余堅(jiān)鏗,張超杰,吳杰長
?
模擬電路動(dòng)態(tài)電源電流信號(hào)測(cè)量方法綜述
余堅(jiān)鏗,張超杰,吳杰長
(海軍工程大學(xué)動(dòng)力工程學(xué)院 武漢 430033)
動(dòng)態(tài)電源電流 模擬電路 測(cè)量電路 研究進(jìn)展
I測(cè)試的一個(gè)關(guān)鍵是準(zhǔn)確高效地從供電回路中測(cè)取電流信號(hào)。I信號(hào)具有信號(hào)較弱、持續(xù)時(shí)間短、頻譜范圍廣、頻率特性與被測(cè)電路本身的固有頻率特性存在很大差別的特點(diǎn),因此測(cè)量難度較大。與I測(cè)試相比[4,5],I測(cè)試采樣速度和精度等方面要求更高;與數(shù)字電路[6,7]相比,模擬電路的I測(cè)試需要考慮信號(hào)的連續(xù)特性和電路的容差等問題[8]。
1)阻值
圖1 測(cè)試原理圖
2)精度
3)溫度系數(shù)
圖2所示的自動(dòng)調(diào)零放大電路使用了兩級(jí)組合放大器的架構(gòu),由一個(gè)主放大器A1和調(diào)零放大器A2構(gòu)成。調(diào)零放大器的輸入端與主放大器的輸入端共用一個(gè)輸入信號(hào),而調(diào)零放大器的輸出端接到了主放大器的調(diào)零輸入端。主放大器的輸入端始終接在測(cè)試信號(hào)的通路上起放大作用。調(diào)零放大器持續(xù)消除自身的失調(diào)電壓,檢測(cè)主放大器的失調(diào)電壓并且對(duì)主放大器施加校正信號(hào),實(shí)現(xiàn)對(duì)主放大器信號(hào)的持續(xù)校正。
圖2 自動(dòng)調(diào)零放大電路的基本原理
這種基于自動(dòng)調(diào)零放大電路的測(cè)量電路設(shè)計(jì)在一些國外研究[12,13]中得到采用,并證實(shí)了其可行性。文獻(xiàn)[12]介紹了一種寬帶CMOS電路內(nèi)置動(dòng)態(tài)電流傳感器,在進(jìn)行傳感器的設(shè)計(jì)時(shí)考慮了直流偏置校正,并采用自動(dòng)調(diào)零放大電路來校正MOS偏置電壓。通過連續(xù)不斷地對(duì)傳感器差分放大器的輸出進(jìn)行采樣,并對(duì)主放大器的輸入進(jìn)行了負(fù)反饋校正,維持了零伏特的放大器輸出。相同的設(shè)計(jì)理念也應(yīng)用于文獻(xiàn)[13]中,與低通濾波器一同使用,實(shí)現(xiàn)了動(dòng)態(tài)偏置和失調(diào)電壓控制,提高了電路精度。
圖3 儀表放大電路的基本原理
該儀表放大電路由兩級(jí)差分放大器電路構(gòu)成,這種設(shè)計(jì)有以下特點(diǎn):
1)運(yùn)算放大器A1、A2都接成比例運(yùn)算電路形式,采用同相差分輸入方式,這樣可以大幅度提高電路的輸入阻抗,減小電路對(duì)微弱輸入信號(hào)的衰減作用,在從信號(hào)源提取微弱信號(hào)時(shí)發(fā)揮了非常重要的功能。
2)電路采用對(duì)稱形式,外圍電阻采用高精密電阻,使得漂移、噪聲、失調(diào)電壓及失調(diào)電流等相互抵消,以提高電路的測(cè)試精度。
3)差分輸入使測(cè)量電路只對(duì)差模信號(hào)(有用信號(hào))放大,而對(duì)共模輸入信號(hào)(干擾信號(hào))只起跟隨作用,使得送到后級(jí)的差模信號(hào)與共模信號(hào)的幅值之比(即CMRR)得到提高。
圖4 單路JBT電流鏡
圖5 差分放大器監(jiān)測(cè)電路
該測(cè)量電路提供了一種測(cè)量電路設(shè)計(jì)的新思路。但是,該文獻(xiàn)沒有提供實(shí)現(xiàn)這一電路的具體運(yùn)放型號(hào)以及部件的參數(shù)。此外,造成該電路與之間的偏差的主要因素為運(yùn)放的直流偏置,可以通過增加零點(diǎn)調(diào)零電路或斬波放大器等技術(shù)來最小化放大器的直流偏置。另外,在改善電路的抗噪性能上還有較大的提升空間。
[1] S. T. Su, RZ Makki, T. Nagle. Transient power supply current monitoring-A new test method for CMOS VLSI circuits[J], Journal of Electronic Testing: Theory and Applications, 1995, 6(1): 23-44.
[2] G. Gyepes,D. Arbet,L. Majer. A new IDDT test approach and its efficiency in covering resistive opens in SRAM arrays[J].Microprocessors and microsystems. 2014, 38(5): 359-367.
[3] 林潔生. 基于電源電流的芯片故障診斷與預(yù)測(cè)研究[D]. 華南理工大學(xué), 2016.
[4] S. D. Dasnurkar, J. A. Abraham. Calibration enabled scalable current sensor module for quiescent current testing[J]. Journal of Electronic Testing-Theory and Applications, 2012, 28 (5): 679-704.
[5] Michihiro Shintani, Takashi Sato. device-parameter estimation through IDDQ signatures [J]. IEICE TRANSACTIONS on Information and Systems, 2013, E96D(2):303-313.
[6] G. Gyepes, D. Arbet, J. Brenkus, V. Stopjakova, J. Mihalov. An on chip dynamic supply current monitor for testing of digital circuits[C]. Radioelektronika, 2013 23rdInternational Conference, 2013.
[7] G. Gyepes, D. Arbet, J. Brenkus, V. Stopjaková. Application of IDDT test towards increasing SRAM reliability in nanometer technologies[C]. IEEE International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS 2012) 15th, 2012.
[8] Golonek T, Grzechca D, Rutkowski J. Analog IC fault diagnosis by means of supply current monitoring in test points selected evolutionarily[C]. International Conference on Signals and Electronic Systems. IEEE, 2010:397-400.
[9] 謝暄, 基于動(dòng)態(tài)電流信息的集成電路測(cè)試研究[D] , 成都: 電子科技大學(xué),2009.
[10] B. Alorda, A. Ivanov, J. Segura. An off-chip sensor circuit for on-line transient current testing[C]. IEEE Symposium on Security and Privacy (SP 2011) 32nd,2011.
[11] 方佩敏. 高精度電流檢測(cè)電阻[J]. 今日電子, 2008(01) : 51-53.
[12] J. Roberts, A. Eastridge, D. Binkley, S. Thomas, R. Makki. A high speed dynamic power supply current sensor[J]. Southeastcon, IEEE, 2007: 728-733.
[13] W. J. Tenten, P. R. Shepherd. Novel fully differential chopper OTA with dynamic bias control and current controlled cascoded output[J]. International Journal of Electronics, 1999, 68(1) :87.
[14] B. Alorda, B. Bloechel, A. Keshavarzi, J. Segura. Transient Current Off-chip Sensor Circuit for Digital IC Production Testing[J]. Electronics Letters, 2002, 38(18) :1028-1029.
[15] A. Keshavarzi, B. Bloechel, J. Segura, B. Alorda. CHARDIN: An off-chip transient current monitor with digital interface for production testing[C]. 2003 IEEE International Test Conference(ITC) , 2003.
[16] 李向軍, 李春明. CMOS集成電路瞬態(tài)電流片外電流傳感器電路[J]. 現(xiàn)代電子技術(shù), 2008(14) : 192-194.
[17] Miguez M, Gak J, Oliva A, et al. Active current mirrors for low-voltage analog circuit design[J]. Circuits Systems & Signal Processing, 2017, 36(12):1-17.
[18] B. Kruseman, P. Janssen, V. Zieren. Transient current testing of 0.25 um CMOS Devices[C].IEEE International Test conference. 1999: 47-56.
[19] I. Pecuh, M. Margala, V. Stopjakova. 1.5 volts Iddq/Iddt current monitor[C]. Electrical and Computer Engineering, 1999 IEEE Canadian Conference on, 1999.
[20] S. Umezu, M. Hashizume, H. Yotsuyanagi. A built-in supply current test circuit for pin ppens in assembled PCBs[C]. Electronics Packaging (ICEP), 2014 International Conference on, 2014.
[21] MA Al-Qutayri. Supply current monitor and setup for fault detection in analogue circuits[C]. Electronics, Circuits and Systems, 2002. 9th International Conference on, 2002.
A Survey of Dynamic Supply Current Signal Measurement Method for Analog Circuit
Yu Jiankeng, Zhang Chaojie, Wu Jiechang
(College of Power Engineering, Naval University of Engineering, Wuhan 430033, China )
fault diagnosis from theory to application. On the basis of analyzing the characteristics of the test, the development status of Isignal measurement technology is summed up. Many measurement methods are classified, including the methods that use automatic zeroing amplifier, instrumentation amplifier and current mirror, especially the method without adopting sampling resistance. The advantages and disadvantages of various measurement methods are compared, and the development trend of analog circuit
TM930.12
A
1003-4862(2018)11-0059-06
2018-05-21
國家自然科學(xué)基金(51509255)
余堅(jiān)鏗(1993-),男,在讀研究生,研究方向:艦船自動(dòng)化與仿真技術(shù)。E-mail:454175938@qq.com。