王振華,賀懷杰,鄭旭榮,張金珠,李文昊
?
新疆典型綠洲棉稈還田對覆膜滴灌棉田殘膜分布的影響
王振華,賀懷杰,鄭旭榮,張金珠,李文昊
(1. 石河子大學水利建筑工程學院,石河子 832000;2. 現(xiàn)代節(jié)水灌溉兵團重點實驗室,石河子 832000)
為探尋長期膜下滴灌棉田在采取棉稈還田后殘膜的分布狀況,于2016年棉花采摘后在應用膜下滴灌開始年份分別為2006年、2002年和1998年的3塊棉田中采集土壤樣品,然后進行棉稈粉碎還田,2017年對3塊試驗棉田再次進行取樣,分析秸稈還田前后0~40 cm土層中殘膜面積、質(zhì)量及棉桿殘留量。結(jié)果表明:1)秸稈還田前,3塊試驗田的地膜殘留密度隨覆膜年限增加逐年增加,棉田土壤處于嚴重污染狀態(tài);2)采取棉稈粉碎還田后,3個取樣地塊0~40 cm土壤中棉稈分布總體上呈現(xiàn)由上至下先增加后減少并在15~25 cm深度土壤中聚集分布的特點;3)秸稈還田后,3塊取樣棉田0~15 cm耕作層土壤中殘膜面積占比58%以上、殘膜質(zhì)量占比60%以上,該層中面積>5~30 cm2和質(zhì)量>50~100 mg殘膜均增加顯著,相對秸稈還田前的土壤殘膜分別平均增加20%和10%左右。
地膜;棉花;土壤;秸稈還田;典型綠洲區(qū);殘膜;膜下滴灌
新疆深居內(nèi)陸,年平均降水少、蒸發(fā)強烈,水資源短缺嚴重制約當?shù)剞r(nóng)業(yè)生產(chǎn)發(fā)展,因此膜下滴灌技術(shù)在新疆被廣泛應用[1]。自1996年新疆兵團試驗并推廣膜下滴灌技術(shù)以來僅新疆地區(qū)的滴灌應用面積就已超過2.0×106hm2,極大程度上促進了新疆地區(qū)農(nóng)業(yè)發(fā)展,其中石河子墾區(qū)是新疆應用膜下滴灌技術(shù)最早的地區(qū)[2]。2015年新疆地區(qū)農(nóng)用地膜使用量和農(nóng)作物總播種面積分別為2.69×108kg和5.76×106hm2,占全國農(nóng)用地膜使用量和農(nóng)作物總播種面積的比例分別為10.33%和3.46%,其中新疆地區(qū)棉花總播種面積為1.90×106hm2,占新疆農(nóng)作物總播種面積的33.08%[3]。由于新疆地區(qū)氣候條件、水資源短缺和膜下滴灌技術(shù)應用等因素限制導致棉田至今覆膜率仍高達100%[4]。農(nóng)田覆蓋塑料地膜能夠顯著加快作物生長[5],增加產(chǎn)量[6-7]和減少溫室氣體排放[8-10],但隨著覆膜耕作年限的增加地膜逐漸累積在農(nóng)田耕作層土壤中,造成土壤污染問題[11-15];同時土壤中殘留的地膜碎片仍具有吸附農(nóng)藥等有害物質(zhì)的性質(zhì),致使作物果實嚴重污染[16]。許多國內(nèi)學者[17-19]通過研究可降解生物地膜來解決農(nóng)田土壤中的殘膜污染問題并取得一定進展。秸稈覆蓋能夠在一定程度上減少塑料地膜使用量且在諸多方面優(yōu)于塑料地膜,例如秸稈還田可不同程度地替代部分化肥施用[20-21];采用表層覆蓋能有效抑制耕層水分散失和鹽分聚集[22];秸稈還田能夠提高長期連作棉田土壤微生物含量[23],使土壤腐殖質(zhì)品質(zhì)逐漸提高[24],這對于新疆地區(qū)鹽堿地改良有重要意義。
新疆地區(qū)現(xiàn)行滴灌種植模式下較多采用0.008 mm地膜,棉花生育末期所覆地膜已不同程度碎裂,同時地膜回收力度不足,進一步導致了土壤表層大量碎裂的地膜在棉稈還田過程中被攜帶到土壤耕作層中[25]。國內(nèi)學者[26-27]通過研究先進行地膜回收再進行棉稈粉碎的聯(lián)合作業(yè)機來進行地膜回收和棉稈粉碎并取得一定的效果,但仍有部分地膜隨著棉稈粉碎還田被攜帶到耕作層土壤中。本試驗開展于新疆生產(chǎn)建設(shè)兵團第八師121團,該團是石河子墾區(qū)應用膜下滴灌技術(shù)最早的團場[28],自本地區(qū)膜下滴灌技術(shù)應用推廣以來,隨著覆膜年限的增加耕作層土壤中殘膜呈現(xiàn)逐年增加的趨勢[12],同時本地區(qū)棉稈還田之前覆膜厚度較小和地膜回收力度不足等因素,在一定程度上加劇了農(nóng)田耕作層土壤中地膜殘留程度。為了解試驗區(qū)采取棉稈粉碎還田后棉田耕作層中殘膜在不同土壤深度中的分布狀況,本文以試驗區(qū)3塊不同覆膜滴灌年限棉田作為研究對象,對棉田土壤耕作層0~40 cm進行取樣,研究不同應用膜下滴灌年限棉田耕作層殘膜分布狀況,同時結(jié)合2016年和2017年取樣數(shù)據(jù)分析棉稈粉碎還田對殘膜分布的影響,為后期本地區(qū)棉稈粉碎還田、地膜回收以及殘膜污染防治提供參考。
試驗區(qū)位于新疆典型綠洲區(qū)石河子市121團,地處天山北麓、準葛爾盆地西南底部,古爾班通古特大沙漠南緣,天山北坡經(jīng)濟帶中段沙灣縣境內(nèi),瑪納斯河中游下野地墾區(qū),地理坐標為85°01¢~86°32¢E、43°27¢~45°21¢N,平均海拔337 m,屬于溫帶大陸性氣候,干旱少雨,多年平均降水量142 mm,年均蒸發(fā)量1 826 mm,年均日照數(shù)2 860 h,無霜期平均163 d,年平均氣溫6.2 ℃[28]。目前,121全團棉田種植均采用了膜下滴灌技術(shù),試驗區(qū)地理位置如圖1所示。
圖1 試驗區(qū)地理位置及取樣地塊A、B和C的位置
試驗區(qū)開墾種植棉田之前為鹽堿荒地,覆膜滴灌開始年份分別為2006年、2002年和1998年,至2017年覆膜滴灌分別為12、16和20 a。2016年選取3塊覆膜年限不同但距離相近的棉田(如圖1b所示A、B、C地塊)進行棉稈切碎還田試驗。這3個地塊間唯一區(qū)別是應用膜下滴灌開始年份不同。土質(zhì)均以壤土為主、黏質(zhì)和沙質(zhì)土較少。7月份地下水埋深較淺,年內(nèi)地下水位波動范圍在2~3.5 m之間。3塊棉田均歸121團統(tǒng)一管理種植,灌水施肥制度相同,棉田種植方式均為機采棉種植方式(1膜3管6行,圖2),耕地模式均為鏵式犁內(nèi)翻法(由地塊的中線左邊開始,按順時針方向運行,由中間向兩邊翻耕,最后在中央留下犁壟,兩邊留下犁溝)。
圖2 試驗區(qū)棉花1膜3管6行種植模式
2016年10月首次采用棉稈粉碎還田措施對3塊棉田進行秸稈還田。在棉花采摘完畢、地膜回收之后,采用棉稈還田機械將取樣地塊中棉稈(7 500~8 000 kg/hm2)切成4~6 cm小段,使用大型機械將切碎的棉稈翻入耕作層土壤中,最后對棉田冬灌(3 000 m3/hm2)以便來年4月中旬種植棉花。
于2016年10月秸稈還田前及2017年10月秸稈還田1 a時,分別在3塊棉田采集土壤樣本。2 a取樣方法一致,具體步驟如下:在每個地塊中心點位置選取1個大小為4 800 cm2×40 cm(取樣樣方面積×深度)的樣方,此樣方包含膜間、窄行和寬行,采用人工采集土塊;將土塊分割為100 cm2×5 cm(取樣樣方面積×高)方塊,每個樣方取8層,共384個土塊。將土塊進行編號、封裝之后帶回實驗室人工將殘膜和棉稈進行分離。
在實驗室內(nèi),用超聲波清洗儀(樂創(chuàng)LC-CXJ01)對殘膜和棉稈進行清洗(時間≥30 min),之后小心展開卷曲的殘膜,放在干燥陰涼處陰干后用萬分之一天平稱量地膜質(zhì)量;再將展開的殘膜置于帶尺子的A4紙張上用相機(佳能 EOS 80D)拍照,最后用Adobe Photoshop CS6處理后得到殘膜面積。將清洗之后的棉稈放到牛皮紙袋編號之后置于烘箱恒溫75 ℃烘干至恒質(zhì)量,再使用萬分之一天平稱量其質(zhì)量,計算地膜殘留密度:
Q=100M/(1)
式中Q代表棉田地膜殘留密度(kg/hm2),M代表棉田地塊殘膜質(zhì)量(mg),代表取樣樣方的面積(cm2),100是單位轉(zhuǎn)換系數(shù)。
采用Excel 2010 進行數(shù)據(jù)處理,使用AutoCAD 2008 和Origin Pro 9.0繪制圖形。
《農(nóng)田地膜殘留量限值及測定》(2010年版)標準中明確規(guī)定待播種農(nóng)田耕作層內(nèi)(0~25 cm或0~30 cm)地膜殘留量限值應≤75.0 kg/hm2 [29]。2016年棉桿還田前,覆膜12、16和20 a的3塊棉田地膜殘留密度分別為250.63、327.83和348.83 kg/hm2,均超出了標準限值。經(jīng)過1 a的棉桿還田,相應的3塊覆膜棉田地膜殘留密度(2017年)分別為279.55、344.58和365.42 kg/hm2,比2016年棉桿還田前分別增加11.54%、5.11%和4.76%,是國家標準限值的3.73、4.59和4.87倍??梢?,膜下滴灌應用超過10 a棉田土壤處于嚴重污染狀態(tài),地膜殘留密度隨著覆膜年限增加而增加。
2.2.1 棉田殘膜面積分布
2016年0~40 cm土層中土壤殘膜面積分布如圖3所示??傮w上,殘膜面積隨土壤深度增加呈指數(shù)函數(shù)減小,其中0~15 cm土層總的殘膜面積占0~40 cm土層殘膜總面積的50%以上。覆膜12、16和20 a地塊的0~15 cm土層中總的殘膜面積占比分別為53.14%、59.59%和59.45%,>15~30 cm土層中總的殘膜面積占比分別為42.91%、35.77%和35.44%,>30~40 cm土層中總的殘膜面積占比分別為3.95%、4.64%和5.11%。
圖3 秸稈還田1 a前后取樣棉田土壤殘膜面積分布
2016年棉田取樣完畢后3塊棉田均采取了棉稈還田措施,2017年對3塊棉田再次進行取樣。結(jié)果表明(圖3d~圖3f),3個地塊殘膜面積在0~40 cm土層中的分布特點與2016年取樣數(shù)據(jù)總體類似,均隨土壤深度呈指數(shù)函數(shù)降低趨勢。覆膜12、16和20 a的地塊在0~15 cm土層內(nèi)總的殘膜面積占0~40 cm土層殘膜總面積的比例分別為58.73%、59.92%和59.17%,與2016年相比分別增長5.59、0.33和-0.28個百分點,其中面積為>5~30 cm2的殘膜占比分別為57.22%、58.82%和58.17%,與2016年相比分別增長23.80、19.09和20.10個百分點;>15~30 cm土層中,對應的3個地塊在此層中的總的殘膜面積占比分別為35.67%、35.52%和56.32%,與2016年相比分別增長-7.23、-0.25和0.88個百分點;>30~40 cm深度土壤中殘膜面積占比分別為5.60%、4.76%和5.51%,比2016年分別增長1.65、0.12和0.4個百分點。自然狀態(tài)下塑料地膜降解超過200 a[19],可以認為秸稈還田1 a前后地膜面積的變化主要由秸稈還田引起,則由以上分析可知,秸稈還田與覆膜年限均影響了殘膜面積的分布,且秸稈還田對覆膜12 a地塊的影響最明顯,秸稈還田1 a后,覆膜12 a地塊0~15 cm和>30~40 cm土層殘膜面積明顯增加而>15~30 cm土層殘膜面積明顯降低,且在0~15 cm土層中>5~30 cm2的殘膜明顯增加。綜上,研究表明,秸稈還田后,3塊取樣棉田0~15 cm耕作層土壤中殘膜面積占比58%以上,該層中面積>5~30 cm2殘膜均增加顯著,相對秸稈還田前的土壤殘膜平均增加20%左右。
2.2.2 殘膜質(zhì)量分布特征
秸稈還田前(2016年)0~40 cm土層中殘膜質(zhì)量分布如圖4a~圖4c所示,12、16和20 a地塊中質(zhì)量>100 mg的殘膜均主要分布在0~15 cm土層中,該層總的殘膜質(zhì)量占比(占0~40 cm總殘膜質(zhì)量)分別是62.47%、66.90%和62.84%;>15~30 cm土層中總的殘膜質(zhì)量占比分別為35.32%、30.05%和33.06%;>30~40 cm土層中總的殘膜質(zhì)量占比分別為2.21%、3.05%和4.10%。
秸稈還田1 a后對3塊棉田再次進行取樣(圖4d~圖4f),發(fā)現(xiàn):3個地塊取樣棉田殘膜質(zhì)量整體分布趨勢與2016年相似,60%以上的殘膜質(zhì)量分布在0~15 cm土層, 12、16和20 a地塊中質(zhì)量>100 mg的殘膜仍主要分布在0~15 cm土壤中,該層總的殘膜質(zhì)量占比(占0~40 cm總殘膜質(zhì)量)分別是63.94%、67.18%和63.08%,分別比2016年增長1.47、0.28和0.24個百分點,其中質(zhì)量>50~100 mg殘膜占比分別是33.96%、37.50%和32.79%,分別比2016年增長10.53、11.65和10.24個百分點;在>15~30 cm土層中總的殘膜質(zhì)量占比分別為32.25%、28.92%和31.87%,分別比2016年增長-3.07、1.13和0.81個百分點,其中質(zhì)量>50~100 mg殘膜占比分別為13.35%、18.69%和18.21%,分別比2016年增長0.72、1.62和1.1個百分點;>30~40 cm土層中總的殘膜質(zhì)量占比分別為3.81%、3.90%和5.05%,分別比2016年增長1.60、0.85和0.95個百分點。可見,秸稈還田1 a后,覆膜16 a及以下地塊0~15 cm土層中殘膜質(zhì)量也明顯增加,尤其以>100 mg殘膜增加更明顯,覆膜12 a地塊>15~30 cm土層中的殘膜質(zhì)量明顯降低,而所有地塊>30~40 cm土層中殘膜質(zhì)量明顯增加。秸稈還田后,3塊取樣棉田60%以上的殘膜質(zhì)量分布在0~15 cm土層,其中質(zhì)量>50~100 mg殘膜均增加顯著,相對秸稈還田前的土壤殘膜平均增加10%左右。
圖4 秸稈還田1 a取樣棉田殘膜質(zhì)量分布
2.2.3 棉稈殘留量分布特征
圖5a~圖5c為秸稈還田1 a后不同覆膜年限棉田土壤剖面棉稈殘留量分布狀況。覆膜12 a地塊0~40 cm土層中棉桿呈現(xiàn)先均勻分布再增加后減小再均勻分布的趨勢,其中15~20 cm土層中棉稈集聚,同時該地塊棉稈殘留在18 cm土壤深度達到峰值。覆膜16 a地塊在0~40 cm深度土壤中呈現(xiàn)先增加后減小的趨勢,該地塊0~15 cm土壤深度中棉稈主要以<100 mg的小塊形式殘留,其中15~25 cm深度土壤中棉稈集聚,同時該地塊棉稈殘留在20 cm土壤深度達到峰值;在30~40 cm深度土壤中隨著土壤深度增加棉稈質(zhì)量逐漸減少,但該層棉稈量較覆膜12 a地塊對應土層大。覆膜20 a地塊在0~40 cm土壤深度中棉稈主要以>100 mg的小塊棉稈形式殘留,該地塊棉稈量分布趨勢與覆膜12 a地塊相似,但各層土壤棉稈量均較覆膜12 a地塊大,同時該地塊在18 cm土壤深度殘留棉稈量達到峰值。綜上,采取棉稈還田措施后,3個取樣地塊0~40 cm土壤中棉稈分布總體上呈現(xiàn)由上至下先增加后減少并在15~25 cm深度土壤中聚集分布的特點。本文還田時,先將棉稈切碎后均勻撒在地表,用大型機械采取鏵式犁內(nèi)翻法進行耕地作業(yè),將表層棉稈翻耕到15~25 cm土層中,這與本文得出的3個取樣地塊棉稈殘留量峰值均出現(xiàn)在18~20 cm土層中的結(jié)果相一致。
圖5 秸稈還田1 a后棉田耕作層棉稈空間分布
研究表明,12、16和20 a地塊在0~15 cm深度土壤中棉稈殘留質(zhì)量分別為4 935.3、5 328.6和8 239.5 mg,這部分殘留棉稈導致該層中面積為>5~30 cm2的殘膜面積相對于棉稈還田前分別增加殘膜分別增長23.80、19.09和20.10個百分點;導致該層中質(zhì)量>50~100 mg的殘膜分別增長10.53、11.65和10.24個百分點。3個地塊在>15~30 cm深度土壤中棉稈聚集,殘留棉稈質(zhì)量分別為7 457.2、11 116.59和11 934.5 mg,這部分殘留棉稈導致該層土壤中殘膜面積相比棉稈還田前分別增長-7.23、-0.25和0.88個百分點;導致該層中殘膜質(zhì)量分別增長-3.07、1.13和0.81個百分點。
張丹等[11]通過研究得出華北地區(qū)地膜殘留率小于新疆地區(qū),主要原因是華北地區(qū)地膜回收方式和耕作方式與試驗區(qū)不同,其中華北地區(qū)多種植蔬菜等作物,生育期較短,在作物收獲后地膜并未有嚴重破損,故可采用人工方式進行高效率地回收地膜。同時與華北地區(qū)相比,棉花在新疆地區(qū)種植面積廣泛,由于氣候干旱、水資源匱乏和采用膜下滴灌技術(shù)等因素導致棉花苗期少有揭膜措施,在棉花生育期末時地膜在強光照、風沙影響下已不同程度碎裂,膜下滴灌技術(shù)的推廣應用進一步擴大了新疆地區(qū)作物的種植面積,導致更多的塑料地膜投入到農(nóng)業(yè)生產(chǎn)實踐中。嚴昌榮等[30]通過研究新疆石河子地區(qū)棉田地膜殘留得出,地膜以每年18 kg/hm2速度殘留在棉田耕作層土壤中,其中覆膜滴灌20 a棉田地塊的地膜殘留密度可達到(307.90±35.84)kg/hm2,隨著覆膜年限的增長耕作層土壤中地膜殘留密度逐漸增加的結(jié)論。本文在2017年通過對試驗區(qū)1998地塊進行取樣后得出該地塊地膜殘留密度為365.42 kg/hm2,與2016年相比增加16.59 kg/hm2,該數(shù)據(jù)與嚴昌榮等研究結(jié)果相近。
諸多國內(nèi)學者[20-24]通過研究秸稈還田得出秸稈覆蓋能夠減少塑料地膜使用量并在諸多方面優(yōu)于塑料地膜的結(jié)論,農(nóng)田采取秸稈覆蓋能夠減少塑料地膜在土壤耕作層中的殘留量。新疆現(xiàn)行覆膜滴灌種植模式下,棉花多采用機采棉模式種植模式,同時本地區(qū)的棉花種植和采摘、地膜回收、棉稈粉碎還田和翻耕耙地等農(nóng)田作業(yè)多采用大型機械,較少使用人工進行地膜和滴灌帶回收;同時由于在連續(xù)強光照、風沙和大型機械農(nóng)田作業(yè)等因素影響下,塑料地膜在棉花生育期末已不同程度破損,部分殘膜已不能被人工和殘膜回收機械有效回收,在這種狀況下碎裂的地膜在棉稈還田的過程中被棉稈攜帶到土壤耕作層中并逐漸累積,加劇農(nóng)田耕作層土壤地膜殘留程度,進一步導致農(nóng)田耕作層土壤嚴重污染。
由于新疆地區(qū)氣候干旱、水資源匱乏等因素導致滴灌條件下棉花整個生育期都需要地膜覆蓋來減少水分蒸發(fā)[31],研究區(qū)2017年及以前所覆地膜厚度為0.008 mm,這種厚度的薄膜在棉花生育期末已不同程度碎裂,導致地膜回收難度增加。研究區(qū)棉田在人工回收地膜和滴灌帶后再采用機械再次回收地膜并粉碎棉稈還田,地膜回收力度不足導致還田過程中棉稈、地膜隨著機械翻耕作業(yè)由表層土壤向深層土壤下移,而新疆地區(qū)農(nóng)田耕作深度一般在30 cm左右,在犁地翻耕過程中,由于秸稈質(zhì)量大、殘膜質(zhì)量小,導致秸稈普遍被翻耕至15~30 cm深度范圍,而殘膜大部分則被翻耕至0~30 cm深度,由于質(zhì)量輕主要殘留在0~15 cm深度,較少一部分則會被翻至30 cm以下土壤中,最終導致農(nóng)田耕作層土壤中地膜大量殘留。
對新疆典型綠洲區(qū)3塊覆膜年限不同的棉田0~40 cm土層中殘膜分布及秸稈還田1 a后秸稈和殘膜分布進行研究,結(jié)果表明:
1)隨著覆膜年限增加棉田土壤耕作層中地膜殘留量逐年增加,研究區(qū)膜下滴灌棉田殘膜密度是國家標準限值3倍以上,棉田土壤殘膜處于嚴重污染狀態(tài)。
2)研究表明,秸稈還田后,3塊取樣棉田0~15 cm耕作層土壤中殘膜面積占比58%以上、殘膜質(zhì)量占比60%以上,該層中面積>5~30 cm2和質(zhì)量>50~100 mg殘膜均增加顯著,相對秸稈還田前的土壤殘膜平均增加20%和10%左右。
建議加大新疆棉植區(qū)可降解生物膜和厚度0.010 mm以上的地膜使用,既要從源頭上減少棉田殘膜增量更要加大殘膜回收力度,切實減少棉田耕作層土壤中殘膜存量,保證新疆植棉區(qū)可持續(xù)發(fā)展。
[1] 李明思,劉洪光,鄭旭榮. 長期膜下滴灌農(nóng)田土壤鹽分時空變化[J]. 農(nóng)業(yè)工程學報,2012,28(22):82-87. Li Mingsi, Liu Hongguang, Zheng Xurong. Spatiotemporal variation for soil salinity of field land under long-term mulched drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 82-87. (in Chinese with English abstract)
[2] 馬富裕,周治國,鄭重,等. 新疆棉花膜下滴灌技術(shù)的發(fā)展與完善[J]. 干旱地區(qū)農(nóng)業(yè)研究,2004,22(3):202-208. Ma Fuyu, Zhou Zhiguo, Zheng Zhong, et al. The development and improvement of drip irrigation under plastic film on cotton[J]. Agricultural Research in the Arid Areas, 2004, 22(3): 202-208. (in Chinese with English abstract)
[3] 國家統(tǒng)計局農(nóng)村社會經(jīng)濟調(diào)查司. 中國農(nóng)村統(tǒng)計年鑒2016[M]. 北京:中國統(tǒng)計出版社,2016.
[4] 劉建國,李彥斌,張偉,等. 綠洲棉田長期連作下殘膜分布及對棉花生長的影響[J]. 農(nóng)業(yè)環(huán)境科學學報,2010,29(2):246-250. Liu Jianguo, Liu Yanbin, Zhang Wei, et al. The distributing of the residue film and influence on cotton growth under continuous cropping in oasis of Xinjiang[J]. Journal of Agro-Environment Science, 2010, 29(2): 246-250. (in Chinese with English abstract)
[5] O'Loughlin J, Finnan J, Mcdonnell K. Accelerating early growth in miscanthus with the application of plastic mulch film[J]. Biomass & Bioenergy, 2017, 100: 52-61.
[6] Mahajan G, Sharda R, Kumar A, et al. Effect of plastic mulch on economizing irrigation water and weed control in baby corn sown by different methods[J]. African Journal of Agricultural Research, 2007, 2(1): 19-26.
[7] Zou Xiaoyang, Niu Wenquan, Liu Jingjing, et al. Effects of residual mulch film on the growth and fruit quality of tomato (.)[J]. Water Air & Soil Pollution, 2017, 228(2): 1-18.
[8] Gao Yajun, Yun Li, Zhang Jianchang, et al. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China[J]. Nutrient Cycling in Agroecosystems, 2009, 85(2): 109-121.
[9] Steinmetz Z, Wollmann C, Schaefer M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550: 690-705.
[10] Kim G W, Das S, Hwang H Y, et al. Nitrous oxide emissions from soils amended by cover-crops and under plastic film mulching: Fluxes, emission factors and yield-scaled emissions[J]. Atmospheric Environment, 2017, 152: 377-388.
[11] 張丹,胡萬里,劉宏斌,等. 華北地區(qū)地膜殘留及典型覆膜作物殘膜系數(shù)[J]. 農(nóng)業(yè)工程學報,2016,32(3):1-5. Zhang Dan, Hu Wanli, Liu Hongbin, et al. Characteristics of residual mulching film and residual coefficient of typical crops in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 1-5. (in Chinese with English abstract)
[12] He Huaijie, Wang Zhenhua, Guo Li, et al. Distribution characteristics of residual film over a cotton field under long-term film mulching and drip irrigation in an oasis agroecosystem[J]. Soil & Tillage Research, 2018, 180: 194-203.
[13] 董合干,劉彤,李勇冠,等. 新疆棉田地膜殘留對棉花產(chǎn)量及土壤理化性質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2013,29(8):91-99. Dong Hegan, Liu Tong, Li Yongguan, et al. Effects of plastic film residue on cotton yield and soil physical and chemical properties in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 91-99. (in Chinese with English abstract)
[14] 白云龍,李曉龍,張勝,等. 內(nèi)蒙古地膜殘留污染現(xiàn)狀及殘膜回收利用對策研究[J].中國土壤與肥料,2015(6):139-145.
Bai Yunlong, Li Xiaolong, Zhang Sheng, et al. Study on the current situation of plastic film residue pollution and the countermeasures for the recovery and utilization of residual film in Inner Mongolia[J]. Soil & Fertilizer Sciences in China, 2015(6):139-145. (in Chinese with English abstract)
[15] 杜曉明,徐剛,許端平,等. 中國北方典型地區(qū)農(nóng)用地膜污染現(xiàn)狀調(diào)查及其防治對策[J]. 農(nóng)業(yè)工程學報,2005,21(增刊1):225-227. Du Xiaoming, Xu Gang, Xu Duanping, et al. Mulch film residue contamination in typical areas of North China and countermeasures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Supp.1): 225-227. (in Chinese with English abstract)
[16] Brodhagen M, Goldberger J R, Hayes D G, et al. Policy considerations for limiting unintended residual plastic in agricultural soils[J]. Environmental Science & Policy, 2017, 69: 81-84.
[17] 王淑英,樊廷錄,李尚中,等. 生物降解膜降解、保墑增溫性能及對玉米生長發(fā)育進程的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2016,34(1):127-133. Wang Shuying, Fan Tinglu, Li Shangzhong, et al. Property of biodegradable film degradation, water-retention and increasing soil temperature and its impact on maize growth and development process[J]. Agricultural Research in the Arid Areas, 2016, 34(1): 127-133. (in Chinese with English abstract)
[18] 李云光,王振華,張金珠,等. 液體地膜對滴灌棉花生理特性和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報,2015,31(13): 105-112. Li Yunguang, Wang Zhenhua, Zhang Jinzhu, et al. Effect of liquid mulch on physiological characteristics and yield of drip irrigated cotton[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 105-112. (in Chinese with English abstract)
[19] 鄔強,王振華,鄭旭榮,等. PBAT生物降解膜覆蓋對綠洲滴灌棉花土壤水熱及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報,2017,33(16):135-143. Wu Qiang, Wang Zhenhua, Zheng Xurong, et al. Effects of biodegradation film mulching on soil temperature, moisture and yield of cotton under drip irrigation in typical oasis area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 135-143. (in Chinese with English abstract)
[20] 李繼福,魯劍巍,任濤,等. 稻田不同供鉀能力條件下秸稈還田替代鉀肥效果[J]. 中國農(nóng)業(yè)科學,2014,47(2):292-302. Li Jifu, Lu Jianwei, Ren Tao, et al. Effect of straw incorporation substitute for K-fertilizer under different paddy soil K supply capacities[J]. Scientia Agricultura Sinica, 2014, 47(2): 292-302. (in Chinese with English abstract)
[21] 楊濱娟,黃國勤,錢海燕. 秸稈還田配施化肥對土壤溫度、根際微生物及酶活性的影響[J]. 土壤學報,2014,51(1):150-157. Yang Binjuan, Huang Guoqin, Qian Haiyan. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities[J]. Acta Pedologica Sinica, 2014, 51(1): 150-157. (in Chinese with English abstract)
[22] 張金珠,王振華,虎膽·吐馬爾白. 秸稈覆蓋對滴灌棉花土壤水鹽運移及根系分布的影響[J]. 中國生態(tài)農(nóng)業(yè)學報,2013,21(12):1467-1476. Zhang Jinzhu, Wang Zhenhua, Hudan·Tumarebi. Influence of straw mulching on soil water/salt movement and cotton root distribution under drip irrigation[J]. Chinese Journal of Eco-Agriculture, 2013, 21(12): 1467-1476. (in Chinese with English abstract)
[23] 潘劍玲,代萬安,尚占環(huán),等. 秸稈還田對土壤有機質(zhì)和氮素有效性影響及機制研究進展[J]. 中國生態(tài)農(nóng)業(yè)學報,2013,21(5):526-535. Pan Jianling, Dai Wan'an, Shang Zhanhuan, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 526-535. (in Chinese with English abstract)
[24] 劉軍,景峰,李同花,等. 秸稈還田對長期連作棉田土壤腐殖質(zhì)組分含量的影響[J]. 中國農(nóng)業(yè)科學,2015,48(2):293-302. Liu Jun, Jing Feng, Li Tonghua, et al. Effects of returning stalks into field on soil humus composition of continuous cropping cotton field[J]. Scientia Agricultura Sinica, 2015, 48(2): 293-302. (in Chinese with English abstract)
[25] 史建新,陳發(fā),郭俊先,等. 拋送式棉稈粉碎還田機的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2006,22(3):68-72. Shi Jianxin, Chen Fa, Guo Junxian, et al. Design and experimental research of the field straw chopper with throwing cotton-stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(3): 68-72. (in Chinese with English abstract)
[26] 胡凱,王吉奎,李斌,等. 棉稈粉碎還田與殘膜回收聯(lián)合作業(yè)機研制與試驗[J]. 農(nóng)業(yè)工程學報,2013,29(19): 24-32. Hu Kai, Wang Jikui, Li Bin, et al. Development and experiment of combined operation machine for cotton straw chopping and plastic film collecting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 24-32. (in Chinese with English abstract)
[27] 由佳翰,陳學庚,張本華,等. 4JSM-2000型棉稈粉碎與殘膜回收聯(lián)合作業(yè)機的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(10):10-16. You Jiahan, Chen Xuegeng, Zhang Benhua, et al. Design and experiment of 4JSM-2000 type combined operation machine for cotton stalk chopping and residual plastic film collecting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 10-16. (in Chinese with English abstract)
[28] 王振華. 典型綠洲區(qū)長期膜下滴灌棉田土壤鹽分運移規(guī)律與灌溉調(diào)控研究[D]. 北京:中國農(nóng)業(yè)大學,2014.
Wang Zhenhua. Salt Movement Trends in Cotton Fields with Long-term Drip Irrigation under Mulch in Typical Oasis and Irrigation Management[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[29] 新疆維吾爾自治區(qū)農(nóng)牧業(yè)機械試驗鑒定站、新疆維吾爾自治區(qū)農(nóng)業(yè)資源與環(huán)境保護站. 農(nóng)田地膜殘留量限值及測定:GB/T 25413-2010[S]. 北京:中國標準出版社,2011.
[30] 嚴昌榮,王序儉,何文清,等. 新疆石河子地區(qū)棉田土壤中地膜殘留研究[J]. 生態(tài)學報,2008,28(7):3470-3474. Yan Changrong, Wang Xujian, He Wenqing, et al. The residue of plastic film in cotton fields in Shihezi, Xinjiang[J]. Acta Ecologica Sinica, 2008, 28(7): 3470-3474. (in Chinese with English abstract)
[31] 張振華,蔡煥杰,柴紅敏,等. 膜上灌作物需水量和地膜覆蓋效應試驗研究[J]. 灌溉排水,2002,21(1):11-14. Zhang Zhenhua, Cai Huanjie, Chai Hongmin, et al. Crop water requirement and field environment under plastic film mulch cultivation [J]. Irrigation and Drainage, 2002, 21(1): 11-14. (in Chinese with English abstract)
Effect of cotton stalk returning to fields on residual film distribution in cotton fields under mulched drip irrigation in typical oasis area in Xinjiang
Wang Zhenhua, He Huaijie, Zheng Xurong, Zhang Jinzhu, Li Wenhao
(1.832000,; 2.832000,)
The drip irrigation under mulching film technology was applied in Shihezi reclamation area of Xinjiang in 1996. It is more difficult to recover the mulching after the growing period of cotton, so that the density of residual plastic film in cotton fields exceeds the national standard (75.0 kg/hm2) which causes serious soil contamination in experiment area. Stalk returning to fields is a common method in the film mulching area. This study investigated the effect of cotton stalk returning to fields on residual film distribution. A total of 3 cotton fields were selected in typical oasis area of Xinjiang. The 3 fields were different only in the mulching duration. They were governed by the same owner. The mulched drip irrigation started from the year of 1998, 2002 and 2006. By the year of 2017, the mulching duration was 20, 16 and 12 years, respectively. Soil samples were taken from 0-40 cm layer before cotton stalk returning in 2016 and after 1 year of stalk returning in 2017. The cotton stalk was cut into 4-6 cm pieces and applied to the tillage layer with an application rate of 7 500-8 000 kg/hm2. By comparison, the effect of stalk returning was discussed. In the sampling field, the soil blocks (4 800 cm2in area and 40 cm in height) were collected for determination of area and weight of residual film and weight of cotton stalk residue. The results showed that: 1) the residual plastic film density in the soil tillage layer of drip irrigation cotton fields increased yearly with increasing mulching years, and the cotton fields of mulched film drip irrigation more than 10 year were seriously polluted. 2) After the cotton stalks were crushed and returned to the fields, the cotton stalks in the soil of 0 to 40 cm in the 3 sampling plots were increased from top to bottom and then decreased and concentrated in the soil depth of 15-25 cm. The cotton stalks were evenly distributed on the surface after being chopped, and because the large-scale machinery was used to carry out the arable land operation, the cotton stalks on the soil surface were ploughed into the soil tillage layer of 15-25 cm depth, which was the main reason for the peaks of cotton stalks residue appeared in the soil depths of 18, 20 and 18 cm, respectively. 3) After the cotton stalks were returned to the fields, the residual plastic film area of the 0-15 cm soil layer of the 3 sampled cotton fields accounted for more than 58%, and the residual film weight accounted for more than 60%. In the soil of 0-15 cm tillage layer, the residual plastic film with the area >5-30 cm2and the weight >50-100 mg increased significantly, and the average was about 20% and 10% higher than that in 2016, respectively. The mulched plastic film with a thickness of 0.008 mm has been broken at different degrees at the end of the cotton growth period, and it is relatively difficult to recover. In the process of smashing and returning cotton stalks with large-scale mechanical arable land, the plastic film is broken into small film in the area and weight and they accumulated continuously in the deep soil. Therefore, local area should increase the degradable biological film and the use of 0.010 mm thickness of the plastic film, improve the efficiency of residual plastic film recovery and other measures to reduce the plastic film residue in the soil layer of the fields, in order to ensure the sustainable development of agriculture in the typical oasis.
films; cotton; soils; stalks returning to fields; typical oasis area; residual plastic film; drip irrigation under mulching film
10.11975/j.issn.1002-6819.2018.21.015
S19
A
1002-6819(2018)-21-0120-08
2018-04-30
2018-07-10
國家自然科學基金項目(51869028、51741908);兵團中青年科技創(chuàng)新領(lǐng)軍人才計劃(2015BC001)
王振華,教授,博士生導師,主要從事干旱區(qū)節(jié)水灌溉理論與技術(shù)研究。Email:wzh2002027@163.com
中國農(nóng)業(yè)工程學會高級會員:王振華(E041200608S)
王振華,賀懷杰,鄭旭榮,張金珠,李文昊.新疆典型綠洲棉稈還田對覆膜滴灌棉田殘膜分布的影響[J]. 農(nóng)業(yè)工程學報,2018,34(21):120-127. doi:10.11975/j.issn.1002-6819.2018.21.015 http://www.tcsae.org
Wang Zhenhua, He Huaijie, Zheng Xurong, Zhang Jinzhu, Li Wenhao. Effect of cotton stalk returning to fields on residual film distribution in cotton fields under mulched drip irrigation in typical oasis area in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 120-127. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.015 http://www.tcsae.org