高愛(ài)平
摘 要 本文設(shè)計(jì)由簡(jiǎn)到繁、逐層分析、數(shù)形結(jié)合的教學(xué)過(guò)程,創(chuàng)設(shè)比較-歸納-猜想-論證的教學(xué)情境,啟發(fā)學(xué)生探索泰勒公式的意義、證明及應(yīng)用,激發(fā)學(xué)習(xí)興趣,培養(yǎng)動(dòng)手能力,提高學(xué)習(xí)效率。
關(guān)鍵詞 泰勒公式 羅比達(dá)法則 柯西中值定理 函數(shù)逼近 誤差
中圖分類號(hào):G424 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.16400/j.cnki.kjdkx.2018.07.051
Abstract This paper designs the teaching process from simple to complex, layer-by-layer analysis and number-shape combination. It creates a comparative-induction-guessing-arguing teaching situation and inspires students to explore the significance, proof, and application of Taylor formulas. The purpose is to stimulate learning interest, cultivate practical ability and improve learning efficiency.
Keywords Taylor formula; LHospital ruler; Cauchy mean value theorem; function approximation; error
參考文獻(xiàn)
[1] 劉玉璉.數(shù)學(xué)分析[M].北京:高等教育出版社,1994.
[2] 康建梅,陳占華,鄭麗霞,胡秀珍.對(duì)“泰勒公式”教學(xué)的探討[J].內(nèi)蒙古師范大學(xué)學(xué)報(bào),2017.