關(guān)鈺淋
摘 要 利用等價無窮小代換法求函數(shù)極限是數(shù)學分析中的重要方法之一。由于這種方法可以大大簡化一些函數(shù)極限的計算,因而備受廣大同學的青睞。然而這種方法并非在任何情況下都可以使用,使用時稍有不慎就會產(chǎn)生意想不到的錯誤。本文對導師在課堂上布置的討論課題“利用等價無窮小求極限應注意哪些問題”進行了較為深入的研究,給出了幾個關(guān)于無窮小量的加、減、乘、除的極限以及復合函數(shù)中使用等價無窮小代換法的條件,并給出了證明及應用舉例。
關(guān)鍵詞 數(shù)學分析 無窮小量 等價代換 極限 洛必達法則
中圖分類號:O211.4 文獻標識碼:A DOI:10.16400/j.cnki.kjdkx.2018.07.015
Abstract The use of the equivalent infinity substituting method to find the function limit is one of the important methods in mathematical analysis. Because this method can greatly simplify the calculation of some function limits, it is greatly favored by the majority of students. However, this method cannot be used under any circumstances, and a slight mistake in use can produce unexpected errors. In this paper, the discussion topic of the tutor in the classroom, "What problems should be paid attention to by using the equivalent infinitesimal minimum limit" is studied in depth, and several limits on the addition, subtraction, multiplication and division of infinitesimal quantities and compound functions are given. The conditions of the equivalent infinitesimal substitution method are used, and the proof and application examples are given.
Keywords mathematics analysis; infinitesimal; equivalent substitution; limit; L'Opida Rule
參考文獻
[1] 華東師范大學數(shù)學系編.數(shù)學分析(上)(第四版)[M].北京:高等教育出版社,2017.
[2] 陳新明.用等價無窮小代換法求極限的一些問題[J].高等數(shù)學研究,2008.11(5):56-58.
[3] 同濟大學數(shù)學教研室編.高等數(shù)學(上)(第七版)[M].北京:高等教育出版社,2017.