑盒(Vazyme公司,中國)操作說明書上的方法,每個反應(yīng)進行3次重復(fù)。反應(yīng)條件:95℃預(yù)變性1 min,95℃變性15 s,60℃延伸30 s,共45個循環(huán),最后72℃延伸45 s。利用2?ΔΔCt法對上述DEcircRNAs的相對表達量進行計算。通過Graph Prism軟件進行相關(guān)數(shù)據(jù)分析及繪圖。

        表1 RT-qPCR驗證的引物信息

        2 結(jié)果

        2.1 高通量測序數(shù)據(jù)的質(zhì)控及評估

        前期研究中的意蜂工蜂中腸樣品Am7及Am10測序分別得到134 802 058條raw reads,經(jīng)過濾得到clean reads數(shù)平均為147 051 470條,各樣品的平均Q20和Q30分別為97.34%和93.86%[25]。此外,Am7與Am10的組內(nèi)Pearson相關(guān)系數(shù)都≥0.950(圖1)。上述結(jié)果表明本研究中的測序數(shù)據(jù)質(zhì)量良好,可用于下一步分析。本研究中,各樣品的anchors reads平均為181 583 825條,比對上參考基因組的anchors reads數(shù)平均為19 616 356條(表2)。

        表2 未比對上核糖體數(shù)據(jù)庫的有效讀段比對參考基因組的信息統(tǒng)計

        2.2 意蜂工蜂中腸circRNA的表達譜分析

        對Am7和Am10中所有circRNA進行表達量分析,結(jié)果顯示前者中的circRNA的整體表達水平較高(圖2-A)。Am7中表達量最高的circRNA為novel_ circ_003183、novel_circ_010717、novel_circ_012530、novel_circ_000476及novel_circ_011750(表3);Am10中表達量最高的circRNA為novel_circ_003183、novel_ circ_010717、novel_circ_012530、novel_circ_000896、novel_circ_000476(表4)。進一步分析發(fā)現(xiàn),novel_ circ_003183、novel_circ_010717、novel_circ_012530及novel_circ_000476在Am7和Am10中均高量表達,推測它們在意蜂工蜂中腸的發(fā)育過程中發(fā)揮重要作用。Novel_circ_009675和novel_circ_013879分別在Am7和Am10中高量表達,推測二者分別在意蜂工蜂中腸發(fā)育的不同時期發(fā)揮特殊功能。差異分析結(jié)果顯示,Am7 vs Am10中共有256個DEcircRNA,包含105個上調(diào)和151個下調(diào)circRNA(圖2-B)。

        2.3 意蜂工蜂中腸DEcircRNA來源基因的GO數(shù)據(jù)庫注釋

        GO分類結(jié)果顯示,Am7 vs Am10的DEcircRNA來源基因可注釋到32個GO條目(term),涉及細胞組分、生物學(xué)進程和分子功能3大功能分類(圖3)。細胞組分中,注釋基因數(shù)最多的前5位分別是細胞(21個)、細胞組件(21個)、細胞膜組件(15個)、細胞膜(15個)及細胞器(15個);生物學(xué)進程中,注釋基因數(shù)最多的前5位分別是單組織進程(38個)、細胞進程(38個)、代謝進程(35個)、定位(13個)及生物調(diào)控(10個),此外應(yīng)激反應(yīng)和發(fā)育進程注釋基因數(shù)分別為7和2個;分子功能中,注釋基因數(shù)最多的前5位分別是結(jié)合(50個)、催化活性(35個)、轉(zhuǎn)運器活性(8個)、核苷酸結(jié)合轉(zhuǎn)錄因子活性(4個)及分子傳感器活性(3個)。上述結(jié)果說明DEcircRNA在意蜂工蜂中腸的生長、發(fā)育、代謝、免疫和細胞生命活動中發(fā)揮功能。

        圖1 各意蜂工蜂中腸樣品的不同生物學(xué)重復(fù)間的Pearson相關(guān)性

        A:Am7和Am10中circRNA表達量的箱線圖Box plot of the circRNAs’ expression quantity in Am7 and Am10;B:Am7 vs Am10中的DEcircRNA DEcircRNAs in Am7 vs Am10

        表3 Am7樣品中表達量最高的前10位circRNA

        圖3 DEcircRNA來源基因的GO數(shù)據(jù)庫注釋

        2.4 意蜂工蜂中腸DEcircRNA來源基因的KEGG數(shù)據(jù)庫注釋

        KEGG數(shù)據(jù)庫注釋結(jié)果顯示(圖4),意蜂工蜂中腸DEcircRNA的來源基因可注釋到35條代謝通路(pathway),其中注釋基因數(shù)最多的前10位分別是Hippo信號通路(5個,圖5-A)、內(nèi)吞作用(5個,圖5-B)、吞噬體(4個)、FoxO信號通路(3個)、mRNA監(jiān)測通路(3個)、溶酶體(3個)、RNA轉(zhuǎn)導(dǎo)(3個)、背腹軸形成(2個)、淀粉和蔗糖代謝(2個)及半乳糖代謝(2個),說明DEcircRNA通過參與多條信號通路、免疫通路對意蜂工蜂中腸的生長發(fā)育、免疫防御進行調(diào)節(jié)。內(nèi)吞作用、Hippo信號通路的概貌詳見圖5-A和圖5-B。

        2.5 意蜂工蜂中腸的DEcircRNA-miRNA、DEcircRNA- ame-miR-6001-3p-mRNA調(diào)控網(wǎng)絡(luò)構(gòu)建及分析

        通過TargetFinder和Cytoscape軟件構(gòu)建及可視化意蜂工蜂中腸的DEcircRNA-miRNA調(diào)控網(wǎng)絡(luò),88個上調(diào)circRNA靶向結(jié)合71個miRNA,其中novel_ circ_011577、novel_circ_010719及novel_circ_ 009951結(jié)合的miRNA數(shù)最多,分別為32、28和18個;53個下調(diào)circRNA可靶向結(jié)合36個miRNA,其中novel_ circ_013731、novel_circ_002319及novel_circ_006352結(jié)合的miRNA數(shù)最多,分別為23、6和5個。多數(shù)DEcircRNA(70.21%)僅能結(jié)合1—2個miRNA。此外,mir-136-y、ame-miR-6001-3p及mir-136-y結(jié)合的circRNA數(shù)最多,分別為15、14和14個circRNA(圖6)。影響miRNA與靶基因的結(jié)合,從而對下游的基因表達進行間接調(diào)控。進一步構(gòu)建DEcircRNA-ame- miR-6001-3p-mRNA的調(diào)控網(wǎng)絡(luò)(圖7),分析結(jié)果顯示共有14個DEcircRNA(novel_circ_011733、novel_circ_001055、novel_circ_000661、novel_circ_ 002196、novel_circ_014839、novel_circ_000663、novel_ circ_005547、novel_circ_010719、novel_circ_006612、novel_circ_004676、novel_circ_006035、novel_circ_ 002507、novel_circ_014049及novel_circ_010227)靶向結(jié)合同一個miRNA(ame-miR-6001-3p),說明這些DEcircRNA可通過競爭性結(jié)合ame-miR-6001-3p而抑制其與靶基因的結(jié)合,從而影響靶基因的表達水平。上述結(jié)果說明意蜂工蜂中腸發(fā)育過程中DEcircRNA通過作為ceRNA充當miRNA的海綿,間接調(diào)控基因表達。

        表4 Am10中表達量最高的前10位circRNA

        圓圈大小代表富集在某一通路的基因數(shù)多少,越大代表基因數(shù)越多;圓圈顏色代表某一通路的富集基因的顯著性高低,越紅代表顯著性越高

        紅色方框代表注釋在該通路的DEcircRNA的來源基因Red boxes indicate DEcircRNAs’ source genes annotated in certain pathway

        圖6 意蜂工蜂中腸的DEcircRNA-miRNA調(diào)控網(wǎng)絡(luò)

        圖7 意蜂工蜂中腸的DEcircRNA-ame-miR-6001-3p-mRNA調(diào)控網(wǎng)絡(luò)

        2.6 DEcircRNA的RT-qPCR驗證

        隨機挑取6個DEcircRNA進行RT-qPCR驗證,結(jié)果顯示其中5個DEcircRNA的表達量變化趨勢和轉(zhuǎn)錄組數(shù)據(jù)的結(jié)果一致(圖8),說明本研究中的測序數(shù)據(jù)真實可靠。

        3 討論

        CircRNA在可變剪接、轉(zhuǎn)錄調(diào)控和來源基因的表達調(diào)控等方面具有重要功能[6]。隨著高通量測序技術(shù)和生物信息學(xué)的發(fā)展,人們已在人類[10-12]、牛[34]、豬[35]、雞[36]、老鼠[37]、斑馬魚[13]、草魚[38]、水稻[14]、大麥[39]、擬南芥[40]、線蟲[41]、蜜蜂球囊菌[16]、古細菌[15]和丁型肝炎病毒[8]等動植物及微生物中預(yù)測和鑒定出circRNA。2018年,CHEN等[19]通過高通量測序技術(shù)和生物信息學(xué)方法從西方蜜蜂蜂王的卵巢組織中預(yù)測出12 211個circRNA,這是迄今唯一有關(guān)蜜蜂circRNA的研究報道。前期研究中,筆者通過對意蜂7和10日齡工蜂中腸進行全轉(zhuǎn)錄組測序和全面分析,提供了中腸發(fā)育過程中l(wèi)ncRNA的表達譜及差異表達信息,構(gòu)建并分析了差異表達lncRNA(DElncRNA)的調(diào)控網(wǎng)絡(luò),在組學(xué)水平揭示了DElncRNA在意蜂工蜂中腸發(fā)育過程中的作用[25]。本研究在此基礎(chǔ)上,進一步通過生物信息學(xué)方法對意蜂工蜂中腸的circRNA進行挖掘,從意蜂7和10日齡工蜂中腸中分別預(yù)測出7 341和9 092個circRNA,為蜜蜂的ncRNA信息提供了重要補充。

        本研究發(fā)現(xiàn),novel_circ_003183、novel_circ_010717、novel_circ_012530、novel_circ_000896、novel_circ_ 000476、novel_circ_011750、novel_circ_011749、novel_ circ_006484、novel_circ_012115及novel_circ_009675在Am7和Am10中皆高量表達,說明它們在意蜂中腸發(fā)育過程中具有重要功能,但它們是否在其他日齡的意蜂工蜂中腸中高量表達,有待于進一步研究。Novel_circ_009675和novel_circ_013879分別在Am7和Am10中高量表達,二者在意蜂中腸發(fā)育的不同時期發(fā)揮特殊功能。Am7 vs Am10中包含105個上調(diào)和151個下調(diào)circRNA,推測這些DEcircRNA與意蜂中腸發(fā)育關(guān)系密切。

        RT-qPCR組中,*表示p<0.05,**表示p<0.01 In RT-qPCR group, * indicates p<0.05, ** indicates p<0.01

        來源于外顯子和內(nèi)含子組成的circRNA(exon- intron circRNA,EIciRNA)可通過與RNA聚合酶II、U1小核核糖核蛋白及基因啟動子相互作用對其來源基因的轉(zhuǎn)錄進行調(diào)控[29]。蜜蜂的天然食物主要包括含葡萄糖、果糖和淀粉等成分的蜂蜜及含蛋白質(zhì)的花粉[42]。蜜蜂中腸作為主要的消化和吸收器官,含有大量的消化酶如淀粉酶、蔗糖酶和蛋白酶等[43]。本研究中,DEcircRNA的來源基因中有35個可注釋到催化活性;分別有1、2和2個來源基因可注釋到磷酸肌醇代謝、淀粉和蔗糖代謝和半乳糖代謝等消化吸收相關(guān)通路。上述結(jié)果表明相應(yīng)的DEcircRNA參與意蜂工蜂中腸的食物消化、營養(yǎng)吸收等過程。此外,分別有2和35個來源基因注釋到發(fā)育進程和代謝進程,暗示DEcircRNA在此過程扮演重要角色。Hippo信號通路可通過抑制細胞增殖和促進細胞凋亡對器官大小進行調(diào)節(jié)[44],也能和其他信號通路相互作用共同調(diào)節(jié)腸道組織的穩(wěn)態(tài)[45],還在腸道結(jié)構(gòu)的維持特別是上皮細胞的分化過程起重要作用[46]。Wnt信號通路與哺乳動物胚胎形成、卵巢發(fā)育、平面細胞極化等生理學(xué)進程密切相關(guān)[47],還能夠與Hippo、Notch和TGF-beta信號通路共同影響昆蟲的體節(jié)形成、色素沉淀、附肢發(fā)育以及翅等器官的發(fā)育[48]。本研究發(fā)現(xiàn),分別有5和2個來源基因注釋到Hippo和Wnt信號通路,表明相應(yīng)的DEcircRNA可能通過調(diào)節(jié)Hippo和Wnt信號通路對意蜂工蜂中腸的細胞生長、分化及凋亡以及結(jié)構(gòu)和穩(wěn)態(tài)維持進行調(diào)控。還發(fā)現(xiàn)有7個來源基因注釋到應(yīng)激反應(yīng),表明相應(yīng)的DEcircRNA參與調(diào)控意蜂工蜂中腸對外界環(huán)境的適應(yīng)過程。

        蜜蜂的免疫系統(tǒng)包括群體免疫與個體免疫,后者又分為細胞免疫和體液免疫。其中,蜜蜂的細胞免疫包括內(nèi)吞作用、吞噬作用、黑化作用等,體液免疫主要為抗菌肽的合成與釋放[49]。MAPK信號通路能夠通過產(chǎn)生免疫效應(yīng)因子刺激淋巴細胞活性,對外界入侵的病原微生物進行免疫防御[50]。本研究中,對于意蜂工蜂中腸發(fā)育過程中DEcircRNA的來源基因,分別有5、4、3和1個注釋到內(nèi)吞作用、吞噬體、溶酶體和泛素介導(dǎo)的蛋白水解等細胞免疫通路,僅有1個注釋在MAPK信號通路。上述結(jié)果表明相應(yīng)的DEcircRNA參與意蜂工蜂中腸的細胞免疫、體液免疫的調(diào)控過程,并且可能在細胞免疫調(diào)控方面發(fā)揮更重要的作用。

        2011年,Salmena等[51]提出了“競爭性內(nèi)源RNA”假說,即任何包含miRNA反應(yīng)元件(miRNA response element)的RNA,例如mRNA、假基因、lncRNA和circRNA,可以競爭性地結(jié)合miRNA。此后,越來越多的研究結(jié)果都證實了ceRNA假 說[20-22,52-54]。Deng等[52]通過對患急性心肌梗塞病人和正常人的DEcircRNA進行分析,發(fā)現(xiàn)circRNA_081881能夠靶向結(jié)合miR-548,使急性心肌梗塞相關(guān)的表達量上調(diào);Xu等[53]分別比較分析了患惡性腫瘤的組織和正常組織的DEcircRNA,發(fā)現(xiàn)hsa_circ_000984通過靶向結(jié)合miR-106b,有效上調(diào)細胞生長調(diào)節(jié)相關(guān)基因的表達水平。本研究中,調(diào)控網(wǎng)絡(luò)分析結(jié)果顯示141個DEcircRNA可靶向結(jié)合107個miRNA,其中大部分DEcircRNA(70.21%)僅能結(jié)合1—2個miRNA,少數(shù)DEcircRNA可結(jié)合多個miRNA,例如novel_circ_011577和novel_circ_010719結(jié)合的miRNA數(shù)可達32和28個,表明二者作為ceRNA的重要性。還發(fā)現(xiàn)多個DEcircRNA可共同靶向結(jié)合同一個miRNA,例如分別有15和14個DEcircRNA共同結(jié)合mir-136-y和ame-miR-6001-3p。上述結(jié)果表明DEcircRNA可作為ceRNA吸附結(jié)合miRNA,減少其對mRNA的抑制和降解,從而影響意蜂工蜂腸道的生長發(fā)育。目前,circRNA的功能研究尚處起步階段,絕大多數(shù)circRNA的功能還不明確。Liu等[54]通過對骨關(guān)節(jié)炎相關(guān)circRNA的深入研究,發(fā)現(xiàn)CircRNA-CER可通過吸附mir-136對的表達進行調(diào)控,從而參與軟骨細胞外基質(zhì)(EMC)的降解。本研究中,novel_circ_000976、novel_circ_005547和novel_circ_006344等23個DEcircRNA靶向結(jié)合的mir-136-y和mir-136-x與mir-136具有高度同源性,推測相應(yīng)的DEcircRNA可能通過對mir-136-y、mir-136-x表達水平的調(diào)節(jié),參與意蜂工蜂中腸細胞外基質(zhì)的降解。蛻皮激素主要調(diào)控昆蟲幼蟲老舊組織的程序化細胞死亡與成蟲干細胞的分裂分化[55],Mello等[56]通過敲除變態(tài)發(fā)育過程中的蜜蜂個體蛻皮激素受體編碼基因,發(fā)現(xiàn)ame-miR-6001-3p在敲除個體中上調(diào)表達,表明ame-miR-6001-3p能夠抑制蛻皮激素的分泌,從而影響中腸干細胞的分裂和分化。本研究中,DEcircRNA-ame-miR-6001-3p-mRNA調(diào)控網(wǎng)絡(luò)分析結(jié)果顯示,共有novel_circ_000661、novel_circ_000663和novel_circ_001055等14個DEcircRNA能夠共同靶向結(jié)合ame-miR-6001-3p,推測上述DEcircRNA可通過競爭性結(jié)合ame-miR-6001-3p調(diào)控蛻皮激素受體編碼基因的表達,從而影響中腸干細胞的分裂及分化。進一步通過設(shè)計跨反向剪切位點的引物對隨機挑選DEcircRNA進行RT-qPCR驗證,結(jié)果顯示83.33%(5/6)的DEcircRNA相對表達量與測序結(jié)果一致,證實了本研究中circRNA差異表達信息的可靠性。

        本研究僅對意蜂7和10日齡工蜂中腸的circRNA進行相關(guān)分析,預(yù)測出的circRNA在其他日齡工蜂中腸、同一日齡的不同組織是否表達以及表達水平的高低仍需要進一步研究。此外,若要全面解析意蜂工蜂中腸的發(fā)育機理及調(diào)控機制,則需對更多日齡的工蜂中腸進行測序,進而在全局水平進行更加深入的分析,此為下一步的工作重點。

        4 結(jié)論

        通過對意蜂7和10日齡工蜂中腸的深度測序和生物信息學(xué)分析,提供了中腸發(fā)育過程的circRNA表達譜及差異表達信息。DEcircRNA可能通過調(diào)控來源基因的表達水平和作為ceRNA在意蜂工蜂中腸發(fā)育過程中發(fā)揮重要功能。靶向結(jié)合ame-miR-6001-3p的14個DEcircRNA可能參與意蜂中腸干細胞的分裂及分化。

        [1] PARK D, JUNG J W, CHOI B S, JAYAKODI M, LEE J, LIM J, Yu Y, Choi Y S, Lee M L, Park Y, Choi I Y, Yang T J, Edwards O R, Nah G. Uncovering the novel characteristics of Asian honey bee,, by whole genome sequencing., 2015, 16: 1.

        [2] National Research Council.. the National Academies Press, 2006.

        [3] 周冰峰. 蜜蜂飼養(yǎng)管理學(xué). 廈門: 廈門大學(xué)出版社, 2002.

        ZHOU B F.. Xiamen: Xiamen University Publishing Company, 2002. (in Chinese)

        [4] MENG S J, ZHOU H C, FENG Z Y, XU Z H, TANG Y, LI P Y, WU M H. CircRNA: functions and properties of a novel potential biomarker for cancer., 2017, 16: 94.

        [5] HE J, XIE Q C, XU H L, LI J T, LI Y S. Circular RNAs and cancer., 2017, 396: 138-144.

        [6] QU S B, YANG X S, LI X L, WANG J L, GAO Y, SHANG R Z, SUN W, DOU K F, LI H M. Circular RNA: a new star of noncoding RNAs., 2015, 365(2): 141-148.

        [7] ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, IVANOV A, BARTOK O, HANAN M, EVANTAL N, MEMCZAK S, RAJEWSKY N, KADENER S. CircRNA biogenesis competes with pre-mRNA splicing., 2014, 56(1): 55-66.

        [8] KOS A, DIJKEMA R, ARNBERG A C, VAN DER MEIDE P H, SCHELLEKENS H. The hepatitis delta (delta) virus possesses a circular RNA., 1986,323(6088): 558-560.

        [9] PERKEL J M. Assume nothing: the tale of circular RNA., 2013, 55(2): 55-57.

        [10] JECK W R, SORRENTINO J A, WANG K, SLEVIN M K, BURD C E, LIU J, MARZLUFF W F, SHARPLESS N E. Circular RNAs are abundant, conserved, and associated with ALU repeats., 2013, 19(2): 141-157.

        [11] MEMCZAK S, JENS M, ELEFSINIOTI A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak S D, Gregersen L H, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency., 2014, 495(7441): 333-338.

        [12] SALZMAN J, CHEN R E, OLSEN M N, WANG P L, BROWN P O. Cell-type specific features of circular RNA expression., 2013, 9(9): e1003777.

        [13] SHEN Y D, GUO X W, WANG W M. Identification and characterization of circular RNAs in zebrafish., 2017, 591(1): 213-220.

        [14] LU T T, CUI L L, ZHOU Y, ZHU C R, FAN D L, GONG H, ZHAO Q, ZHOU C C, ZHAO Y, LU D F, LUO J H, WANG Y C, TIAN Q L, FENG Q, HUANG T, HAN B. Transcriptome-wide investigation of circular RNAs in rice., 2015, 21(12): 2076-2087.

        [15] DANAN M, SCHWARTZ S, EDELHEIT S, SOREK R. Transcriptome- wide discovery of circular RNAs in archaea., 2012, 40(7): 3131-3142.

        [16] GUO R, CHEN D F, CHEN H Z, FU Z M, XIONG C L, HOU C S, ZHENG Y Z, GUO Y L, WANG H P, DU Y, DIAO Q Y. Systematic investigation of circular RNAs in, a fungal pathogen of honeybee larvae., 2018, 678: DOI: 10.1016/j.gene. 2018.07.076.

        [17] WESTHOLM J O, MIURA P, OLSON S, SHENKER S, JOSEPH B, SANFILIPPO P, CELNIKER S E, GRAVELEY B R, LAI E C. Genome-wide analysis ofcircular RNAs reveals their structural and sequence properties and age-dependent neural accumulation., 2014, 9(5): 1966-1980.

        [18] GAN H, FENG T, WU Y,Liu C, Xia Q, Cheng T. Identification of circular RNA in thesilk gland., 2017, 89: 97-106.

        [19] CHEN X, SHI W, CHEN C. Differential circular RNAs expression in ovary during oviposition in honeybees., 2018: doi. org/10.1016/j.ygeno.2018.03.015.

        [20] DU W W, YANG W, LIU E, YANG Z, DHALIWAL P, YANG B B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2., 2016, 44(6): 2846-2858.

        [21] CHENG X, ZHANG L, ZHANG K, ZHANG G, HU Y, SUN X, ZHAO C, LI H, LI Y M, ZHAO J. Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein., 2018, 77(5): 770-779.

        [22] ZHENG Q P, BAO C Y, GUO W J, LI S Y, CHEN J, CHEN B, LUO Y T, LYU D B, LI Y, SHI G H, LIANG L H, GU J R, HE X H, HUANG S L. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs., 2016, 7: 11215.

        [23] 李兆英. 意大利蜜蜂胚后發(fā)育過程中中腸上皮組織細胞的更替. 昆蟲學(xué)報, 2011, 54(10): 1127-1132.

        LI Z Y. Replacement of midgut epithelium in(Hymenoptera: Apidae) during postembryonic development., 2011, 54(10): 1127-1132. (in Chinese)

        [24] 郭睿, 解彥玲, 熊翠玲, 尹偉軒, 鄭燕珍, 付中明, 陳大福. 意大利蜜蜂4、5和6日齡幼蟲腸道發(fā)育過程中差異表達基因的趨勢分析. 上海交通大學(xué)學(xué)報, 2018, 36(4): 14-21, 29.

        GUO R, XIE Y L, XIONG C L, YI W X, ZHENG Y Z, FU Z M, CHEN D F. Trend analysis for differentially expressed genes in developmental process of 4-, 5- and 6-day-old larval guts of., 2018, 36(4): 14-21, 29. (in Chinese)

        [25] 郭睿, 耿四海, 熊翠玲, 鄭燕珍, 付中民, 王海朋, 杜宇, 童新宇, 趙紅霞, 陳大福. 意大利蜜蜂工蜂中腸發(fā)育過程中長鏈非編碼RNA的差異表達分析. 中國農(nóng)業(yè)科學(xué), 2018, 51(18): 3600-3613.

        GUO R, GENG S h, XIONG C l, ZHENG Y z, FU Z m, WANG H p, DU Y, TONG X y, ZHAO H x, CHEN D f. Differential expression analysis of long non-coding RNAs during the developmental process ofworker’s midgut., 2018, 51(18): 3600-3613. (in Chinese)

        [26] KIM D, PERTEA G, TRAPNELL C, PIMENTEL H, KELLEY R, SALZBERG S L. Tophat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions., 2013, 14(4): R36.

        [27] The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee., 2006, 443(7114): 931-949.

        [28] WANG L K, FENG Z X, WANG X W, WANG X, ZHANG X G. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data., 2010, 26(1): 136-138.

        [29] LIZ Y, HUANGC, BAO C, CHEN L, LIN M, WANG X L, ZHONG G L, YU B, HU W C, DAI L M, ZHU P F, CHANG Z X, WU Q F, ZHAO Y, JIA Y, XU P, LIU H J, SHAN G. Exon-intron circular RNAs regulate transcription in the nucleus., 2015, 22(3): 256-264.

        [30] LANGMEAD B, TRAPNELL C, POP M, SALZBERG S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome., 2009, 10(3): R25.

        [31] ALLEN E, XIE Z, GUSTAFSON A M, CARRINGTON J C. MicroRNA-directed phasing during-acting siRNA biogenesis in plants., 2005, 121(2): 207-221.

        [32] SMOOT M E, ONO K, RUSCHEINSKI J, WANG P L, IDEKER T. Cytoscape 2.8: new features for data integration and network visualization., 2011, 27(3): 431-432.

        [33] HU X L, ZHU M, ZHANG X, LIU B, LIANG Z, HUANG L X, XU J, YU L, LI K, ZAR M S, XUE R Y, CAO G L, GONG C L. Identification and characterization of circular RNAs in the silkworm midgut followingcytoplasmic polyhedrosis virus infection., 2018, 15(2): 292-301.

        [34] ZHANG C L, WU H, WANG Y H, ZHU S Q, LIU J Q, FANG X T, CHEN H.Circular RNA of cattle casein genes are highly expressed in bovine mammary gland., 2016, 99(6): 4750-4760.

        [35] HUANG M J, SHEN Y F, MAO H G, CHEN L X, CHEN J C, GUO X L, XU N G. Circular RNA expression profiles in the porcine liver of two distinct phenotype pig breeds., 2018, 31(6): 812-819.

        [36] ZHANG X H, YAN Y M, LEI X Y, LI A J, ZHANG H M, DAI Z K, LI X J, CHEN W G, LIN W C, CHEN F, MA J Y, XIE Q M. Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens., 2017, 8(21): 34961-34970.

        [37] FAN X Y, ZHANG X N, WU X L, GUO H S, HU Y Q, TANG F C, HUANG Y Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos., 2015, 16: 148.

        [38] HE L B, ZHANG A D, XIONG L, LI Y M, HUANG R, LIAO L J, ZHU Z Y, WANG Y P. Deep circular RNA sequencing provides insights into the mechanism underlying grass carp reovirus infection., 2017, 18(9): 1977.

        [39] DARBANI B, NOEPARVAR S, BORG S. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley., 2016, 7: 776.

        [40] SUN X Y, WANG L, DING J C, WANG Y R, WANG J S, ZHANG X Y, CHE Y L, LIU Z W, ZHANG X R, YE J Z, WANG J, SABLOK G, DENG Z P, ZHAO H W. Integrative analysis oftranscriptomics reveals intuitive splicing mechanism for circular RNA., 2016, 590(20): 3510-3516.

        [41] 劉駿武, 陳玲玲. 線蟲環(huán)狀RNA分析. 計算生物學(xué), 2015, 5(2): 17-28.

        LIU J W, CHEN L L. Analysis of circular RNA in., 2015, 5(2): 17-28. (in Chinese)

        [42] 劉春蕾, 胥保華, 劉振國, 王穎, 王紅芳. 不同越冬飼料對蜜蜂中腸消化酶活性、組織發(fā)育狀態(tài)以及抗氧化酶基因表達的影響. 動物營養(yǎng)學(xué)報, 2017, 29(4): 1183-1190.

        LIU C L, XU B H, LIU Z G, WANG Y, WANG H F. Effects of different overwintering feeds on midgut digestive enzyme activities, tissue development status and antioxidant enzyme gene expression of honeybees., 2017, 29(4): 1183-1190. (in Chinese)

        [43] 劉彩珍. 中華蜜蜂(Fabricius)中腸消化酶活性的探討[D]. 福州: 福建農(nóng)林大學(xué), 2001.

        LIU C Z. Inquisition of the digestive enzyme activity in the midgut of the honeybee (Fab.)[D]. Fuzhou: Fujian Agriculture and Forestry University, 2001. (in Chinese)

        [44] HALDER G, JOHNSON R L. Hippo signaling: growth control and beyond., 2011, 138(1): 9-22.

        [45] Camargo F D, Gokhale S, JOHNNIDIS J B, FU D, BELL G W, Jaenisch R, Brummelkamp T R.increases organ size and expands undifferentiated progenitor cells., 2007, 17(23): 2054-2060.

        [46] FEVR T, ROBINE S, LOUVARD D, HUELSKEN J. Wnt/beta- catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells., 2007, 27(21): 7551-7559.

        [47] 孫曉陽, 王雁玲. Wnt 信號通路與哺乳動物生殖. 生物化學(xué)與生物物理進展, 2003, 30(2): 180-184.

        SUN X Y, WANG Y L. Wnt signaling pathways in mammalian reproduction., 2003, 30(2): 180-184. (in Chinese)

        [48] BARRY E R, CAMARGO F D. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development., 2013, 25(2): 247-253.

        [49] ARONSTEIN K A, MURRAY K D. Chalkbrood disease in honey bees.2010, 103(Suppl. 1): S20-S29.

        [50] SARAAV I, SINGH S, SHARMA S. Outcome of mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion?, 2014, 92(9): 741-746.

        [51] SALMENA L, POLISENO L, TAY Y, KATS L, PANDOLFI P P. Ahypothesis: the rosetta stone of a hidden RNA language?, 2011, 146(3): 353-358.

        [52] DENG Y Y, ZHANG W P, SHE J Q, ZHANG L S, CHEN T, ZHOU J, YUAN Z Y. Circular RNA related tofunction as ceRNA of microRNA in human acute myocardial infarction., 2016, 68(16): C51-C52.

        [53] XU X W, ZHENG B A, HU Z M, Qian Z Y, Huang C J, Liu X Q, Wu W D. Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b., 2017, 8(53): 91674-91683.

        [54] LIU Q, ZHANG X, HU X Q, Dai L H, Fu X, Zhang J Y, Ao Y F. Circular RNA related to the chondrocyte ECM regulatesexpression by functioning as a mir-136 ‘Sponge’ in human cartilage degradation., 2016, 6: 22572.

        [55] WU Y, PARTHASARATHY R, BAI H, PALLI S R. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action., 2006, 123(7): 530-547.

        [56] MELLO T R, ALEIXO A C, PINHEIRO D G, NUNES F M, BITONDI M M, HARTFELDER K, BARCHUK A R, SIMOES Z L. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees ()., 2014, 5: 445.

        Analysis of differentially expressed circular RNAs and their regulation networks during the developmental process ofworker’s midgut

        GUO Rui, CHEN HuaZhi, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, XU GuoJun, DU Yu, WANG HaiPeng, GENG SiHai, ZHOU DingDing, LIU SiYa, CHEN DaFu

        (College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002)

        【Objective】Circular RNA (circRNA) plays a primary role in alternative splicing, transcription regulation and expression regulation of parental gene. The objective of this study is to investigate the profile expression of circRNAs and differentially expressed circRNAs (DEcircRNAs) during the developmental process of the midguts ofworkers, and to explore the role of DEcircRNAs in the development of midgut at the transcriptional level. 【Method】 On basis of the whole transcriptome data from 7- and 10-day-old worker’s midguts of(Am7 and Am10), find_circ software was used to predict circRNAs based on the filtered sequencing data.The circRNA expression level was normalized by RPM algorithm. Differential expression analysis for circRNAs was conducted via DEGseq software following standards fold change≥2.0,<0.05 and false discovery rate (FDR)<0.05. Source genes of DEcircRNAs were annotated to GO and KEGG databases to gain function and pathway annotations by using BLAST. DEcircRNAs-miRNAs and DEcircRNAs-miRNAs-mRNAs networks were predicted with TargetFinder software and visualized using Cytoscape v.3.2.1 software. RT-qPCR was conducted to verify the reliability of sequencing data.【Result】 On average, 19 616 356 anchors reads were obtained from eachworker’s midgut sample.Pearson correlations between different biological repeats within Am7 and Am10 groups were ≥0.950. In total, 256 DEcircRNAs including 105 up-regulated circRNAs and 151 down-regulated circRNAs were predicted. Novel_circ_009675 and novel_circ_013879 were highly expressed in Am7 and Am10, respectively. Source genes of DEcircRNAs could be annotated to 32 GO terms including binding, single-organism process and cellular process, among them 35, 35 and 7 source genes were involved in catalytic activity, metabolic process and stress response. Additionally, these source genes could be annotated to 35 KEGG pathways, in which 5, 5 and 4 source genes were associated with Hippo signaling pathway, endocytosis and phagosome, respectively; further investigation showed that 1, 2 and 2 source genes could be annotated to material metabolisms such as phosphoinositol metabolism, starch and sucrose metabolism and galactose metabolism; 5, 4, 3, 1 and 1 source genes could be annotated to immune signaling pathways including endocytosis, phagosome, lysosome, ubiquitin-mediated proteolysis and MAPK signaling pathway, respectively.These results suggested that the corresponding DEcircRNA was involved in the development, metabolism and immune defense of the midgut of.DEcircRNA-miRNA regulation network analysis showed that 141 DEcircRNAs could link to 107 miRNAs, most of these DEcircRNAs could only bind to 1-2 miRNAs, but novel_circ_011577 and novel_circ_010719 could respectively bind to 32 and 28 miRNAs.In addition, the number of DEcircRNAs combined with mir-136-y, ame-miR-6001-3p and mir-136-y was the highest (15, 14 and 14, respectively), which indicated that the corresponding DEcircRNA could play roles during the developmental process ofworker’s midgut as competing endogenous RNAs. Furthermore, DEcircRNAs-ame-miR-6001-3p-mRNA network was constructed and analyzed, and the result indicated that 14 DEcircRNAs could jointly link to ame-miR-6001-3p, implying they were likely to indirectly regulate division and differentiation of stem cells inworker’s midgut via regulation of ame-miR-6001-3pSix DEcircRNAs were randomly selected for RT-qPCR assay, the result showed the alteration trend of expression levels of 5 DEcircRNAs was consistent with that of the sequencing data, which proved the reliability of trancriptome data.【Conclusion】Through the deep investigation of DEcircRNAs during the developmental process ofworker’s midgut, the expression profile and differential expression information of circRNAs in the development of midgut of worker bee were provided, and the role of DEcircRNAs in the development of midgut was revealed. It provides a basis for the screening and functional study of key circRNAs associated with the development of the midgut.

        ; midgut; circRNAs; regulation network; development

        10.3864/j.issn.0578-1752.2018.23.015

        2018-07-16;

        2018-09-10

        國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金(CARS-44-KXJ7)、福建省科技計劃項目(2018J05042)、福建省教育廳中青年教師教育科研項目(JAT170158)、福建農(nóng)林大學(xué)科技創(chuàng)新專項基金(CXZX2017342,CXZX2017343)、福建省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃(3165602032,3155006018)

        郭睿,E-mail:ruiguo@fafu.edu.cn。陳華枝,E-mail:18965015689@163.com。郭睿和陳華枝為同等貢獻作者。

        陳大福,E-mail:dfchen826@fafu.edu.cn

        (責任編輯 岳梅)

        猜你喜歡
        意蜂中腸工蜂
        工蜂甲(上)
        工蜂甲(下)
        小保姆成長記
        如何處理意蜂盜取中蜂群
        蜜蜂雜志(2021年6期)2021-12-05 09:57:44
        勤勞的工蜂
        詳解意蜂盜劫中蜂之過程
        蜜蜂雜志(2020年6期)2020-12-02 08:07:09
        意蜂蜂蜜和中蜂蜂蜜的區(qū)別
        蜜蜂雜志(2019年3期)2019-12-30 10:25:52
        黃星天牛中腸中內(nèi)切葡聚糖酶的鑒定與酶活性測定
        杠柳新苷P和E對粘蟲和小地老虎中腸3種解毒酶的影響
        大黑鰓金龜消化與解毒相關(guān)基因的組織表達研究
        99精品国产一区二区| 国产精品美女自在线观看| 91精品国产自拍视频| 国产麻豆精品精东影业av网站| 久久av高潮av无码av喷吹| 2021av在线| 国产精品天堂在线观看| 一区二区三区美女免费视频| 天堂资源中文最新版在线一区| 久久成年片色大黄全免费网站| 看全色黄大色大片免费久久久| 久久亚洲中文字幕精品熟| 亚欧中文字幕久久精品无码| 精品国产三级a在线观看| 亚洲青涩在线不卡av| 精品国产一区二区三区av麻| 国产精品嫩草99av在线| 国产成人午夜精品免费视频| 亚洲区1区3区4区中文字幕码| 国产91精品高潮白浆喷水| 小鲜肉自慰网站| 无码av免费永久免费永久专区| 亚洲一区二区三区毛片| 18禁免费无码无遮挡不卡网站| 欧美最猛黑人xxxx黑人表情| 无码一区二区三区网站| 99精品人妻少妇一区二区三区| 夜夜爽妓女8888888视频| 一本一本久久a久久精品综合| 国产伪娘人妖在线观看| 就爱射视频在线视频在线| 高潮又爽又无遮挡又免费| 女女同性黄网在线观看| 一区二区三区日本视频| 国产69精品久久久久app下载| 精品国精品国产自在久国产应用| 国产精品狼人久久久影院| 亚洲一区二区在线观看免费视频 | 亚洲va无码va在线va天堂| 99久久免费国产精品2017| 日韩av在线免费观看不卡|