張旭,凌輝,劉峰,黃寧,王玲,毛花英,李聰娜,湯翰臣,蘇煒華,蘇亞春,闕友雄
?
一個甘蔗Ⅱd類WRKY轉(zhuǎn)錄因子基因的克隆和表達(dá)分析
張旭,凌輝,劉峰,黃寧,王玲,毛花英,李聰娜,湯翰臣,蘇煒華,蘇亞春,闕友雄
(福建農(nóng)林大學(xué)農(nóng)業(yè)部福建甘蔗生物學(xué)與遺傳育種重點實驗室/福建農(nóng)林大學(xué)教育部作物遺傳育種與綜合利用重點實驗室,福州 350002)
【目的】WRKY是植物特有的一類轉(zhuǎn)錄因子,在生理調(diào)控和逆境響應(yīng)過程中有著重要作用。通過分析WRKY轉(zhuǎn)錄因子基因在甘蔗生長發(fā)育及抗逆境過程中的作用,為甘蔗抗逆分子育種提供優(yōu)良的基因資源?!痉椒ā繌母收徂D(zhuǎn)錄組數(shù)據(jù)庫中挖掘到一條WRKY基因Unigene序列,并通過RT-PCR擴(kuò)增得到cDNA全長序列,利用ORF finder、Smart、ExPaSy、Prabi、NetPhos、Cell-PLOC 2.0和DNAMAN6.0軟件對該基因序列及其編碼蛋白序列進(jìn)行生物信息學(xué)分析,并使用MEGA6.0軟件構(gòu)建系統(tǒng)進(jìn)化樹;構(gòu)建pCAMBIA1300--融合表達(dá)載體,通過農(nóng)桿菌轉(zhuǎn)化本氏煙(),確定WRKY蛋白在煙草葉片中的亞細(xì)胞定位;利用酵母雜交試驗驗證WRKY是否具有轉(zhuǎn)錄自激活活性;采用實時熒光定量PCR(qRT-PCR)方法分析在甘蔗品種ROC22中的組織特異性(根、蔗芽、葉、蔗髓和皮)及其在MeJA(100 μmol·L-1)、SA(5 mmol·L-1)、PEG(25%)、NaCl(250 mmol·L-1)、CuCl2(500 mmol·L-1)和CdCl2(500 mmol·L-1)脅迫條件下表達(dá)量的變化?!窘Y(jié)果】從甘蔗品種ROC22中克隆獲得一個WRKY轉(zhuǎn)錄因子基因,命名為(GenBank登錄號為MH393927)。該基因序列全長1 289 bp,包含1個1 059 bp的ORF,編碼352個氨基酸,并具有45個磷酸化位點;理論等電點為9.73,不穩(wěn)定指數(shù)為50.23,親水性為-0.579,推測其為堿性不穩(wěn)定親水性蛋白。ScWRKY6蛋白具有1個WRKY結(jié)構(gòu)域和1個鋅指結(jié)構(gòu)域(CX5CX23HXH),該蛋白氨基酸序列與高粱()WRKY(XP_002464211.1)的同源性最高,根據(jù)系統(tǒng)進(jìn)化樹分析可以推測其屬于WRKY家族Ⅱd亞類。亞細(xì)胞定位結(jié)果顯示,ScWRKY6::GFP融合蛋白定位在細(xì)胞核上。酵母轉(zhuǎn)錄激活驗證試驗顯示,ScWRKY6蛋白不具有轉(zhuǎn)錄自激活活性。qRT-PCR分析表明,在甘蔗中為組成型表達(dá),其表達(dá)量由大到小依次為蔗芽、葉、根、皮和蔗髓,其中蔗芽、葉和根的表達(dá)量分別為蔗髓的2.05、1.55和1.37倍。在NaCl、PEG、MeJA、重金屬Cu2+和Cd2+脅迫誘導(dǎo)下表達(dá)量均上調(diào),其在NaCl處理12 h時表達(dá)量最高,為對照的4.18倍;在PEG處理3 h時表達(dá)量最高,為對照組的6.88倍;在CuCl2和CdCl2誘導(dǎo)24 h時表達(dá)量最高,分別為對照組的3.63倍和4.86倍。【結(jié)論】ScWRKY6蛋白定位在細(xì)胞核上,不具有轉(zhuǎn)錄自激活活性;該基因在甘蔗不同組織部位中均有表達(dá),且受NaCl、PEG、CuCl2和CdCl2等脅迫的誘導(dǎo),推測可能在甘蔗干旱應(yīng)答、耐鹽及金屬離子脅迫響應(yīng)中發(fā)揮作用。
甘蔗;WRKY轉(zhuǎn)錄因子;外源脅迫;實時熒光定量PCR
【研究意義】甘蔗(spp.)是生物產(chǎn)量巨大的C4型糖料作物,中國92%的食糖來源于甘蔗[1]。中國甘蔗主要種植于旱坡地上,其中主產(chǎn)區(qū)廣西有90%以上的甘蔗種植在丘陵旱地[2]。甘蔗屬于中度耐鹽作物,鹽脅迫能夠降低甘蔗的產(chǎn)量和品質(zhì),而在干旱和半干旱地區(qū)灌溉條件下生長的甘蔗經(jīng)常受到鹽分脅迫[3],因此,提高甘蔗對干旱及鹽脅迫的耐受性,選育高產(chǎn)、優(yōu)質(zhì)、高抗的甘蔗品種迫在眉睫。甘蔗為異源多倍體作物,遺傳基礎(chǔ)復(fù)雜,給直接利用表型性狀進(jìn)行傳統(tǒng)抗性遺傳研究和品種選育造成諸多困難[4];然而,甘蔗是無性繁殖作物,在組織培養(yǎng)過程中品種的特性穩(wěn)定,因此,利用基因工程手段培育甘蔗抗性品種應(yīng)用前景巨大,其中優(yōu)良抗逆基因資源的發(fā)掘是首要基礎(chǔ)。WRKY是植物中最大的轉(zhuǎn)錄因子家族之一,其在植物生長發(fā)育、生物及非生物逆境響應(yīng)等過程起重要作用[5]。因此,對甘蔗WRKY轉(zhuǎn)錄因子的克隆和表達(dá)分析研究具有十分重要意義?!厩叭搜芯窟M(jìn)展】WRKY轉(zhuǎn)錄因子蛋白均含有1個或2個WRKY結(jié)構(gòu)域,其大約由60個氨基酸殘基構(gòu)成,該結(jié)構(gòu)域因N端具有7個保守的“WRKYGQK”基序而得名,C端則含有1個鋅指結(jié)構(gòu)(CX4-7CX22–23HXH/C)[6]。根據(jù)其結(jié)構(gòu)域特征,WRKY轉(zhuǎn)錄因子可分為3大類:第Ⅰ類含有2個WRKY結(jié)構(gòu)域,鋅指結(jié)構(gòu)為C2H2(CX4-5-C-X22- 23-H-X1-H);第Ⅱ類含有1個WRKY結(jié)構(gòu)域,鋅指結(jié)構(gòu)為C2H2(CX4-5-C-X22-23-H-X1-H),同時該類又可分成Ⅱa、Ⅱb、Ⅱc、Ⅱd和Ⅱe共5個亞類;第Ⅲ類含有1個WRKY結(jié)構(gòu)域,鋅指結(jié)構(gòu)為C2-HC(C-X7-C-X23-HX)[6]。研究表明,WRKY是通過其WRKY結(jié)構(gòu)域與目標(biāo)基因W-BOX順式作用元件TTGACC/T結(jié)合[7],從而調(diào)控下游靶基因的表達(dá),最終在植物響應(yīng)逆境脅迫過程中發(fā)揮作用[8]。廣泛參與植物生物及非生物脅迫防御反應(yīng)、生長發(fā)育、次生代謝物調(diào)控等重要生理過程[9]。如水稻的過表達(dá)能調(diào)節(jié)相關(guān)防御基因的表達(dá),從而增強(qiáng)水稻()對白葉枯病菌(pv.)的抗性和對干旱脅迫的耐受性[10];YANG等[11]研究表明核桃()和通過脫落酸(abscisic acid,ABA)信號傳導(dǎo)途徑提高植物對鹽、滲透和熱脅迫等的耐受性;擬南芥()能夠延緩植株葉片衰老[12],同時還能通過赤霉素(gibberellin,GA)介導(dǎo)的信號傳導(dǎo)途徑正向調(diào)節(jié)擬南芥開花進(jìn)程[13]。青蒿()參與青蒿素的合成途徑[14]。自1994年Ishiguro等[15]在甘薯中發(fā)現(xiàn)了第一個WRKY轉(zhuǎn)錄因子——后,越來越多的WRKY轉(zhuǎn)錄因子在植物中被發(fā)現(xiàn)。目前,在水稻中有109個WRKY轉(zhuǎn)錄因子[16],擬南芥中有72個[17],玉米()中有136個[18],白楊()中有104個[19],谷子()中有105個[20]?!颈狙芯壳腥朦c】由于甘蔗遺傳背景復(fù)雜、基因組龐大,對于WRKY轉(zhuǎn)錄因子的研究較晚,報道較少,Lambais等[21]對甘蔗26個WRKY類蛋白序列進(jìn)行表達(dá)譜分析,表明其參與各種防御調(diào)控途徑;Liu等[22]克隆了屬于Ⅱc亞類的甘蔗,其受甘蔗黑穗病菌()、水楊酸(salicylic acid,SA)、氯化鈉(sodium chloride,NaCl)和聚乙二醇(polyethylene glycol,PEG)強(qiáng)烈誘導(dǎo)。然而,對于甘蔗Ⅱd亞類WRKY轉(zhuǎn)錄因子的克隆及其參與非生物脅迫響應(yīng)的機(jī)制尚未見報道?!緮M解決的關(guān)鍵問題】本研究通過克隆甘蔗WRKY基因,對其進(jìn)行生物信息學(xué)分析、亞細(xì)胞定位和酵母轉(zhuǎn)錄激活活性驗證,并使用實時熒光定量PCR技術(shù)(quantitative real-time PCR,qRT-PCR)分析該基因的組織表達(dá)特異性及其在不同外源脅迫下的表達(dá)模式,以期闡述甘蔗響應(yīng)非生物脅迫的作用及其機(jī)制,為深入解析該基因的功能和作用模式奠定基礎(chǔ),同時為甘蔗抗逆分子育種提供優(yōu)良的基因資源。
試驗于2016年9月至2018年4月在福建農(nóng)林大學(xué)農(nóng)業(yè)部福建甘蔗生物學(xué)與遺傳育種重點實驗室完成。
組織特異性分析材料:參照黃寧等[23]方法,田間隨機(jī)選取長勢一致的甘蔗品種ROC22植株,連根挖出清洗干凈,取幼嫩蔗根,在第七至第八節(jié)處取蔗芽、蔗髓和皮,并取甘蔗+1葉,每3株為一個樣品,液氮速凍,-80℃保存?zhèn)溆肹23]。每個組織取3個生物學(xué)重復(fù)。
不同外源脅迫處理材料:參考肖新?lián)Q等[24]方法,田間隨機(jī)選取長勢一致的甘蔗品種ROC22植株,切成單芽蔗莖,在沙中培養(yǎng)至4片完全展開葉。隨后放入清水中培養(yǎng)10 d待其長出新的水生根,再用培養(yǎng)液培養(yǎng)2周左右使其生長穩(wěn)定。選取上述長勢一致的甘蔗苗,每3株為一個生物學(xué)重復(fù),對其進(jìn)行分組處理:第1組分別在葉面噴施5 mmol·L-1SA(含0.01%吐溫-20,v/v)、100 μmol·L-1茉莉酸甲酯(methyl jasmonate,MeJA)(含0.1%乙醇和0.05%吐溫-20,v/v),均于0、3、6和12 h取樣;第2組在含25%PEG水溶液中培養(yǎng),取樣時間點為0、3、6和12 h;第3組在含有250 mmol·L-1的NaCl水溶液中培養(yǎng),于0、6、12和24 h分別取樣;第4組分別在500 mmol·L-1氯化銅(cupric chloride,CuCl2)和500 mmol·L-1氯化鉻(chromium chloride,CdCl2)水溶液中培養(yǎng),均于0、12、24和48 h取樣。每個處理各取3個生物學(xué)重復(fù)。每個樣品取樣完成,液氮速凍,-80℃保存。
將上述甘蔗組織材料和外源脅迫材料,在液氮中研磨成粉末,再用Trizol試劑提取總RNA,用1.0%的瓊脂糖凝膠電泳檢測。參照RQ1 RNase-Free DNase(Promega,中國,上海)試劑使用說明書除去總RNA中含有的DNA污染,按照PrimeScript RT Reagent Kit(Perfect Real Time)(TaKaRa,中國,大連)的使用說明書反轉(zhuǎn)錄合成cDNA第一鏈,并用1.0%瓊脂糖凝膠電泳檢測所合成cDNA的質(zhì)量,隨后用于檢測目的基因的相對表達(dá)量。
根據(jù)甘蔗轉(zhuǎn)錄組數(shù)據(jù)庫中發(fā)現(xiàn)的一條的Unigene序列,使用Primer Premier 5.0軟件設(shè)計擴(kuò)增引物(表1),以甘蔗品種ROC22在NaCl處理6 h的cDNA為模板,進(jìn)行PCR擴(kuò)增。PCR體系為cDNA 1.0 μL、DNA酶(5 U·μL-1)0.125 μL、10×Buffer 2.5 μL、dNTPs(2.5 mmol·L-1)2.0 μL、上下游引物ScWRKY6 F/R(10 μmol·L-1)各1.0 μL和ddH2O 17.375 μL。PCR擴(kuò)增程序為94℃4 min;94℃30 s,65℃30 s,72℃1 min 30 s,35個循環(huán),退火溫度每個循環(huán)遞減0.5℃;72℃10 min。產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳檢測及膠回收純化后,連接、轉(zhuǎn)化,PCR篩選陽性克隆,送上海生工生物工程技術(shù)服務(wù)有限公司進(jìn)行測序分析。
表1 引物序列及用途
將測序得到的序列用NCBI中的在線工具ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/)分析開放閱讀框;通過在線軟件Smart(http://smart. embl-heidelberg.de/)、ExPaSy(http://web.expasy.org/ protparam/)和Prabi(https://npsa-prabi.ibcp.fr/cgi-bin/ secpred_gor4.pl)分析其保守結(jié)構(gòu)域、一級結(jié)構(gòu)和二級結(jié)構(gòu)。磷酸化位點預(yù)測:NetPhos(http://www.cbs. dtu.dk/services/NetPhos/);亞細(xì)胞定位預(yù)測:Cell-PLoc 2.0(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)。用NCBI中Blastp工具查找甘蔗ScWRKY6蛋白同源氨基酸序列,并用DNAMAN 6.0軟件多重比對同源氨基酸序列。參照Eulgem等[6]對擬南芥WRKY的分類,選取擬南芥8個不同類群的WRKY氨基酸序列、甘蔗中已發(fā)表的Sc-WRKY氨基酸序列以及ScWRKY6蛋白同源氨基酸序列,使用MEGA6.0軟件中鄰位相連法(Neighbor-Joining,NJ)(Bootstrap= 1 000)構(gòu)建系統(tǒng)進(jìn)化樹。
通過設(shè)計亞細(xì)胞定位引物GFP-ScWRKY6-F/R(表1),在目的基因ORF(去掉終止密碼子)兩端加入酶切位點Ⅰ和Ⅰ,以測序成功的陽性質(zhì)粒pMD19-T-為模板進(jìn)行擴(kuò)增、回收。連接亞細(xì)胞定位質(zhì)粒pCAMBIA1300-,用Ⅰ和Ⅰ雙酶切。用T4DNA連接酶將目的基因連接載體pCAMBIA1300-,并轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,經(jīng)測序及酶切驗證,獲得重組質(zhì)粒pCAMBIA1300-。將重組質(zhì)粒和對照空載質(zhì)粒pCAMBIA1300-分別轉(zhuǎn)入農(nóng)桿菌GV3101菌株中,把菌液PCR檢測為陽性的單克隆菌落于含有35 μg·mL-1利福平和50 μg·mL-1卡那霉素的LB液體培養(yǎng)基中培養(yǎng),在28℃搖床以250 r/min培養(yǎng)14 h;收集菌體并洗去殘留LB液體培養(yǎng)基,用MS液體培養(yǎng)基稀釋至OD600=0.8,加入200 μmol·L-1乙酰丁香酮后黑暗中靜置1 h。選擇5—7片葉且長勢一致的本氏煙(),用1.0 mL的針頭注射含有目的基因和空載的菌液,暗培養(yǎng)12 h,再在光照16 h/黑暗8 h,最后在溫度28℃環(huán)境中培養(yǎng)2 d。將含有目的基因和空載的煙草葉片剪下,葉背面朝下置于1 μg·mL-14',6-diamidino-2-phenylindole(DAPI)染色劑中,37℃避光溫浴30 min,依次用生理鹽水和無菌水清洗后制片,在激光共聚焦顯微鏡下觀察煙草葉片細(xì)胞熒光定位情況[25]。
在目的基因ORF(去掉終止密碼子)兩端加酶切位點Ⅰ和HⅠ,設(shè)計引物BD-ScWRKY6-F/R(表1),以陽性質(zhì)粒pMD19-T-為模板,進(jìn)行擴(kuò)增、回收。將膠回收產(chǎn)物和空載質(zhì)粒pGBKT7分別用Ⅰ和HⅠ進(jìn)行雙酶切,用T4DNA連接酶將連接到載體pGBKT7上,隨后轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,經(jīng)測序及酶切驗證正確,獲得酵母表達(dá)質(zhì)粒pGBKT7-。參考徐群剛等[26]方法,以共轉(zhuǎn)載體pGBKT7-53+pGADT7-T為陽性對照,空載pGBKT7為陰性對照,重組質(zhì)粒pGBKT7-為試驗組,分別轉(zhuǎn)化酵母菌株Y2HGold,然后以100、10-1、10-2和10-3倍數(shù)稀釋,分別點在含SD/-Trp、SD/-Trp(+X-α-Gal)和SD/-Trp(+X-α-Gal+ AbA) 3種平板上,將其放在30℃培養(yǎng)箱,培養(yǎng)2—3 d后拍照[26]。
使用Primer Premier 5.0軟件設(shè)計定量引物qScWRKY6-F/R(表1),以clathrin adaptor complex()和()為內(nèi)參[27],通過qRT-PCR方法檢測目的基因在甘蔗不同組織和不同外源脅迫處理樣品中的相對表達(dá)量。qRT-PCR反應(yīng)體系參照SYBR Green PCR Master Mix Kit (Roche,中國,上海)說明書配置,擴(kuò)增程序為50℃ 2 min;95℃10 min;95℃15 s,60℃ 1 min,40個循環(huán);增加熔解曲線,95℃ 15 s,60℃ 1 min,95℃ 15 s,60℃ 15 s;每個反應(yīng)3次重復(fù)。采用2-△△Ct法計算基因的相對表達(dá)量[28],用DPS 9.50軟件分析數(shù)據(jù)的顯著性水平,并用軟件Origin 8.0繪圖。
根據(jù)甘蔗轉(zhuǎn)錄組數(shù)據(jù)庫挖掘的WRKY基因Unigene序列設(shè)計擴(kuò)增引物,通過RT-PCR擴(kuò)增得到一個甘蔗類基因,命名為,GenBank登錄號為MH393927。序列分析結(jié)果表明(圖1),該基因序列全長1 289 bp,包括1個1 059 bp的ORF(91—1 149 bp),編碼一個含352個氨基酸的蛋白,并含有1個WRKY結(jié)構(gòu)域和1個鋅指結(jié)構(gòu)域(CX5CX23HXH)(圖1),推測其為第Ⅱ類WRKY轉(zhuǎn)錄因子。
*:終止密碼子。紅色框部分為WRKYGQK基序;黑色框部分為C2H2基序(CX5CX23HXH)
生物信息學(xué)分析顯示,ScWRKY6蛋白的理論分子量為37 909.81,理論等電點為9.73,不穩(wěn)定指數(shù)為50.23,是一個不穩(wěn)定蛋白。此外,該蛋白含有27個酸性氨基酸殘基(Asp+Glu)和46個堿性氨基酸殘基(Lys+Arg),脂肪族指數(shù)為64.26,平均親水性(GRAVY)為-0.579,由此說明ScWRKY6蛋白可能是一個親水性蛋白。Smart分析顯示(圖2),該蛋白還含有EGF_CA(Calcium-binding EGF-like domain)和ChtBD2(Chitin-binding domain type 2)結(jié)構(gòu)域。對ScWRKY6蛋白進(jìn)行磷酸化位點預(yù)測(圖3),ScWRKY6氨基酸序列含有45個磷酸化位點,包含35個絲氨酸(Serine)、9個蘇氨酸(Threonine)和1個酪氨酸(Tyrosine),預(yù)測這些位點可能會發(fā)生磷酸化反應(yīng)。ScWRKY6預(yù)測蛋白的二級結(jié)構(gòu)分析顯示,其主要具有無規(guī)則卷曲、α-螺旋和延伸鏈。
1:ChtBD2(286—332 bp);2:EGF_CA(282—326 bp)
圖3 ScWRKY6磷酸化位點預(yù)測
通過NCBI中Blastp工具查找ScWRKY6蛋白的同源氨基酸序列,選取9個不同物種的WRKY氨基酸序列,分別為玉米(,ACG25409.1)、高粱(,XP_002464211.1)、黍(,PAN46075.1)、狗尾草(,XP_004982383.1)、二穗短柄草(,XP_010232453.1)、粗山羊草(,XP_020149328.1)、大麥(,BAJ85995.1)、小麥(,ACD80360.1)和水稻(,BAT17937.1),通過多重序列比對發(fā)現(xiàn)(圖4),其與甘蔗ScWRKY6蛋白的序列相似度分別為90%、96%、93%、90%、84%、81%、81%、80%和81%,由此推測WRKY蛋白在不同植物中有較高的保守性。系統(tǒng)進(jìn)化樹結(jié)果顯示(圖5),甘蔗ScWRKY6與高粱WRKY和玉米WRKY在同一分支上且遺傳距離較近,而與水稻W(wǎng)RKY分類距離較遠(yuǎn);另一方面,甘蔗ScWRKY6與擬南芥AtWRKY15和AtWRKY39聚在同一分支上,參照Eulgem等[6]對擬南芥WRKY的分類,其屬于WRKY家族中Ⅱd亞類。
玉米:Zea mays,ACG25409.1;高粱:Sorghum bicolor,XP_002464211.1;黍:Panicum miliaceum,PAN46075.1;狗尾草:Setaria viridis,XP_004982383.1;二穗短柄草:Brachypodium distachyum,XP_010232453.1;粗山羊草:Aegilops tauschii,XP_020149328.1;大麥:Hordeum vulgare,BAJ85995.1;小麥:Triticum aestivum,ACD80360.1;水稻:Oryza sativa,BAT17937.1
亞細(xì)胞定位結(jié)果如圖6所示,在注射空載體pCAMBIA1300-的對照組中,綠色熒光在細(xì)胞膜、細(xì)胞核、細(xì)胞質(zhì)中均有分布,而注射融合載體pCAMBIA1300-的細(xì)胞中,細(xì)胞核特異性染料DAPI影像與GFP綠色熒光能夠完全重合,但在細(xì)胞膜和細(xì)胞質(zhì)中均無熒光,說明ScWRKY6蛋白只定位在細(xì)胞核上。
為了驗證轉(zhuǎn)錄因子ScWRKY6的轉(zhuǎn)錄激活活性,將的編碼區(qū)融合到載體pGBKT7的GAL4DNA結(jié)合域并轉(zhuǎn)入酵母Y2HGold菌株中(圖7),pGBKT7-和陰性對照只能在SD/-Trp和SD/-Trp (+X-α-Gal)培養(yǎng)基上正常生長,說明外源質(zhì)粒pGBKT7-成功轉(zhuǎn)入酵母中,但它們不能在金擔(dān)子素A(AbA)缺陷型培養(yǎng)基SD/-Trp(+X-α-Gal+AbA)培養(yǎng)基上生長,且不能使X-α-Gal顯藍(lán)色,說明報告基因和均未被激活。而陽性對照組在3種培養(yǎng)基上都能正常生長,并使X-α-Gal顯藍(lán)色。結(jié)果表明,甘蔗ScWRKY6在酵母細(xì)胞中無轉(zhuǎn)錄自激活活性。
圖5 不同植物WRKY蛋白的系統(tǒng)進(jìn)化樹
圖片采用綠色熒光、明場、綠色熒光和明場疊加這3個視野拍攝。35S::GFP:攜帶空載pCAMBIA1300-GFP的農(nóng)桿菌菌株。35S::ScWRKY6::GFP:攜帶重組載體pCAMBIA1300-ScWRKY6-GFP的農(nóng)桿菌菌株。紅色箭頭1、2和3分別代表細(xì)胞膜、細(xì)胞質(zhì)和細(xì)胞核。比例尺=25 μm
SD/-Trp:色氨酸營養(yǎng)缺陷型平板培養(yǎng)基;SD/-Trp (+X-α-Gal):色氨酸營養(yǎng)缺陷型平板培養(yǎng)基(添加5-溴-4-氯-3-吲哚-α-D-半乳糖苷);SD/-Trp (+X-α-Gal+AbA):色氨酸營養(yǎng)缺陷型平板培養(yǎng)基(添加5-溴-4-氯-3-吲哚-α-D-半乳糖苷和金擔(dān)子素A)
組織特異性結(jié)果如圖8顯示,在甘蔗品種ROC22的不同組織中組成型表達(dá),其在蔗芽中的表達(dá)量最高,其后由高到低依次為葉、根、皮和蔗髓。其中,蔗芽、葉和根的表達(dá)量依次為蔗髓的2.05、1.55和1.37倍。
不同小寫字母表示差異顯著性(p≤0.05),誤差線為每組處理的標(biāo)準(zhǔn)誤差(N=3)。下同
利用qRT-PCR分析不同外源脅迫下的表達(dá)情況(圖9)。從圖中可以看出,的表達(dá)量在施加MeJA 6 h后顯著上升,為對照組的2.01倍,隨后其表達(dá)量無顯著變化;在SA脅迫處理下,該基因的表達(dá)量無明顯變化。在PEG脅迫誘導(dǎo)下,的表達(dá)量在3 h時顯著上升并達(dá)到峰值,為對照組的6.88倍,隨后該基因的表達(dá)量迅速下降并恢復(fù)到對照組水平。在NaCl處理下,的表達(dá)量在12 h達(dá)到峰值,為對照的4.18倍,而在處理后6 h與24 h,其表達(dá)量與對照均無顯著差異。在重金屬CuCl2脅迫下,的表達(dá)量在處理后12 h無顯著變化,而在24和48 h其表達(dá)量相對于對照組顯著上調(diào);而在CdCl2脅迫下,的表達(dá)量整體處于上調(diào)的趨勢,且在24 h達(dá)到最大值,約為對照組的4.86倍。
植物在生長過程中經(jīng)常受到各種生物及非生物脅迫的影響,為適應(yīng)這些不良環(huán)境,植物體形成了一套完善的防御調(diào)控機(jī)制[5]。轉(zhuǎn)錄調(diào)控是生物體控制基因表達(dá)的主要機(jī)制,對植物生長發(fā)育和應(yīng)答外源脅迫具有重要意義[29]。WRKY轉(zhuǎn)錄因子是植物最大的轉(zhuǎn)錄因子家族之一[30],同時也是植物調(diào)控網(wǎng)絡(luò)的重要組分。前人研究發(fā)現(xiàn),WRKY基因家族在生物[31]及非生物[32-33]逆境應(yīng)答、植物激素信號轉(zhuǎn)導(dǎo)[9]、植物的生長發(fā)育[34]和物質(zhì)代謝途徑[35]等過程發(fā)揮作用,是一類廣譜性調(diào)控因子。
圖9 甘蔗ScWRKY6在不同外源脅迫下的表達(dá)特性
本研究從甘蔗中克隆得到的cDNA全長序列,生物信息學(xué)分析顯示,該基因編碼的蛋白可能為堿性不穩(wěn)定親水性蛋白,這與芍藥(Pall)[36]、葡萄()[37]等中的分析結(jié)果相似。對ScWRKY6蛋白進(jìn)行磷酸化位點預(yù)測,發(fā)現(xiàn)其有45個氨基酸磷酸化位點。前人研究發(fā)現(xiàn)蛋白質(zhì)可以通過磷酸化來調(diào)控蛋白質(zhì)活力與功能,進(jìn)而在細(xì)胞信號轉(zhuǎn)導(dǎo)中起重要作用[38],因此這些磷酸化位點可能與ScWRKY6蛋白的活性調(diào)控有關(guān)。甘蔗ScWRKY6蛋白含有1個WRKY結(jié)構(gòu)域及1個ChtBD2幾丁質(zhì)結(jié)合域。前人研究表明含有幾丁質(zhì)結(jié)合域的幾丁質(zhì)酶一般具有抗菌和抗蟲功能[39],由此推測可能對植物應(yīng)對生物脅迫有積極響應(yīng)。此外,ScWRKY6還含有一個EGF_CA,即鈣結(jié)合表皮生長因子類結(jié)構(gòu)域。擬南芥中也發(fā)現(xiàn)并分離出了類似的鈣調(diào)蛋白結(jié)合域[40]。鈣離子是細(xì)胞內(nèi)的第二信使,對各種逆境信號起轉(zhuǎn)導(dǎo)作用[41],而鈣結(jié)合蛋白的含量與植物耐旱、耐鹽和抗寒性有關(guān)[42],因此,EGF_CA結(jié)構(gòu)域的存在,暗示可能在植物逆境響應(yīng)機(jī)制中發(fā)揮作用。根據(jù)Eulgem等[6]對擬南芥WRKY的分類,AtWRKY15和AtWRKY39均屬于Ⅱd亞類,系統(tǒng)進(jìn)化樹聚類結(jié)果表明ScWRKY6與其在同一分支上,同樣屬于WRKY家族Ⅱd亞類(圖5),預(yù)測基因和擬南芥Ⅱd亞類WRKY基因有相似的功能。已被報道參與植物生長、鹽脅迫和滲透壓的調(diào)節(jié)[43]。Li等[44]發(fā)現(xiàn)受熱脅迫的誘導(dǎo)并積極響應(yīng)SA和JA的信號傳導(dǎo);由此為的功能研究提供線索。進(jìn)化樹中聚類關(guān)系越相近,各成員間功能類似的可能性越大[45],因此,進(jìn)化樹分析結(jié)果也暗示著甘蔗與高梁的親緣關(guān)系最近(圖5)。
亞細(xì)胞定位結(jié)果顯示ScWRKY6蛋白定位在細(xì)胞核上,這與生物信息學(xué)預(yù)測結(jié)果相同,同時與水稻[10]、棉花(spp.)[46]和谷子[47]等報道相同,這也與其在植物體中的轉(zhuǎn)錄調(diào)節(jié)功能一致。本研究發(fā)現(xiàn)甘蔗ScWRKY6轉(zhuǎn)錄因子在酵母體內(nèi)不具有轉(zhuǎn)錄自激活活性,這與前人研究結(jié)果是類似的[48]。玉米ZmWRKY17在酵母中也未顯示轉(zhuǎn)錄激活活性[49]。大豆()GmWRKY13、GmWRKY27、GmWRKY40和GmWRKY54蛋白也都不具有轉(zhuǎn)錄激活活性,在酵母雙雜中GmWRKY13能形成蛋白二聚體,這可能與其轉(zhuǎn)錄功能的行使有關(guān)[48]。而對于ScWRKY6蛋白調(diào)控下游靶基因轉(zhuǎn)錄表達(dá)的機(jī)制有待進(jìn)一步研究?;蛟谔O果(Mill.)[50]、白菜()[51]、大豆[52]、楊樹(L.)[53]等多種植物的不同器官中均有表達(dá),且表達(dá)量存在差異。本研究中,在甘蔗葉、皮、蔗髓、蔗芽和根中均有表達(dá),其中在蔗芽中的表達(dá)量最高,在根中的表達(dá)量最低,表明該基因在甘蔗中組成型表達(dá)并具有組織特異性,這與芍藥在芽、葉片和萼片的表達(dá)量較高,在莖和根中表達(dá)量較低的結(jié)果類似[36]。
SA是病原菌侵染后植物防衛(wèi)反應(yīng)信號途徑的重要組分[44],也是植物產(chǎn)生系統(tǒng)獲得性抗性(systematic acquired resistance,SAR)的誘導(dǎo)因子[54]。SA通過誘導(dǎo)防御基因的表達(dá)或介導(dǎo)信號傳導(dǎo)等方式參與植物抗病進(jìn)程[55],SA還能作為胞外信號通過抑制過氧化氫酶活性,提高H2O2水平,進(jìn)而促進(jìn)木質(zhì)素的合成,最終抑制病原菌的生長[56]。本研究中,表達(dá)量在SA誘導(dǎo)下無明顯變化,推測該基因可能不參與SA介導(dǎo)的病原菌侵染過程。茉莉酸(jasmonic acid,JA)是一種重要的植物激素,除了能調(diào)節(jié)植物開花、葉片衰老等發(fā)育過程,還能介導(dǎo)植物對不同環(huán)境脅迫的響應(yīng)[57]。Jiang等[58]發(fā)現(xiàn)擬南芥對灰葡萄孢菌()的負(fù)調(diào)控取決于JA信號傳導(dǎo)途徑,且能直接結(jié)合編碼JA信號通路的2個重要阻遏物(JAZ1和JAZ5)的啟動子上,并激活它們的轉(zhuǎn)錄;香蕉(Lour.)在冷脅迫或MeJA誘導(dǎo)下,其被誘導(dǎo)表達(dá),進(jìn)而提高香蕉果實的耐寒性[59]。本研究中,受MeJA誘導(dǎo)上調(diào)表達(dá),推測參與了由MeJA介導(dǎo)的逆境脅迫防御過程和代謝途徑。干旱和鹽脅迫是2種主要的非生物脅迫,都會導(dǎo)致作物產(chǎn)量和品質(zhì)的降低[60]。PEG是一種高分子滲透劑,其本身無法穿越細(xì)胞壁進(jìn)入細(xì)胞質(zhì),不會造成壁分離,能使植物細(xì)胞和組織處于類似于干旱脅迫的狀態(tài)中[61]。擬南芥能夠賦予轉(zhuǎn)基因水稻較高耐旱性,并且提高了其對PEG脅迫的耐受性,在脅迫條件下轉(zhuǎn)基因植株脯氨酸含量和活性氧清除酶活性增強(qiáng),脅迫響應(yīng)基因(和)顯著上調(diào)[62];本研究發(fā)現(xiàn),甘蔗在PEG誘導(dǎo)下表達(dá)量明顯上調(diào),且在3 h處表達(dá)量最高,推測其可能通過滲透物質(zhì)的調(diào)節(jié)、抗氧化酶的積累及干旱脅迫響應(yīng)基因的誘導(dǎo)等途徑參與甘蔗對干旱脅迫的響應(yīng)。Gruber等[63]分析蒺藜苜蓿()根部所有轉(zhuǎn)錄因子,發(fā)現(xiàn)只有WRKY轉(zhuǎn)錄因子家族顯著受到鹽脅迫調(diào)控,表明WRKY類轉(zhuǎn)錄因子更廣泛地參與植物的耐鹽機(jī)制。在鹽脅迫下,葡萄過表植株通過調(diào)節(jié)活性氧清除和滲透物質(zhì)的積累來增加植株對鹽脅迫的耐受性[64]。本研究中,甘蔗的表達(dá)量受NaCl脅迫的誘導(dǎo)顯著增加,其可能通過相同途徑來提高甘蔗對鹽脅迫的耐受性。Cd2+能植物根系的有絲分裂,阻礙根伸長生長[65];過量的Cd2+和Cu2+則會抑制植物光合和呼吸作用,破壞DNA和細(xì)胞膜完整性,最終使植物生長發(fā)育受阻甚至引起死亡[66]。WRKY轉(zhuǎn)錄因子也能參與植物對金屬脅迫響應(yīng)及轉(zhuǎn)運過程,比如Liu等[67]發(fā)現(xiàn)擬南芥中、和參與鎘脅迫應(yīng)答響應(yīng),且雙突變體或三突變體對鎘脅迫耐受性更強(qiáng)。本研究發(fā)現(xiàn),甘蔗的表達(dá)同樣受CdCl2和CuCl2脅迫的誘導(dǎo)表達(dá),推測其可能通過增加逆境蛋白和脯氨酸的積累和抗氧化酶活性的提高,參與甘蔗Cd2+和Cu2+金屬離子脅迫響應(yīng)。綜上所述,可能在甘蔗響應(yīng)干旱、高鹽及金屬離子脅迫等多種非生物脅迫過程中起重要作用。
從甘蔗中克隆獲得一個WRKY轉(zhuǎn)錄因子基因,命名為,該基因序列全長1 289 bp,包含1個1 059 bp的ORF,編碼352個氨基酸,預(yù)測其為堿性不穩(wěn)定親水性非分泌蛋白。該蛋白具有1個WRKY保守結(jié)構(gòu)域和C2H2(CX5CX23HXH)鋅指結(jié)構(gòu)域,屬于WRKY轉(zhuǎn)錄因子家族的Ⅱd亞類,定位于細(xì)胞核,沒有自激活活性。在甘蔗中組成型表達(dá)并具有組織特異性,在蔗芽中表達(dá)量最高,根中的表達(dá)量最低;在NaCl、PEG、MeJA、重金屬Cu2+和Cd2+脅迫誘導(dǎo)下表達(dá)量均上調(diào),可能在甘蔗抗旱、耐鹽及響應(yīng)金屬離子脅迫中發(fā)揮作用。
[1] 趙培方, 趙俊, 劉家勇, 昝逢剛, 夏紅明, Jackson P A, Basnayake J, Inman-Bamber N G, 楊昆, 趙麗萍, 覃偉, 陳學(xué)寬, 趙興東, 范源洪. 干旱脅迫對甘蔗4個生理指標(biāo)遺傳變異的影響中國農(nóng)業(yè)科學(xué), 2017, 50(1): 28-37.
ZHAO P F, ZHAO J, LIU J Y, ZAN F G, XIA H M, Jackson P A, Basnayake J, Inman-Bambe N G, YANG K, ZHAO L P, QIN W, CHEN X K, ZHAO X D, FAN Y H. Genetic variation of four physiological indexes as impacted by water stress in sugarcane., 2017, 50(1): 28-37. (in Chinese)
[2] 張風(fēng)娟, 李健, 杜成忠, 楊麗濤, 李楊瑞, 邢永秀. 不同甘蔗品種葉片氣孔對水分脅迫的響應(yīng). 廣西植物, 2014, 34(6): 821-827.
ZHANG F J, LI J, DU C Z, YANG L T, LI Y R, XING Y X. Stomatal response to water stress in leaves of different sugarcane cultivars., 2014, 34(6): 821-827. (in Chinese)
[3] ASHRAF M, RAHMATULLAH, AHMAD R, AFZAL M, TAHIR M A, KANWAL S, MAQSOOD M A. Potassium and silicon improve yield and juice quality in sugarcane (L.) under salt stress., 2009, 195(4): 284-291.
[4] MENOSSI M, SILVAFILHO M C, VINCENTZ M, VANSLUYS M A, SOUZA G M. Sugarcane functional genomics: Gene discovery for agronomic trait development., 2008, 2008: 458732.
[5] 孔維龍, 于坤,但乃震, 楊紹宗, 包滿珠, 黃向榮, 傅小鵬. 甜菜WRKY轉(zhuǎn)錄因子全基因組鑒定及其在非生物脅迫下的表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2017, 50(17): 3259-3273.
KONG W L, YU K, DAN N Z, YANG S Z, BAO M Z, HUANG X R, FU X P. Genome-wide identification and expression analysis of WRKY transcription factor under abiotic stress in, 2017, 50(17): 3259-3273. (in Chinese)
[6] EULGEM T, RUSHTON P J, ROBATZEK S, SOMSSICH I E. The WRKY superfamily of plant transcription factors., 2000, 5(5): 199-206.
[7] BAKSHI M, OELMULLER R. WRKY transcription factors., 2014, 9(2): e27700.
[8] PHUKAN U J, JEENA G S, SHUKLA R K. WRKY transcription factors: Molecular regulation and stress responses in plants, 2016, 7: 760.
[9] JIANG J J, MA S H, YE N H, JIANG M, CAO J, ZHANG J H. WRKY transcription factors in plant responses to stresses, 2017, 59(2): 86-101.
[10] LEE H, CHA J, CHOI C, CHOI N, JI H S, SANG R P, LEE S, HWANG D J. Riceplays a role in pathogen defense and drought tolerance, 2018, 11(1): 5.
[11] YANG G Y, YANG G Y, ZHANG W H, SUN Y D, ZHANG T T, HU D, ZHAI M Z. Two novelgenes from,and, are involved in abscisic acid-dependent stress responses., 2017, 61(4): 611-621.
[12] GUO P R, LI Z H, HUANG P X, LI B, FANG S, CHU J F, GUO H W. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence., 2017, 29: 2854-2870.
[13] Zhang L P, Chen L G, Yu D Q. Transcription factor WRKY75interacts with DELLA proteins to affect flowering., 2018, 176(1): 790-803.
[14] CHEN M H, YAN T X, SHEN Q, LU X, PAN Q F, HUANG Y R, TANG Y L, FU X Q, LIU M, JIANG W M, LV Z Y, SHI P, Ma Y N, HAO X L, ZHANG L D, LI L, TANG K X. Landular trichome-specific WRKY 1 promotes artemisinin biosynthesis in., 2017, 214(1): 304-316.
[15] ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato., 1994, 244(6): 563-571.
[16] ROSS C A, LIU Y, SHEN Q J. Thegene family in rice ()., 2007, 49(6): 827-842.
[17] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling., 2007, 10(4): 366-371.
[18] WEI K F, CHEN J, CHEN Y F, WU L J, XIE D X. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize., 2012, 19(2): 153-164.
[19] HE H S, DONG Q, SHAO Y H, JIANG H Y, ZHU S W, CHENG B J, XIANG Y. Genome-wide survey and characterization of thegene family in., 2012, 31(7): 1199-1217.
[20] MUTHAMILARASAN M, BONTHALA V S, KHANDELWAL R, JAISHANKAR J, SHWETA S, NAWAZ K, PRASAD M. Global analysis of WRKY transcription factor superfamily inidentifies potential candidates involved in abiotic stress signaling., 2015, 6: 910.
[21] LAMBAIS M R. In silico differential display of defense-related expressed sequence tags from sugarcane tissues infected with diazotrophic endophytes., 2001, 24(1/4): 103-111.
[22] LIU J X, QUE Y X, GU J L, XU L P, WU J Y, CHEN R K. Molecular cloning and expression analysis of a WRKY transcription factor in sugarcane, 2012, 11(24): 6434-6444.
[23] 黃寧, 張玉葉, 凌輝, 羅俊, 吳期濱, 闕友雄. 甘蔗二氨基庚二酸異構(gòu)酶基因的克隆與表達(dá)分析.熱帶作物學(xué)報, 2013, 34(11): 2200-2208.
HUANG N, ZHANG Y Y, LING H, LUO J, WU Q B, QUE Y X. Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane., 2013, 34(11): 2200-2208. (in Chinese)
[24] 肖新?lián)Q, 黃寧, 張玉葉, 楊宗鋒, 凌輝, 黃瓏, 蘇煒華, 闕友雄. 甘蔗光合系統(tǒng)Ⅰ亞基O基因的克隆與表達(dá)分析. 應(yīng)用與環(huán)境生物學(xué)報, 2015, 21(2): 208-214.
XIAO X H, HUANG N, ZHANG Y Y, YANG Z F, LING H, HUANG L, SU W H, QUE Y X. Cloning and expression of photosystem I subunit O gene from sugarcane.,2015, 21(2): 208-214. (in Chinese)
[25] 蘇煒華, 黃瓏, 黃寧, 劉峰, 蘇亞春, 肖新?lián)Q, 凌輝, 闕友雄. 甘蔗細(xì)胞色素P450還原酶基因的RT-PCR擴(kuò)增與表達(dá)分析. 應(yīng)用與環(huán)境生物學(xué)報, 2016, 22(2): 173-178. (in Chinese)
SU W H, HUANG L, HUANG N, LIU F, SU Y C, XIAO X H, LING H, QUE Y X. RT-PCR amplification and expression analysis of a cytochrome P450 reductase gene from sugarcane., 2016, 22(2): 173-178.
[26] 徐群剛, 鄺健飛, 單偉, 陸旺金, 陳建業(yè). 香蕉果實冷脅迫相關(guān)MaWRKY11轉(zhuǎn)錄因子的特性、互作蛋白篩選與鑒定. 熱帶亞熱帶植物學(xué)報, 2015, 23(5): 543-552.
XU Q G, KUANG J F, SHAN W, LU W J, CHEN J Y. Characterization and interacting-protein identification of MaWRKY11 transcription factor related to cold stress from banana fruits., 2015, 23(5): 543-552.(in Chinese)
[27] GUO J L, LING H, WU Q B, XU L P, QUE Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses., 2014, 4: 7042.
[28] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ctmethod., 2001, 25(4): 402-408.
[29] SHUAI L, LUO C G, ZHU L M, SHA R H, QU S C, CAI B H, WANG S H. Identification and expression analysis oftranscription factor genes in response to fungal pathogen and hormone treatments in apple ()., 2017, 60(2): 215-230.
[30] BANERHEE A, ROYCHOUDHURY A. WRKY proteins: Signaling and regulation of expression during abiotic stress responses., 2015, 2015: 807560.
[31] JIANG M, LIU Q E, LIU Z N, LI J Z, HE C M. Over-expression of a WRKY transcription factor geneenhances resistance to downy mildew in transgenicplants., 2016, 45(3): 327-334.
[32] CHEN L G, SONG Y, LI S J, ZHANG L P, ZOU C S, YU D Q. The role of WRKY transcription factors in plant abiotic stresses., 2012, 1819(2): 120-128.
[33] YUE H, WANG M, LIU S Y, DU X H, SONG W N, NIE X J. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (L.)., 2016, 17(1): 343.
[34] VERWEIJ W, SPELT C E, BLIEK M, DE M V, WIT N, FARACO M, KOES R, QUATTROCCHIO F M. Functionally similar WRKY proteins regulate vacuolar acidification inand hair development in., 2016, 28(3): 786-803.
[35] GIRI C C, ZAHEER M. Chemical elicitors versus secondary metabolite productionusing plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal., 2016, 126(1): 1-18.
[36] 李俊杰, 韓璐璐, 馬燕, 姚汪勁, 松國靜, 郭先鋒. 芍藥轉(zhuǎn)錄因子的克隆及表達(dá)分析. 植物生理學(xué)報, 2017, 53(4): 609-618.
LI J J, HAN L L, MA Y, YAO W J, SONG G J, GUO X F. Cloning and expression analysis oftranscription factor., 2017, 53(4): 609-618. (in Chinese)
[37] 肖培連, 馮睿杰, 侯麗霞, 呂曉彤, 朱丹, 劉新. 葡萄基因的克隆及表達(dá)特性分析. 植物生理學(xué)報, 2015, 51(3): 391-398.
XIAO P L, FENG R J, HOU L X, LVX T, ZHU D, LIU X. Gene cloning and expression analysis of., 2015, 51(3): 391-398. (in Chinese)
[38] LI R, ZHANG J, LI J, ZHOU G, WANG Q, BIAN W, ERB M, LOU Y. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores., 2015, 17(4): e04805.
[39] 歐陽石文, 馮蘭香, 趙開軍. 植物幾丁質(zhì)結(jié)合蛋白及幾丁質(zhì)結(jié)合域特征和作用. 生命科學(xué), 2002, 14(2): 89-91.
OUYANG S W, FENG L X, ZHAO K J. Plant chitin-binding proteins and charaeters and roles of chitin binding domains., 2002, 14(2): 89-91. (in Chinese)
[40] PARK C Y, LEE J H, YOO J H, MOON B C, CHOI M S, KANG Y H, LEE S M, KIM H S, KANG K Y, CHUNG W S, LIM C O, CHO M J. WRKY group IId transcription factors interact with calmodulin., 2005, 579(6): 1545-1550.
[41] GILROY S, TREWAVAS A. Signal processing and transduction in plant cells: the end of the beginning?, 2001, 2(4): 307-314.
[42] HIRSCHI K D. The calcium conundrum. Both versatile nutrient and specific signal., 2004, 136(1): 2438-2442.
[43] VANDERAUWERA S, VANDENBROUCKE K, INZE A, VAN D C B, MUHLENBOCK P, DE R D, NAOUAR N, VAN G T, VAN M M C, VAN B F.perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in., 2012, 109(49): 20113-20118.
[44] LI S J, ZHOU X, CHEN L G, HUANG W D, YU D Q. Functional characterization of, 2010, 29(5): 475-483.
[45] SHANG H H, WANG Z N, ZOU C S, ZHANG Z, LI W J, LI J, SHI Y Z, GONG W K, CHEN T T, LIU A Y, GONG J W, GE Q, YUAN Y L. Comprehensive analysis of NAC transcription factors in diploid: sequence conservation and expression analysis uncover their roles during fiber development., 2016, 59(2): 142-153.
[46] WANG X L, YAN Y, LI Y Z, CHU X Q, WU C G, GUO X Q., a multiple stress-responsive cottongene, plays an important role in the wounding response and enhances susceptibility toinfection in transgenic., 2014, 9(4): e93577.
[47] 祖倩麗, 尹麗娟, 徐兆師, 陳明, 周永斌, 李連城, 馬有志, 閔東紅, 張小紅. 谷子WRKY36轉(zhuǎn)錄因子的分子特性及功能鑒定中國農(nóng)業(yè)科學(xué), 2015, 48(5): 851-860.
ZU Q L, YIN L J, XU Z S, CHEN M, ZHOU Y B, LI L C, MA Y Z, MIN D H, ZHANG X H. Molecular characteristics and functional identification of foxtail millet transcription factor WRKY36, 2015, 48(5): 851-860. (in Chinese)
[48] ZHOU Q Y, TIAN A G, ZOU H F, XIE Z M, LEI G, HUANG J, WANG C M, WANG H W, ZHANG J S, CHEN S Y. Soybean WRKY-type transcription factor genes,,, and, confer differential tolerance to abiotic stresses in transgenicplants., 2008, 6(5): 486-503.
[49] CAI R H, DAI W, ZHANG C S, WANG Y, WU M, ZHAO Y, MA Q, XIANG Y, CHENG B J. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenicplants., 2017, 246(6): 1215-1231.
[50] 谷彥冰, 冀志蕊, 遲福梅, 喬壯, 徐成楠, 張俊祥, 董慶龍, 周宗山. 蘋果基因家族生物信息學(xué)及表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2015, 48(16): 229-230.
GU Y B, JI Z R, CHI F M, QIAO Z, XU C N, ZHANG J X, DONG Q L, ZHOU Z S. Bioinformatics and expression analysis of thegene family in apple., 2015, 48(16): 229-230. (in Chinese)
[51] TANG J, WANG F, HOU X L, WANG Z, HUANG Z N. Genome-wide fractionation and identification of WRKY transcription factors in Chinese cabbage (ssp.) reveals collinearity and their expression patterns under abiotic and biotic stresses., 2014, 32(4): 781-795.
[52] YIN G J, XU H L, XIAO S Y, QIN Y J, LI Y X, YAN Y M, HU Y K. The large soybean () WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups., 2013, 13(1): 148.
[53] JIANG Y Z, DUAN Y J, YIN Y, YE S L, ZHU J R, ZHANG F Q, LU W X, FAN D, LUO K.Genome-wide identification and characterization of theWRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses., 2014, 65(22): 6629-6644.
[54] LIU B, XUE X D, CUI S P, ZHANG X Y, HAN Q M, ZHU L, LIANG X F, WANG X J, HUANG L L, CHEN X M, KANG Z S. Cloning and characterization of a wheat beta-1,3-glucanase gene induced by the stripe rust pathogenf. sp., 2010, 37(2): 1045-1052.
[55] VLOT A C,DEMPSEY D A, KLESSIG D F. Salicylic acid, a multifaceted hormone to combat disease.y, 2009, 47(1): 177-206.
[56] 龍亞芹, 王萬東, 王美存, 陳于福, 解德宏, 陳華蕊, 俞艷春, 尼章光. 水楊酸(SA)誘導(dǎo)植物對病蟲害產(chǎn)生抗性及作用機(jī)制研究. 熱帶農(nóng)業(yè)科學(xué), 2009, 29(12): 46-50.
LONG Y Q, WANG W D, WANG M C, CHEN Y F, XIE D H, CHEN H R, YU Y C, NI Z G. Salicylic acid induced resistance of plants against insects and diseases and its interaction mechanism., 2009, 29(12): 46-50. (in Chinese)
[57] CAO J J, LI M Y , CHEN J, LIU P, LI Z. Effects of MeJA onmetabolome under endogenous JA deficiency., 2016, 6: 37674.
[58] JIANG Y J, Yu D Q. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromiseresistance, 2016, 171(4): 2771-2782.
[59] YE Y J, XIAO Y Y, HAN Y C, SHAN W, FAN Z Q, XU Q G, KUANG J F, LU W J, LAKSHMANAN P, CHEN J Y. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factorinvolved in the regulation of JA biosynthetic genes., 2016, 6: 23632.
[60] ZHU J K. Plant salt tolerance., 2001, 6(2): 66-71.
[61] ATTREE S M, FOWKE L C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers.,, 1993, 35(1): 1-35.
[62] JIANG Y J, QIU Y P, HU Y R, YU D Q. Heterologous expression ofconfers drought tolerance in., 2016, 7: 145.
[63] GRUBER V, BLANCHET S, DIET A, ZANAF O, BOUALEM A, KAKAR K, ALUNNI B, UDVARDI M, FRUGIER F, CRESPI M. Identification of transcription factors involved in root apex responses to salt stress in., 2009, 281(1): 55-66.
[64] ZHU D, HOU L X, XIAO P L, GUO Y, DEYHOLOS M K, LIU X. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress., 2018.
[65] 王學(xué)華, 戴力. 作物根系鎘滯留作用及其生理生化機(jī)制. 中國農(nóng)業(yè)科學(xué), 2016, 49(22): 4323-4341.
WANG X H, DAI L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots., 2016, 49(22): 4323-4341. (in Chinese)
[66] SK0RZYNSKAPOLIT E, DRAZKIEWICZ M, KRUPA Z. Lipid peroxidation and antioxidative response inexposed to cadmium and copper., 2010, 32(1): 169.
[67] LIU Z Q, FANG H H, PEI Y X, JIN Z P, ZHANG L P, LIU D M. WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in., 2015, 60(11): 995-1001.
Cloning and Expression Analysis of a Ⅱd Sub-group WRKY Transcription Factor Gene from Sugarcane
ZHANG Xu, LING Hui, LIU Feng, HUANG Ning, WANG Ling, MAO HuaYing, LI CongNa, TANG HanChen, SU WeiHua, SU YaChun, QUE YouXiong
(Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University/Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002)
【Objective】 WRKY, a group of unique transcription factors in plants, plays an important role in plant physiological regulation and stress response. Through analysis of the role of transcription factor WRKYin sugarcane growth and development and stress resistance, this study will provide excellent gene resources for sugarcane resistance molecular breeding. 【Method】A unigene sequence ofgene was extracted from the sugarcane transcriptome database, and its full-length cDNA sequence was obtained byRT-PCR amplification. Bioinformatics analysis of this gene sequence and its encoded protein sequence was performed using ORF finder, Smart, ExPaSy, Prabi, NetPhos, Cell-PLOC 2.0 and DNAMAN6.0 softwares, and the phylogenetic tree analysis was constructed using MEGA6.0 software. The fusion expression vector of pCAMBIA1300-was constructed and delivered intobymediated method to determine the subcellular localization of WRKY protein in tobacco leaves. Yeast hybridization assay was used to verify whether WRKY possess transcriptional self-activation activity. The tissue specific expression (root, bud, leaf, stem pith and epidermis) ofand its dynamic expression under MeJA (100 μmol·L-1), SA (5 mmol·L-1), PEG (25%), NaCl (250 mmol·L-1), CuCl2(500 mmol·L-1) and CdCl2(500 mmol·L-1) stresses in sugarcane variety ROC22 were analyzed by quantitative real-time PCR (qRT-PCR) technique.【Result】A WRKY transcription factor gene, named(GenBank Accession Number: MH393927), was cloned from the sugarcane variety ROC22. This gene sequence was 1 289 bp in full length with a 1 059 bp ORF, encoding 352 amino acids, and contained 45 phosphorylation sites. The theoretical isoelectric point, the instability index and the hydrophilicity of ScWRKY6 protein was 9.73, 50.23 and -0.579, respectively, which is supposed to be an alkaline unstable hydrophilic protein. The ScWRKY6 protein has one WRKY domain and one zinc finger motif (CX5CX23HXH), and its amino acid sequence has the highest homology withWRKY(XP_002464211.1). It is speculated that this gene belongs to the Ⅱd sub-group of WRKY family according to phylogenetic tree analysis. Subcellular localization results showed that the ScWRKY6::GFP fusion protein was located in the nucleus. Yeast transcriptional activation verification experiments indicated that ScWRKY6 protein did not have transcriptional auto-activation activity. qRT-PCR analysis revealed thatwas constitutively expressed in sugarcane, and the expression level in order from high to low were in bud, leaf, root, stem epidermis and stem pith. Its expression in bud, leaf and root were 2.05, 1.55 and 1.37 times higher than that in stem pith, respectively. The expression level ofwas up-regulated under the stresses of NaCl, PEG, MeJA, Cu2+and Cd2+. Its highest expression was 4.18, 6.88, 3.63, 4.86 times higher than of the control when treated with NaCl for 12 h, PEG for 3 h, CuCl2for 24 h and CdCl2for 24 h, respectively.【Conclusion】 ScWRKY6 protein was located in the nucleus and did not have transcriptional auto-activation activity. The gene was expressed in different sugarcane tissues and was induced by NaCl, PEG, CuCl2and CdCl2treatments. It is presumed that themay play a role in response to drought stress, salt tolerance and metal ion stress in sugarcane.
sugarcane; WRKY transcription factor; exogenous stress; qRT-PCR
10.3864/j.issn.0578-1752.2018.23.002
2018-06-12;
2018-07-29
國家自然科學(xué)基金(31671752和31101196)、福建省杰出青年基金(2015J06006)、福建省高校杰出青年科研人才計劃項目(蘇亞春-2017)、國家農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-17))
張旭,E-mail:1280355947@qq.com。
闕友雄,E-mail:queyouxiong@126.com
(責(zé)任編輯 李莉)