亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        丙酮/氯離子協(xié)同活化過(guò)一硫酸鹽降解酸性橙

        2018-11-28 03:47:04陳家斌黃天寅
        中國(guó)環(huán)境科學(xué) 2018年11期
        關(guān)鍵詞:硫酸鹽丙酮投加量

        張 珂,許 芬,陳家斌,萬(wàn) 玲,黃天寅

        ?

        丙酮/氯離子協(xié)同活化過(guò)一硫酸鹽降解酸性橙

        張 珂,許 芬,陳家斌*,萬(wàn) 玲,黃天寅

        (蘇州科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 蘇州 215009)

        采用丙酮/氯離子(Cl-)協(xié)同活化過(guò)一硫酸鹽(PMS)降解偶氮染料酸性橙7(AO7).研究發(fā)現(xiàn),與Cl-/PMS體系相比,丙酮/Cl-/PMS體系降解AO7的效果顯著增強(qiáng),相應(yīng)的AO7表觀速率常數(shù)從0.0767增加到0.1725min-1.考察了丙酮/Cl-/PMS體系降解AO7的主要影響因素(初始pH值、Cl-濃度、PMS濃度、丙酮濃度).結(jié)果表明,在堿性環(huán)境下,隨著Cl-、PMS和丙酮濃度的增加,AO7的降解效果有所增強(qiáng);研究丙酮/Cl-/PMS體系降解AO7的降解機(jī)制.自由基猝滅實(shí)驗(yàn)表明,丙酮/Cl-/PMS體系中沒(méi)有自由基(硫酸根自由基(SO4-?)和羥基自由基(HO?))的產(chǎn)生,而次氯酸根(ClO-)濃度在反應(yīng)過(guò)程中逐漸增加,得出丙酮作為催化劑促進(jìn)Cl-和PMS產(chǎn)生更多HClO的結(jié)論.通過(guò)紫外可見(jiàn)光譜分析,表明AO7分子中偶氮鍵及萘環(huán)結(jié)構(gòu)均被破壞.

        氯離子;過(guò)一硫酸鹽;丙酮;酸性橙7;次氯酸

        偶氮染料廣泛用于現(xiàn)代工業(yè)中,如紡織、造紙、制革等行業(yè).由于偶氮染料具有毒性強(qiáng)、含鹽量高、致癌、致突變等特點(diǎn)[1-3],若不經(jīng)處理直接排放會(huì)對(duì)環(huán)境和人類(lèi)健康造成嚴(yán)重危害.大多數(shù)偶氮染料可生化性不高,成分復(fù)雜,屬于生物難降解,傳統(tǒng)的廢水處理技術(shù)已無(wú)法滿足染料廢水的處理要求[4-6].近年來(lái),基于硫酸根自由基(SO- 4?)的高級(jí)氧化技術(shù)已得到廣泛應(yīng)用[7-8].硫酸根自由基(SO- 4?)有較高的氧化還原電位(0=2.5~3.1V)[9-11],可以通過(guò)加熱[12-14]、紫外光照射[15-17]、過(guò)渡金屬離子[18-21]活化過(guò)一硫酸鹽(PMS)產(chǎn)生.然而這幾種活化方法都具有一定的局限性.加熱和紫外光照射均需要提供大量的能量且成本較高.過(guò)渡金屬離子雖然有易獲取、成本低等優(yōu)點(diǎn)[22-23],但是其較低的回收率和可能造成的二次污染限制了此方法的廣泛運(yùn)用[24].因此,新型過(guò)硫酸鹽活化方法的研究成為目前過(guò)硫酸鹽高級(jí)氧化技術(shù)(AOPs)研究的熱點(diǎn).

        氯離子(Cl-)是印染廢水中主要的無(wú)機(jī)成分.據(jù)報(bào)道,染料廢水中含有的無(wú)機(jī)鹽(NaCl)等可高達(dá)5~100mg/L[25-26].大量研究表明,氯離子(Cl-)對(duì)AOPs有很大影響[27-30].通過(guò)研究Cl-對(duì)鈷/單過(guò)硫酸鹽體系降解偶氮染料的影響,發(fā)現(xiàn)低濃度的Cl-(<5mmol/L)對(duì)染料脫色有明顯的抑制作用,高濃度Cl-(>50mmol/L)對(duì)染料降解的抑制作用會(huì)不斷減小,甚至?xí)铀偃玖系拿撋玔30].

        通過(guò)研究Cl-濃度對(duì)單獨(dú)PMS體系降解金橙G(OG)的影響,得出Cl-與PMS反應(yīng)產(chǎn)生具有氧化活性的鹵化物HOCl,能夠直接降解OG[31].因此,探索PMS活化過(guò)程中廢水基質(zhì)(如Cl-)所起到的作用對(duì)于該技術(shù)用于染料廢水處理具有重要意義.

        本文在研究新型過(guò)硫酸鹽活化方法的過(guò)程中,發(fā)現(xiàn)丙酮/Cl-可以協(xié)同活化PMS,加速染料降解.通過(guò)改變反應(yīng)條件,研究了丙酮/Cl-/PMS體系的主要影響因素,并通過(guò)自由基猝滅實(shí)驗(yàn)及采用熒光猝滅法分析了丙酮/Cl-/PMS體系降解AO7中可能存在的機(jī)制.

        1 試劑與方法

        1.1 實(shí)驗(yàn)試劑與設(shè)備

        過(guò)一硫酸鹽(HKSO5· 0.5KHSO4· 0.5K2SO4, PMS)、硫酸耐爾藍(lán)A(C40H40N6O6S)、曲拉通X- 100((C2H4O)NC14H22O)購(gòu)于Sigma-Aldrich; 酸性橙7(AO7)購(gòu)于國(guó)藥集團(tuán)化學(xué)試劑有限公司,氯化鈉(NaCl) 、丙酮(C3H6O)、亞硝酸鈉(NaNO2)、甲醇(CH3OH)、叔丁醇(C4H9OH)、硫酸銨[(NH4)2·SO4]、醋酸(CH3COOH)、磷酸(H3PO4)、硼酸(H3BO3)、硫酸(H2SO4)、氫氧化鈉(NaOH)均為分析純購(gòu)于國(guó)藥集團(tuán)化學(xué)試劑有限公司.實(shí)驗(yàn)用水為超純水.實(shí)驗(yàn)用攪拌裝置購(gòu)于上海標(biāo)本模型廠(JB50-D型).

        1.2 降解實(shí)驗(yàn)

        在室溫下,將一定量PMS和NaCl注入150mL的錐形瓶中,同時(shí)在錐形瓶中加入一定量的超純水,并用稀H2SO4或NaOH調(diào)節(jié)pH值,然后迅速加入一定量的丙酮和一定量的AO7溶液,使得總?cè)芤哼_(dá)到100mL,反應(yīng)體系密封后置于磁力攪拌器混合并啟動(dòng)反應(yīng).每隔一段時(shí)間取樣,迅速加入過(guò)量猝滅劑NaNO2終止反應(yīng),猝滅后的樣品經(jīng)0.45μm濾膜過(guò)濾后,收集濾液24h內(nèi)測(cè)定,每組實(shí)驗(yàn)均重復(fù)3次以確保實(shí)驗(yàn)的重現(xiàn)性,最終結(jié)果取三次平均值.

        1.3 分析方法

        使用Mapada UV-1600(PC)紫外可見(jiàn)分光光度計(jì),于AO7最大吸收波長(zhǎng)484nm處測(cè)定濾液的吸光度,代入標(biāo)準(zhǔn)曲線求得濃度.次氯酸根濃度采用PerkinElmer LS55熒光分光光度計(jì)測(cè)定,熒光吸收波長(zhǎng)為686nm,激發(fā)波長(zhǎng)為634nm.應(yīng)用Excel2016、Origin9.0進(jìn)行數(shù)據(jù)分析和作圖

        2 結(jié)果與討論

        2.1 不同體系下AO7的降解效果

        圖1顯示了不同體系下AO7的降解效果.結(jié)果表明,PMS單獨(dú)存在時(shí),AO7在20min內(nèi)降解了21%,丙酮單獨(dú)存在時(shí),AO7在20min內(nèi)幾乎不降解.在PMS體系中加入Cl-,AO7在20min內(nèi)降解了38%;而在Cl-/PMS體系中加入丙酮,AO7在20min內(nèi)降解了97%.分析原因可能是,Cl-和PMS反應(yīng)產(chǎn)生HOCl和Cl2,而丙酮催化Cl-/PMS體系產(chǎn)生更多HOCl[見(jiàn)式(1)~(4)][4,32]. HOCl具有強(qiáng)氧化性,可以有效氧化AO7.

        圖1 不同體系下AO7的降解效果

        [AO7]=50μM, [PMS]=1mM, [Cl-]=10mM, [丙酮]=10mM,pH=9.0,= 20℃

        HSO

        5

        -

        + Cl

        -

        → SO

        4

        2

        -

        + HOCl (1)

        HSO

        5

        -

        + 2Cl

        -

        +H

        +

        → SO

        4

        2

        -

        + Cl

        2

        + H

        2

        O (2)

        HOCl → ClO

        -

        + H

        +

        (3)

        HSO

        5

        -

        + Cl

        -

        OCl

        -

        + H

        +

        + SO

        4

        2

        -

        (4)

        2.2 丙酮/Cl-/PMS體系對(duì)AO7的降解機(jī)制

        為了確定丙酮/Cl-/PMS體系降解AO7的反應(yīng)機(jī)理,向反應(yīng)體系中加入自由基(SO- 4?、HO?)猝滅劑甲醇(Me)和叔丁醇(TBA)[33]以及HOCl猝滅劑NH4+[34-35],加入Me、TBA濃度均為100mmol/L,NH4+濃度從10增加到100mmol/L.如圖2所示,在丙酮/Cl-/PMS體系中加入Me和TBA后,對(duì)AO7的降解幾乎沒(méi)有影響,而加入NH4+后,AO7的降解受到明顯抑制.當(dāng)NH4+濃度增加到100mmol/L時(shí), AO7在20min內(nèi)的降解率從97%下降到19%.說(shuō)明在丙酮/Cl-/PMS體系中AO7的降解并不是自由基的作用,而是產(chǎn)生的HOCl氧化降解的結(jié)果.因此,丙酮對(duì)Cl-/PMS體系的促進(jìn)機(jī)理可能是催化作用.

        為了進(jìn)一步證明丙酮對(duì)Cl-/PMS體系的催化作用,實(shí)驗(yàn)建立了以硫酸耐爾藍(lán)A為探針的熒光光譜法,體系最大激發(fā)和最大發(fā)射波長(zhǎng)分別位于634, 686nm處.實(shí)驗(yàn)基于在pH=2.0的緩沖溶液中,ClO-和熒光物質(zhì)分子硫酸耐爾藍(lán)A借助分子間作用力,在基態(tài)時(shí)生成不發(fā)光的配合物,從而導(dǎo)致熒光強(qiáng)度減弱,ClO-濃度與熒光猝滅程度成正比,通過(guò)測(cè)量熒光強(qiáng)度的猝滅程度判斷ClO-濃度[36-38].實(shí)驗(yàn)結(jié)果如圖3所示,在PMS、Cl-/PMS、丙酮/Cl-/PMS體系中檢測(cè)到的熒光猝滅強(qiáng)度依次增強(qiáng),說(shuō)明與PMS、Cl-/PMS體系相比,丙酮的加入使得反應(yīng)體系中HOCl的量增加,即丙酮在Cl-/PMS體系中催化Cl-和PMS產(chǎn)生更多HOCl,這與Gallopo等[32]報(bào)道的文獻(xiàn)結(jié)果一致.

        圖2 叔丁醇、甲醇、NH4+對(duì)丙酮/Cl-/PMS體系降解AO7的影響

        [AO7]=50μmol/L, [PMS]=1mmol/L, [Cl-]=10mmol/L,[丙酮]=10mmol/L, pH=9.0,= 20℃

        圖3 體系的熒光光譜

        [AO7]=50μmol/L, [PMS]=1mmol/L, [Cl-]=10mmol/L, [丙酮]=10mmol/L, pH=2.0,= 20℃

        2.3 PMS濃度對(duì)AO7降解的影響

        不同PMS濃度對(duì)降解AO7的影響如圖4(a)所示,PMS濃度從0增加到0.5mmol/L時(shí),AO7在20min內(nèi)的降解率增大了88%,當(dāng)PMS濃度增加到3mmol/L時(shí),AO7的降解率僅10min就達(dá)到了97%,如圖4(b)所示,通過(guò)動(dòng)力學(xué)擬合得出PMS降解AO7符合一級(jí)降解動(dòng)力學(xué),相應(yīng)的表觀速率常數(shù)分別為0、0.01304、0.10681、0.22994、0.39969min-1.結(jié)果表明,在一定范圍內(nèi),PMS濃度越高,AO7的降解效率就越快.但當(dāng)PMS濃度過(guò)高時(shí)(本實(shí)驗(yàn)取PMS濃度為10mmol/L),反應(yīng)速率沒(méi)有進(jìn)一步增大,且與PMS濃度為0.5mmol/L的反應(yīng)速率相當(dāng),相應(yīng)的AO7的表觀速率常數(shù)為0.14028min-1.原因可能是在PMS濃度過(guò)量的情況下,催化劑和Cl-的含量制約著反應(yīng)速率,部分PMS不能夠被及時(shí)活化而發(fā)生無(wú)效分解.

        [AO7]=50μmol/L, [Cl-]=10mmol/L,[丙酮]=10mmol/L,pH=9.0,= 20℃

        2.4 丙酮投加量對(duì)AO7降解的影響

        丙酮投加量對(duì)AO7降解效率的影響如圖5(a)所示.當(dāng)投加量分別為0,5,10,20mmol/L時(shí),20min時(shí)AO7的降解率分別為41%、73%、96%、100%;繼續(xù)增大丙酮投加量至100mmol/L,AO7全部脫色僅需要10min.圖5(b)顯示了,AO7降解的表現(xiàn)速率常數(shù)與丙酮投加量的關(guān)系.可以看出,隨著丙酮投加量的增加,AO7的表現(xiàn)速率常數(shù)也在隨之增大.這說(shuō)明丙酮投加量增大,催化Cl-與PMS產(chǎn)生更多的活性氯物質(zhì),從而使AO7的降解效率及降解速率均有所升高.

        [AO7]=50μmol/L, [PMS]=1mmol/L, [Cl-]=10mmol/L, pH=9.0,= 20℃

        2.5 Cl-濃度對(duì)AO7降解的影響

        保持其他試劑濃度以及反應(yīng)條件不變,考察不同Cl-濃度對(duì)AO7降解效果的影響.如圖6(a)所示,從圖6可以看出, Cl-濃度對(duì)AO7降解效果的趨勢(shì)與丙酮投加量相似.當(dāng)Cl-濃度從0增加到100mmol/L時(shí),AO7的降解率從35%增加到100%.圖6(b)顯示了, Cl-濃度對(duì)AO7降解符合一級(jí)降解動(dòng)力學(xué),AO7的表觀速率常數(shù)分別為0.02095、0.11471、0.18260、0.23335、0.26109、0.75005min-1.由此可知, Cl-濃度越高, Cl-與PMS產(chǎn)生的活性氯物種HOCl越多,丙酮/Cl-/PMS體系氧化降解AO7的速率越快.值得注意的是,當(dāng)Cl-濃度為0mmol/L時(shí),20min時(shí)AO7的降解率為35%,原因可能是丙酮催化PMS分解產(chǎn)生單線態(tài)氧分子(1O2)[39-40],對(duì)AO7起到一定的氧化降解作用.

        [AO7]=50μmol/L, [PMS]=1mmol/L, [丙酮]=10mmol/L, pH=9.0,= 20℃

        2.6 初始pH值的影響

        pH值是影響PMS活化的重要因素,于是考查了不同初始pH值對(duì)丙酮/Cl-/PMS體系氧化降解AO7的影響.通過(guò)0.1mol/L的NaOH和稀硫酸調(diào)節(jié)反應(yīng)初始pH值,結(jié)果如圖7所示.從圖7可以看出,在初始pH值為5.0、6.0時(shí),AO7幾乎不發(fā)生降解;當(dāng)初始pH值為7.0、8.0、9.0時(shí),AO7的降解率分別為42%、46%、100%.由此得出,在pH值為5.0、6.0時(shí)的酸性環(huán)境下,AO7幾乎不脫色,隨反應(yīng)體系初始pH值的升高,染料AO7降解效果逐漸增加. Montgomery[40]曾研究丙酮催化PMS反應(yīng)的影響,得出在弱堿性環(huán)境下,丙酮可以更有效的催化PMS進(jìn)行一系列的反應(yīng).

        圖7 初始pH值對(duì)丙酮/Cl-/PMS體系降解AO7的影響

        [AO7]=50μmol/L, [PMS]=1mmol/L, [丙酮]=10mmol/L, pH=9.0,= 20℃

        2.7 腐殖酸濃度的影響

        圖8 HA濃度對(duì)丙酮/Cl-/PMS體系降解AO7的影響

        [AO7]=50μmol/L, [PMS]=1mmol/L, [丙酮]=10mmol/L, [Cl-]=10mmol/L, pH=9.0,= 20℃

        水體中含有大量的有機(jī)物,有研究表明自然水體中所含有的溶解性有機(jī)物質(zhì)(DOM)會(huì)對(duì)水體中污染物的降解有顯著影響[41].本實(shí)驗(yàn)選取腐殖酸作為研究對(duì)象,研究其在丙酮催化Cl-/PMS體系降解AO7中的作用.圖8給出了在保持其他試劑濃度及反應(yīng)條件不變的情況下,不同濃度的腐殖酸(HA)對(duì)丙酮/Cl-/PMS體系中AO7降解的影響情況.從圖中可以看出,當(dāng)HA的濃度分別為0,5,10,20mg/L時(shí), 20min時(shí)AO7的降解效率分別為100%、96%、95%、94%, AO7并未受到明顯的抑制作用,分析原因可能是: (1)AO7與腐殖酸之間作用力很弱,因此不會(huì)影響AO7;(2)由于PMS的存在,阻礙了腐殖酸與電子的結(jié)合.

        2.8 AO7降解過(guò)程分析

        圖9所示為丙酮/Cl-/PMS體系降解AO7過(guò)程中紫外可見(jiàn)光譜.從圖9可以看出,AO7主要有兩處特征吸收峰,分別位于可見(jiàn)光區(qū)484nm和紫外光區(qū)310nm處,有研究表明[42-44]484nm處對(duì)應(yīng)的是發(fā)色基團(tuán)偶氮鍵,310nm 處對(duì)應(yīng)的是萘環(huán)結(jié)構(gòu).隨著體系反應(yīng)的進(jìn)行,AO7在484nm 和310nm處的特征峰強(qiáng)度不斷下降,表明AO7的偶氮鍵和萘環(huán)結(jié)構(gòu)不斷被氧化斷裂,如前文所述,該氧化物質(zhì)即為HOCl,15min后,偶氮鍵和萘環(huán)的特征峰接近消失.

        圖9 AO7降解的紫外可見(jiàn)光譜

        [AO7]=50μmol/L, [PMS]=1mmol/L, [丙酮]=10mmol/L, [Cl-]=10mmol/L, pH=9.0,= 20℃

        3 結(jié)論

        3.1 在PMS體系中,丙酮或Cl-單獨(dú)存在,AO7在20min內(nèi)分別降解了0和38%,而當(dāng)丙酮和Cl-同時(shí)存在,AO7在20min內(nèi)降解了97%.由此可知,丙酮/Cl-協(xié)同活化PMS降解AO7的效果顯著,通過(guò)熒光光譜法可以證實(shí)丙酮催化Cl-/PMS產(chǎn)生更多的HOCl,使AO7脫色.

        3.2 體系中的PMS濃度、丙酮濃度、Cl-濃度與AO7的降解率成正相關(guān);初始pH值對(duì)AO7的降解有較大的影響,弱堿性如pH=9條件下有利于反應(yīng)進(jìn)行;腐殖酸濃度分別為0,5,10,20mg/L時(shí),20min時(shí)AO7的降解效率分別為100%、96%、95%、94%.因此,腐殖酸的加入對(duì)AO7的降解幾乎不產(chǎn)生影響.

        3.3 隨著體系反應(yīng)的進(jìn)行, AO7在484nm和310nm處的特征峰強(qiáng)度不斷下降,表明體系中產(chǎn)生的HOCl不斷氧化破壞AO7的偶氮鍵和萘環(huán)結(jié)構(gòu),從而達(dá)到降解的目的.

        [1] Ji P, Zhang J, Chen F, et al. Study of adsorption and degradation of acid orange 7on the surface of CeO2, under visible light irradiation [J]. Applied Catalysis B Environmental, 2009,85(3):148-154.

        [2] Chen K C, Wu J Y, Huang C C, et al. Decolorization of azo dye using PVA-immobilized microorganisms [J]. Journal of Biotechnology, 2003,101(3):241-252.

        [3] Xu X R, Li X Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion [J]. Separation & Purification Technology, 2010,72(1):105-111.

        [4] Chen J, Zhang L, Huang T, et al. Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: Radical versus non-radical mechanism [J]. Journal of Hazardous Materials, 2016, 320:571-580.

        [5] Han D H, Wan J Q, Ma Y W, et al. Enhanced decolorization of Orange G in a Fe(II)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine [J]. Chemical Engineering Journal, 2014,256(6):316-323.

        [6] Wang M, Liu X, Pan B, et al. Photodegradation of Acid Orange 7in a UV/acetylacetone process [J]. Chemosphere, 2013,93(11):2877-2882.

        [7] Qian Y, Zhou X, Zhang Y, et al. Performance of α-methylnaphthalene degradation by dual oxidant of persulfate/calcium peroxide: Implication for ISCO [J]. Chemical Engineering Journal, 2015,279: 538-546.

        [8] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science & Technology, 2003,37(20):4790.

        [9] 王 瑩,陳家斌,張黎明,等.超聲波協(xié)同活性碳纖維活化過(guò)一硫酸鹽降解AO7 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2017,37(4):1404-1412.

        [10] Yang S, Yang X, Shao X, et al. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7at ambient temperature [J]. Journal of Hazardous Materials, 2011,186(1):659-666.

        [11] Neta P, Huie R E, Ross A B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution [J]. Journal of Physical & Chemical Reference Data, 1988,17(3):1027-1284.

        [12] Waldemer R H, Tratnyek P G, And R L J, et al. Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate:? Kinetics and Products [J]. Environmental Science & Technology, 2007,41(3): 1010-1015.

        [13] Teng Y. Sulfate Radical and its Application in Decontamination Technologies [J]. Critical Reviews in Environmental Science & Technology, 2015,45(16):1756-1800.

        [14] Liang C, Su H W. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate [J]. Industrial & Engineering Chemistry Research, 2009,48(11):472-475.

        [15] Lin Y T, Liang C, Chen J H. Feasibility study of ultraviolet activated persulfate oxidation of phenol [J]. Chemosphere, 2011,82(8):1168- 1172.

        [16] Gao Y, Gao N, Deng Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water [J]. Chemical Engineering Journal, 2012,195-196:248-253.

        [17] Khataee A R, Pons M N, Zahraa O. Photocatalytic degradation of three azo dyes using immobilized TiO2nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure [J]. Journal of Hazardous Materials, 2009,168(1):451-457.

        [18] Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants [J]. Environmental Science & Technology, 2004,38(13):3705-3712.

        [19] Liang C, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion [J]. Chemosphere, 2004,55(9):1225-1233.

        [20] Kusic H, Peternel I, Ukic S, et al. Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix [J]. Chemical Engineering Journal, 2011,172(1):109-121.

        [21] Yang S, Xiao T, Zhang J, et al. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7in aqueous solution [J]. Separation and Purification Technology, 2015,143:19-26.

        [22] Wang X, Wang L, Li J, et al. Degradation of Acid Orange 7by persulfate activated with zero valent iron in the presence of ultrasonic irradiation [J]. Separation & Purification Technology, 2014,122(3): 41-46.

        [23] Zhao J, Zhang Y, Xie Q, et al. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature [J]. Separation & Purification Technology, 2010,71(3):302-307.

        [24] Liu C S, Shih K, Sun C X, et al. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. [J]. Science of the Total Environment, 2012,416(507-512):507-512.

        [25] Muthukumar M, Selvakumar N. Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation [J]. Dyes & Pigments, 2004,62(3):221-228.

        [26] Dong Y, Chen J, Li C, et al. Decoloration of three azo dyes in water by photocatalysis of Fe (III)–oxalate complexes/H2O2, in the presence of inorganic salts [J]. Dyes & Pigments, 2007,73(2):261-268.

        [27] Wang Z, Feng M, Fang C, et al. Both degradation and AOX accumulation are significantly enhanced in UV/peroxymonosulfate/4- chlorophenol/Cl? system: two sides of the same coin? [J]. Rsc Advances, 2017,7(20):12318-12321.

        [28] Yuan R, Ramjaun S N, Wang Z, et al. Effects of chloride ion on degradation of Acid Orange 7by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds [J]. Journal of Hazardous Materials, 2011,196(1):173-179.

        [29] 徐 蕾,袁瑞霞,郭耀廣,等.氯離子對(duì)鈷/單過(guò)氧硫酸鹽體系降解2,4,6-三氯苯酚的影響[J]. 武漢大學(xué)學(xué)報(bào)(理學(xué)版), 2013,59(1): 51-56.

        [30] Wang Z, Yuan R, Guo Y, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: kinetic analysis [J]. Journal of Hazardous Materials, 2011,190(1):1083-1087.

        [31] 張黎明,陳家斌,房 聰,等.Cl~-對(duì)碳納米管/過(guò)一硫酸鹽體系降解金橙G的影響[J]. 中國(guó)環(huán)境科學(xué), 2016,36(12):3591-3600.

        [32] Gallopo A R, Edwards J O. Kinetics and mechanism of the oxidation of pyridine by Caro's acid catalyzed by ketones [J]. Chemischer Informationsdienst, 1981,12(37):1684-1688.

        [33] Zhou Y, Jiang J, Gao Y, et al. Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process [J]. Environmental Science & Technology, 2015,49(21):12941-12950.

        [34] Lou X Y, Guo Y G, Xiao D X, et al. Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation [J]. Environmental Science & Pollution Research, 2013, 20(9):6317-6323.

        [35] Deborde M, Von G U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review [J]. Water Research, 2008,42(1):13-51.

        [36] 段瑞林.熒光光譜法測(cè)定次氯酸鹽、腺嘌呤和維生素C [D]. 重慶:西南大學(xué), 2016.

        [37] Jonnalagadda S B, Parumasur N, Shezi M N. A user-friendly programme 'SIMKINERSQUO; for simulation of kinetics involving complex reaction mechanisms [J]. Computational Biology & Chemistry, 2003,27(2):147-152.

        [38] Ensafi A A, Amini M K, Mazloum M. Spectrophotometric Reaction Rate Method for the Determination of Trace Amounts of Vanadium(V) by its Catalytic Effect on the Oxidation of Nile Blue with Bromate [J]. Analytical Letters, 1999,32(9):1927-1937.

        [39] Edwards J O, Pater R H, Curclf R, et al. ON The formation and reactivity of dioxirane intermediates in the reaction of peroxoanions with organic substrates [J]. Photochemistry & Photobiology, 2010, 30(1):63-70.

        [40] Montgomery R E. Catalysis of peroxymonosulfate reactions by ketones [J]. Journal of the American Chemical Society, 2002,96(25): 7820-7821.

        [41] Vione D, Minella M, Maurino V, et al. Indirect photochemistry in sunlit surface waters: photoinduced production of reactive transient species [J]. Chemistry, 2014,20(34):10590.

        [42] 王 瑩,魏成耀,黃天寅,等.氮摻雜碳納米管活化過(guò)一硫酸鹽降解酸性橙AO7 [J]. 中國(guó)環(huán)境科學(xué), 2017,37(7):2583-2590.

        [43] Bauer C, Jacques P, Kalt A. Photooxidation of an azo dye induced by visible light incident on the surface of TiO2[J]. Journal of Photochemistry & Photobiology A Chemistry, 2001,140(1):87-92.

        [44] Feng W, Nansheng D, Helin H. Degradation mechanism of azo dye C. I. reactive red 2by iron powder reduction and photooxidation in aqueous solutions [J]. Chemosphere, 2000,41(8):1233-1238.

        Acetone and chloride ion Synergistically activate peroxymonosulfate to decolorize acid orange.

        ZHANG Ke, XU Fen, CHEN Jia-bin*, WAN Ling, HUANG Tian-yin

        (School of Enviromental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China)., 2018,38(11):4159~4165

        Acetone and chloride ion (Cl-) were used to synergistically activate peroxymonosulfate (PMS) to decolorize the azo dye, acid orange 7 (AO7). It was found that the first-order rate constant increased from 0.0767 to 0.1725min-1when acetone was added in Cl-/PMS systemIn the acetone/Cl-/PMS system, effect of various factors were explored, including initial pH, Cl-concentration, PMS and acetone dosage. The results indicated that the degradation of AO7 increased with the increase of Cl-、PMS、acetone concentration under alkaline conditions. The degradation mechanism of AO7 in acetone /Cl-/PMS system showed that neither sulfate radical(SO- 4?) nor hydroxyl(HO?) was produced therein. Instead, the HOCl concentration was proved to be increased during the reaction. Hence, acetone could promote the reaction between PMS and Cl-to generate more HOCl. From the analysis of UV-vis spectra, the azo bond and naphthalene ring in AO7 was found being destructed.

        chloride ion;peroxymonosulfate;acetone;acid orange 7;hypochlorous acid

        X703.1

        A

        1000-6923(2018)11-4159-07

        張 珂(1993-),女,安徽太和人,碩士研究生,主要研究方向?yàn)槲鬯幚砼c回用技術(shù).發(fā)表論文1篇.

        2018-04-18

        國(guó)家自然科學(xué)基金資助項(xiàng)目(51478283);江蘇省研究生實(shí)踐創(chuàng)新計(jì)劃項(xiàng)目(SJCX17_0677)

        * 責(zé)任作者, 講師, chenjiabincn@163.com

        猜你喜歡
        硫酸鹽丙酮投加量
        磁混凝沉淀工藝處理煤礦礦井水實(shí)驗(yàn)研究
        鐵/過(guò)硫酸鹽高級(jí)氧化體系強(qiáng)化方法的研究進(jìn)展
        云南化工(2021年5期)2021-12-21 07:41:16
        反滲透淡化水調(diào)質(zhì)穩(wěn)定性及健康性實(shí)驗(yàn)研究
        紫外光分解銀硫代硫酸鹽絡(luò)合物的研究
        四川冶金(2019年5期)2019-12-23 09:04:48
        ICP-OES法測(cè)定硫酸鹽類(lèi)鉛鋅礦石中的鉛量
        冷凍丙酮法提取山核桃油中的亞油酸和亞麻酸
        食品界(2016年4期)2016-02-27 07:37:06
        硫酸鹽測(cè)定能力驗(yàn)證結(jié)果分析
        乙酰丙酮釹摻雜聚甲基丙烯酸甲酯的光學(xué)光譜性質(zhì)
        NaOH投加量對(duì)剩余污泥水解的影響
        混凝實(shí)驗(yàn)條件下混凝劑最佳投加量的研究
        国产成人色污在线观看| 欧洲人妻丰满av无码久久不卡| 国产精品久久国产精麻豆99网站| 伊人狠狠色j香婷婷综合| 亚洲av综合av国一区二区三区| 人妻中文字幕在线网站| 久久婷婷成人综合色| 亚洲精品6久久久久中文字幕| 青青草视频在线免费视频| 日韩人妻无码精品一专区二区三区| 99精品欧美一区二区三区| 精品无码久久久九九九AV| 精品视频一区二区在线观看| 婷婷色婷婷开心五月四| 国产女人高潮视频在线观看| 久久狠狠高潮亚洲精品暴力打| 成年人视频在线播放麻豆| 丝袜美腿一区二区国产| 国产综合久久久久| 亚洲国产香蕉视频欧美| 午夜视频在线观看国产| 色婷婷五月综合激情中文字幕| 国产极品美女高潮抽搐免费网站| 不卡a v无码在线| 国产老熟女伦老熟妇露脸| 国产精品久久久久久久| 国产午夜成人久久无码一区二区 | 国产操逼视频| 少妇无码av无码去区钱| 亚洲无人区一码二码国产内射 | 国内精品久久久久久无码不卡| 亚洲一区丝袜美腿在线观看| 久久久精品亚洲人与狗| 国模无码一区二区三区不卡| 国产亚洲精品看片在线观看| 一区二区三区视频偷拍| 亚洲欧美综合精品成人网站| 亚洲av无码一区二区三区在线 | 精品人妻一区二区三区久久| 日日噜狠狠噜天天噜av| 99亚洲乱人伦精品|