甄 博,周新國,陸紅飛,李會(huì)貞
?
拔節(jié)期高溫與澇交互脅迫對(duì)水稻生長(zhǎng)發(fā)育的影響
甄 博,周新國※,陸紅飛,李會(huì)貞
(中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所,新鄉(xiāng) 453002)
黃淮地區(qū)水稻拔節(jié)孕穗期恰逢強(qiáng)高溫和降水易發(fā)期,稻田易遭受高溫和澇害雙重脅迫,研究水稻對(duì)高溫和澇及其交互脅迫的響應(yīng),可為探究高溫與澇交互脅迫致災(zāi)機(jī)理及減災(zāi)措施提供參考。試驗(yàn)共設(shè)拔節(jié)期高溫脅迫(T1)、高溫×輕澇脅迫(T2)、高溫×重澇脅迫(T3)、輕澇脅迫(T4)、重澇脅迫(T5)和全生育期淺水勤灌(CK)6個(gè)處理,研究了黃淮地區(qū)拔節(jié)期高溫、淹澇及高溫與澇脅迫對(duì)水稻形態(tài)指標(biāo)和產(chǎn)量的影響。結(jié)果表明:1)拔節(jié)期高溫(T1)、重澇(T5)和高溫×輕澇(T2)脅迫會(huì)抑制水稻的生長(zhǎng),到成熟期,T1和T5處理水稻株高分別較CK顯著降低了5.63和5.96 cm,且高溫與澇脅迫較高溫(或重澇)對(duì)水稻生長(zhǎng)的抑制作用減弱;2)高溫與澇脅迫促進(jìn)了水稻葉面積的增加,且高溫×重澇(T3)處理促進(jìn)了水稻地上部干物質(zhì)積累;3)除輕澇(T4)處理外,其他處理均顯著降低水稻產(chǎn)量,其中,T2和T3處理分別較CK顯著減產(chǎn)44.16%和22.29%,主要是因?yàn)榻Y(jié)實(shí)率下降。但是,與高溫脅迫相比,高溫與澇交互能緩解脅迫,可以避免水稻大幅減產(chǎn)。
脅迫;澇;作物;水稻;高溫;地上部干物質(zhì);產(chǎn)量
水稻是中國主要的糧食作物之一,非生物逆境(淹澇、高溫和低溫脅迫等)對(duì)中國水稻生產(chǎn)造成了巨大損失[1-2]。近年來,在中國黃淮及以南方稻區(qū)7―8月容易出現(xiàn)高溫與暴雨天氣[3],此時(shí)正值中稻拔節(jié)期,且在暴雨過后,高溫天氣頻發(fā),水稻易遭受高溫與澇雙重脅迫,影響水稻生長(zhǎng)發(fā)育,導(dǎo)致減產(chǎn)。因此研究水稻對(duì)高溫、淹澇以及交互脅迫的響應(yīng),可為該區(qū)水稻防災(zāi)減災(zāi)管理提供依據(jù)。
已有研究表明,水稻在拔節(jié)期受到旱澇交替脅迫時(shí),可促進(jìn)株高生長(zhǎng)[4-5],且淹水可以促進(jìn)更多的生物量分配到地上部分,同時(shí)促進(jìn)葉面積增加[6]。李陽生等[7]研究發(fā)現(xiàn),水稻生育后期遭到淹水脅迫,可以引起水稻結(jié)實(shí)率顯著下降,千粒質(zhì)量下降,籽粒產(chǎn)量下降。據(jù)國際水稻所研究,在水稻生長(zhǎng)對(duì)環(huán)境敏感期間溫度每升高1 ℃,最終將導(dǎo)致產(chǎn)量損失10%以上[8]。另外,拔節(jié)孕穗期高溫會(huì)降低水稻結(jié)實(shí)率,穗粒數(shù)和千粒質(zhì)量減少,導(dǎo)致水稻減產(chǎn)[9-11],且品質(zhì)變劣[12-13]??傊?,淹水或者高溫逆境脅迫對(duì)水稻生長(zhǎng)及產(chǎn)量的影響報(bào)道較多,而針對(duì)水稻拔節(jié)期高溫與澇交互脅迫的研究鮮有報(bào)道。為此本文于2017年采用盆栽試驗(yàn),在人工氣候室模擬高溫與澇交互逆境,研究二者對(duì)拔節(jié)期水稻生長(zhǎng)的形態(tài)和產(chǎn)量影響,以期為暴雨后稻田恰遇高溫適時(shí)排水提供科學(xué)參考,促進(jìn)農(nóng)田排水技術(shù)理論的發(fā)展。
本試驗(yàn)采用盆栽種植方式,水稻試驗(yàn)品種為北方種植范圍較廣的“獲稻008”,于2017年5―10月在河南商丘生態(tài)系統(tǒng)國家野外科學(xué)觀測(cè)研究站(34°35.222¢N,115°34.515¢E,海拔50.2 m)防雨棚內(nèi)進(jìn)行,該站位于淮河以北,屬溫帶半濕潤(rùn)季風(fēng)氣候,多年平均降雨量為705.1 mm,多年平均蒸發(fā)量為1 751 mm,多年7―8月平均日最高氣溫為32 ℃。試驗(yàn)土壤取自大田耕作層(0~25 cm土層),土壤類型為壤土,容重為1.46 g/cm3,田間持水率(field capacity,F(xiàn)C)為27.09%(質(zhì)量含水率)。經(jīng)風(fēng)干、打碎、過2 mm篩后,均勻施肥,施肥量每千克風(fēng)干土折合純N 0.15 g、P2O50.10 g、K2O 0.10 g。試驗(yàn)用塑料盆底部直徑21.5 cm,上部直徑25 cm,盆深29.5 cm,每盆裝風(fēng)干土10.0 kg,土壤全氮質(zhì)量分?jǐn)?shù)為0.78 g/kg,堿解氮、速效磷、速效鉀質(zhì)量分?jǐn)?shù)分別為56.4、10.5、52.6 mg/kg。2017年7―8月日最高(低)氣溫變化如圖1所示。
圖1 2017年7─8月日最高、低氣溫
2017年盆栽試驗(yàn)于5月4日育種,6月13日三葉一心時(shí)選擇大小基本一致的秧苗移栽,每盆種植3穴,每穴移栽2株,于10月24日收割。水稻主要生育時(shí)期包括:返青期、分蘗期、拔節(jié)期、孕穗期、抽穗開花期、成熟期,選擇水稻對(duì)水分和溫度較敏感的拔節(jié)期開展試驗(yàn)。研究表明:水稻生育期遭遇日均氣溫高于32 ℃,或日最高氣溫高于35 ℃的天氣情況,將會(huì)導(dǎo)致水稻高溫?zé)岷14],且水稻淹澇5 d,淹水深度超過10 cm,會(huì)對(duì)水稻生長(zhǎng)以及水稻根系微觀結(jié)構(gòu)造成影響[15]??紤]溫度和水分對(duì)水稻生長(zhǎng)的影響,本試驗(yàn)共設(shè)計(jì)6個(gè)處理:高溫脅迫(T1)、高溫×輕澇脅迫(T2)、高溫×重澇脅迫(T3)、輕澇脅迫(T4)、重澇脅迫(T5)和全生育期淺水勤灌(CK)6個(gè)處理,高溫處理的溫度比室溫高4~5 ℃,輕澇和重澇處理水層深度分別為10和15 cm,未受澇脅迫的處理(T1和CK)水層深度為0~5 cm。高溫脅迫在人工氣候室實(shí)現(xiàn),人工氣候室具體設(shè)置參數(shù)見圖2,除溫度與室外不同,其相對(duì)濕度和光照與室外相一致,由程序自動(dòng)控制,澇脅迫在貯水箱實(shí)現(xiàn)。每個(gè)處理種植20盆,于8月4日上午06:00開始進(jìn)行脅迫處理,脅迫5 d結(jié)束,于8月9日上午06:00將人工氣候室的水稻全部移到室外,所有處理恢復(fù)自然生長(zhǎng)條件(與對(duì)照相同)。除高溫和澇脅迫外,各處理其他農(nóng)藝措施相同。
圖2 人工氣候室及室外氣象參數(shù)
1)株高。于拔節(jié)期(08-04)開始脅迫處理,脅迫前于每個(gè)處理選取長(zhǎng)勢(shì)一致的6株水稻進(jìn)行掛牌,脅迫結(jié)束后每5 d測(cè)定1次株高,水稻抽穗前測(cè)土面至每穴最高葉尖的高度,抽穗后測(cè)土面至最高穗頂?shù)母叨萚16]。
2)葉面積。于水稻拔節(jié)期高溫與澇脅迫處理后,每個(gè)處理選取長(zhǎng)勢(shì)一致的3盆水稻,測(cè)定采用比葉重法(干樣稱重法),每5 d取樣1次,將每盆中的植株葉片全部取下來,隨機(jī)選取20片葉子,將葉片平鋪在已知面積的紙板上,用刀片沿紙板邊緣切割,得到的紙片面積即為葉片的面積;采用烘干法測(cè)定已知面積的葉片和剩余葉片的干重,進(jìn)而換算出所有葉片的葉面積,其計(jì)算式為
式中總為總?cè)~面積,cm2;20為選取的20片葉子的面積,cm2;20為選取的20片葉子的干質(zhì)量,g;剩余為其余葉片的干質(zhì)量,g。
3)地上部干物質(zhì)質(zhì)量。于水稻拔節(jié)期高溫與澇脅迫結(jié)束后取樣,并在恢復(fù)淺水勤灌后每5 d取樣1次,每個(gè)處理3個(gè)重復(fù)。測(cè)定方法[17]如下:每盆選取1株水稻,將植株地上部分分為葉、莖鞘和穗干物質(zhì),在105 ℃下殺青30 min,然后80 ℃烘干至恒質(zhì)量,放置于感量為0.01 g電子天平上,測(cè)定各部分干物質(zhì)質(zhì)量。
4)考種測(cè)產(chǎn)。于水稻成熟后,取3盆水稻考種測(cè)產(chǎn),包括每盆有效穗數(shù)、穗長(zhǎng)、穗質(zhì)量、每穗粒數(shù)、千粒質(zhì)量、和每盆實(shí)收產(chǎn)量。
用Microsoft Excel 和SPSS 19.0軟件分析數(shù)據(jù),用Duncan’s新復(fù)極差法檢驗(yàn)顯著性。
1.4.1 水稻株高(地上部干物質(zhì))的擬合方程
水稻群體株高(地上部干物質(zhì))隨移栽天數(shù)的變化,可用Logistic方程擬合,見方程(2)。
式中()為移栽天時(shí)對(duì)應(yīng)的水稻株高(地上部干物質(zhì));為理論最大水稻株高值(地上部干物質(zhì));和為回歸系數(shù);為移栽天數(shù)。
1.4.2 水稻群體葉面積的擬合方程
水稻群體葉面積隨移栽天數(shù)的變化,可用Gaussian Function曲線擬合,見方程(3)。
式中()為移栽天時(shí)對(duì)應(yīng)的每盆水稻葉面積;為理論最大葉面積;為最大葉面積對(duì)應(yīng)的天數(shù),為回歸系數(shù)。
1.4.3 水稻地上部干物質(zhì)積累速率函數(shù)擬合
在地上部干物質(zhì)積累分布函數(shù)()的基礎(chǔ)上,通過微分計(jì)算便可求出地上部干物質(zhì)積累速率函數(shù)(),即對(duì)(2)式求導(dǎo),見方程(4)。
利用(4)式可求得最大地上部干物質(zhì)積累速率出現(xiàn)的移栽天數(shù),即函數(shù)()的拐點(diǎn)所在的移栽天數(shù)為
式中(max)為函數(shù)()的拐點(diǎn)所在的移栽天數(shù)。
由表1可以看出,拔節(jié)期高溫與澇脅迫5 d后,株高依次是:T4>T3>T2>CK>T1>T5,輕澇處理(T4)株高明顯高于高溫(T1)和重澇(T5)處理(<0.05),分別比T1和T5高7.07和8.13 cm,說明拔節(jié)期適度淹水會(huì)促進(jìn)水稻的生長(zhǎng),高溫脅迫會(huì)抑制水稻的生長(zhǎng)。孕穗期(脅迫結(jié)束20 d),T4較CK明顯增加5.93 cm(<0.05),說明拔節(jié)期輕澇(T4)可以促進(jìn)水稻的生長(zhǎng),且有一定的后效性;抽穗期(脅迫結(jié)束35 d),T1和T5分別較CK顯著降低了5.63和5.96 cm(<0.05)。從以上數(shù)據(jù)分析可知,拔節(jié)期輕澇會(huì)促進(jìn)水稻的生長(zhǎng),而高溫或重澇處理會(huì)明顯抑制水稻的生長(zhǎng),直至抽穗時(shí)T1和T5株高仍低于CK,且拔節(jié)期交互脅迫較高溫(或重澇)表現(xiàn)出一定的緩解作用。
表1 拔節(jié)期高溫與澇交互脅迫對(duì)水稻株高的影響
注:T1為高溫脅迫、T2為高溫×輕澇脅迫、T3為高溫×重澇脅迫、T4為輕澇脅迫、T5為重澇脅迫,CK為全生育期淺水勤灌處理。同列不同字母表示各處理在0.05水平上差異顯著,下同。
Note: T1 indicates high temperature stress; T2 indicates high temperature × light waterlogging; T3 indicates high temperature × heavy waterlogging; T4 indicates light waterlogging; T5 indicates heavy waterlogging; CK indicates regular irrigation with shallow water in whole growing stage; Values with different letters in the same column are significantly different (<0.05), the same as below.
利用式(2)模擬方程的關(guān)鍵參數(shù)(見表2),擬合度2均大于0.98,說明擬合效果較好。參數(shù)為理論最大株高值,表現(xiàn)為高溫(T1)和重澇(T5)處理低于CK,高溫×重澇脅迫(T3)和輕澇(T4)處理接近CK,說明高溫′重澇脅迫(T3)和輕澇(T4)處理對(duì)拔節(jié)期水稻株高的生長(zhǎng)較高溫(T1)或重澇(T5)處理表現(xiàn)出一定的緩解作用;參數(shù)和均表現(xiàn)為所有脅迫處理均高于CK。
表2 水稻高溫與澇交互脅迫后株高生長(zhǎng)函數(shù)的擬合參數(shù)
注:為被擬合指標(biāo)理論最大值,和為回歸系數(shù)。下同。
Note:is maximum theoretical value for fitted index.andare regression coefficient. Same as below.
由圖3可以看出,拔節(jié)期高溫與澇交互脅迫5 d后(08-09),高溫(T1)和重澇(T5)的葉面積顯著低于高溫×輕澇(T2)和高溫×重澇(T3)(<0.05);恢復(fù)自然生長(zhǎng)條件5 d后(08-14),T3較CK顯著增加2.98%(<0.05),說明拔節(jié)期高溫×重澇會(huì)促進(jìn)水稻葉面積的增長(zhǎng)。隨著生育期的推進(jìn),水稻群體葉面積表現(xiàn)出先增加后降低的趨勢(shì),到拔節(jié)后期(08-24)葉面積達(dá)到最大值;8月29日,T2和T3的葉面積仍高于CK,且T3較CK、T1和T5分別顯著增加6.21%、8.72%和7.03%(<0.05),說明高溫與澇交互對(duì)水稻葉面積的增長(zhǎng)表現(xiàn)出一定的后效性。
圖3 拔節(jié)期高溫與澇交互脅迫對(duì)水稻群體葉面積的影響
利用式(3)模擬方程的關(guān)鍵參數(shù)值(見表3)可知,參數(shù)為理論最大葉面積值,表現(xiàn)為高溫×重澇(T3)處理最大,高溫(T1)處理最小,說明拔節(jié)期高溫×重澇脅迫會(huì)促進(jìn)水稻葉面積增長(zhǎng),而高溫脅迫會(huì)抑制水稻葉面積的增長(zhǎng)。與CK相比,所有脅迫處理參數(shù)值都大于CK,表示拔節(jié)期高溫(淹澇)處理或者二者交互脅迫均可以推遲最大葉面積出現(xiàn)時(shí)間。
表3 水稻高溫與澇交互脅迫下群體葉面積函數(shù)的擬合參數(shù)
注:為理論最大葉面積,為最大葉面積對(duì)應(yīng)的天數(shù),為回歸系數(shù)。
Note:is maximum theoretical leaf area;is the day corresponding to maximum leaf area;is regression coefficient.
由圖4可以看出,拔節(jié)期脅迫處理后(08-09),高 溫×重澇(T3)處理和輕澇(T4)處理的地上部干物質(zhì)量較CK增加了24.41%和21.00%,高溫(T1)處理較CK降低了6.62%(<0.05);恢復(fù)自然生長(zhǎng)條件15 d后(08-24),水稻地上部干物質(zhì)積累最大的是T4處理,且T4處理較CK增加了38.46%(<0.05)。收獲時(shí)(10-24),T3處理和T4處理地上部干物質(zhì)量分別較CK增加了25.27%和33.43%(<0.05)。由以上數(shù)據(jù)分析可知,拔節(jié)期輕澇和高溫′重澇交互脅迫會(huì)增加水稻干物質(zhì)積累,高溫脅迫會(huì)降低水稻地上部干物質(zhì)積累。
圖4 拔節(jié)期高溫與澇交互脅迫對(duì)水稻地上部干物質(zhì)積累的影響
水稻地上部干物質(zhì)積累采用Logistic方程表達(dá),其擬合參數(shù)見表4。由表4可知,地上部干物質(zhì)積累理論最大值()大小依次是:T4>T3>T5>T2>CK>T1,所有脅迫處理的地上部干物質(zhì)積累速率最大值出現(xiàn)時(shí)間(t)都較CK有所提前,其中高溫×重澇(T3)、輕澇(T4)和重澇(T5)處理較CK提前3~4 d,高溫(T1)處理和高溫×輕澇(T2)處理較CK提前2 d左右;說明拔節(jié)期高溫與澇交互脅迫或者澇脅迫會(huì)促進(jìn)水稻地上部干物質(zhì)積累,高溫與澇交互脅迫較高溫對(duì)水稻地上部干物質(zhì)積累表現(xiàn)出一定的緩解效應(yīng)。
表4 水稻地上部干物質(zhì)積累過程的Logistic方程參數(shù)估值
注:max為積累速率最大值出現(xiàn)時(shí)間;max為最大速率。
Note:maxis time when accumulatice rate is max;maxis max accumulatice rate
由表5可以看出,拔節(jié)期對(duì)水稻進(jìn)行高溫、重澇和高溫與澇交互脅迫會(huì)造成水稻不同程度減產(chǎn),其中,高溫×輕澇(T2)和高溫×重澇(T3)處理分別較CK顯著減產(chǎn)44.16%和22.29%(<0.05),高溫與澇交互脅迫會(huì)造成水稻減產(chǎn),但較高溫相比,表現(xiàn)出一定的緩解作用。高溫及高溫與澇交互脅迫造成水稻減產(chǎn)的主要是由于拔節(jié)期高溫會(huì)增加水稻有效積溫,影響有機(jī)物合成和轉(zhuǎn)運(yùn),造成水稻結(jié)實(shí)率下降,其中,T2處理和T3處理的結(jié)實(shí)率,分別較CK降低13.42%和9.78%(<0.05);除此之外,高溫以及高溫與澇交互脅迫還會(huì)可以降低水稻穗質(zhì)量和千粒質(zhì)量等有關(guān)產(chǎn)量要素,最終影響水稻產(chǎn)量。
表5 水稻盆栽試驗(yàn)籽粒產(chǎn)量及其產(chǎn)量要素
由雙因素方差分析可知(表6),溫度對(duì)水稻各個(gè)產(chǎn)量要素有顯著影響,水分對(duì)穗長(zhǎng)、有效穗數(shù)及產(chǎn)量有顯著影響,但對(duì)穗質(zhì)量、穗粒數(shù)和千粒質(zhì)量影響不顯著,水分和溫度交互作用對(duì)產(chǎn)量要素影響顯著。
表6 試驗(yàn)因子及交互作用對(duì)水稻產(chǎn)量要素的F值
注:“*”表示該試驗(yàn)因子對(duì)水稻產(chǎn)量要素的影響顯著。
Note: "*" indicates that the test factor has significant influence on rice yield factors.
拔節(jié)期脅迫5 d后,高溫×重澇交互脅迫可以促進(jìn)水稻的生長(zhǎng),水稻葉面積以及地上部干物質(zhì)較CK有所增加,這主要是由于水稻是喜濕植物,且拔節(jié)期處于營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng)并進(jìn)期,重澇降低了高溫條件下水稻根系附近的土壤溫度,促進(jìn)根系吸收營(yíng)養(yǎng)物質(zhì),且高溫高濕可以促進(jìn)水稻的生長(zhǎng),增強(qiáng)水稻葉片的蒸騰作用,促進(jìn)同化物向葉片積累,促進(jìn)水稻葉片的生長(zhǎng),增加水稻葉面積和地上部干物質(zhì)積累。脅迫處理后,重澇處理的株高和葉面積低于CK,但是,地上部干物質(zhì)積累卻高于CK,一方面可能是由于重澇處理導(dǎo)致水稻葉片變黃,在計(jì)算葉面積時(shí),黃色葉片(包括枯萎的)不計(jì)入其中,但計(jì)算干物質(zhì)時(shí),將黃葉計(jì)算在內(nèi);另一方面,重澇推遲生育期,促進(jìn)水稻葉鞘生長(zhǎng),造成植株的干物質(zhì)增加。然而,高溫脅迫會(huì)抑制水稻生長(zhǎng),降低水稻光合作用,使光合產(chǎn)物的合成與轉(zhuǎn)移減少[18],高溫還會(huì)增加水稻的光呼吸[19],水稻地上部干物質(zhì)積累部分可能用于水稻呼吸消耗,降低水稻地上部干物質(zhì)積累[20],抑制水稻同化物的轉(zhuǎn)移與積累,從而降低水稻產(chǎn)量。
高溫、澇脅迫及其交互效應(yīng)均使水稻產(chǎn)量顯著下降,且高溫和澇交互脅迫對(duì)產(chǎn)量的影響較澇脅迫表現(xiàn)出一定的疊加效應(yīng),這與朱建強(qiáng)等[21-22]的研究結(jié)果部分一致,但是,較高溫脅迫卻表現(xiàn)出一定的緩解效應(yīng)。其中,高溫與澇交互效應(yīng)造成減產(chǎn)的原因可能是由于水稻結(jié)實(shí)率和有效穗數(shù)顯著下降,一方面可能是拔節(jié)期高溫造成水稻有效積溫升高,導(dǎo)致花粉活力下降[23-24],同時(shí),影響水稻籽粒灌漿,形成了大量空秕粒,造成了結(jié)實(shí)率下降[25]和有效穗數(shù)減少;另一方面可能是高溫高濕環(huán)境,試驗(yàn)過程中發(fā)現(xiàn)部分盆栽水稻發(fā)生了病蟲害,造成水稻有穗,但是,籽粒較癟甚至是無籽粒,水稻穗呈現(xiàn)灰色,在統(tǒng)計(jì)有效穗時(shí)這部分穗未計(jì)入。
高溫×重澇處理的水稻產(chǎn)量高于高溫×輕澇處理,這主要是由于水稻根際溫度不同,高溫、高溫×輕澇處理和高溫×重澇處理以及CK的水稻根際溫度(10 cm)分別為35、33.8、31.5和26.4 ℃,而水稻根系生長(zhǎng)的最適溫度為25~30 ℃,根際溫度變化1 ℃就能引起植物生長(zhǎng)和養(yǎng)分吸收的明顯變化,最終影響產(chǎn)量。通過雙因素方差分析可知,高溫對(duì)水稻各個(gè)產(chǎn)量要素的影響顯著,淹水僅對(duì)水稻穗長(zhǎng)、有效穗數(shù)和產(chǎn)量的影響顯著,但高溫與澇交互脅迫對(duì)水稻各個(gè)產(chǎn)量要素的影響顯著,這可能是因?yàn)楦邷嘏c澇交互脅迫造成水稻短期內(nèi)處于高溫高濕環(huán)境,促進(jìn)水稻葉片生長(zhǎng),推遲生育期,植株表現(xiàn)出貪青晚熟,影響籽粒灌漿,降低穗粒數(shù)與千粒質(zhì)量[26-27]。
水稻拔節(jié)期遭遇高溫淹澇雙重脅迫是一種常見天氣現(xiàn)象,其發(fā)生的時(shí)期、強(qiáng)度以及持續(xù)時(shí)間因地而異。同時(shí),水稻對(duì)高溫和淹澇脅迫的響應(yīng)機(jī)制還與品種的耐熱和耐澇性密切相關(guān)。因此,要全面揭示水稻拔節(jié)期高溫淹澇交互脅迫對(duì)產(chǎn)量的影響規(guī)律需要開展大量的試驗(yàn)研究。本研究表明,暴雨過后遇到高溫天氣時(shí),可以保持田間水位15 cm左右,不用及時(shí)排除田間水分,既可以充分利用雨水資源,又可以減輕高溫對(duì)水稻的危害,可為稻田在高溫天氣時(shí)排水管理提供科學(xué)依據(jù)。
1)拔節(jié)期單一的高溫(或重澇)脅迫會(huì)抑制水稻的生長(zhǎng),而高溫與澇交互脅迫較高溫(或重澇)對(duì)水稻生長(zhǎng)的抑制作用減弱;輕澇和高溫×重澇處理的理論最大水稻株高(或理論最大地上部干物質(zhì)量)接近于淺水勤灌處理,說明短時(shí)間(5 d)的輕澇或高溫×重澇交互脅迫對(duì)水稻生長(zhǎng)影響不大。
2)拔節(jié)期高溫與澇交互脅迫使水稻葉面積增加,且高溫×重澇交互脅迫還使水稻干物質(zhì)積累增加,但單一的高溫會(huì)降低水稻地上部干物質(zhì)積累。
3)拔節(jié)期所有脅迫處理都會(huì)降低水稻產(chǎn)量,且高 溫×重澇和高溫×輕澇交互脅迫處理較淺水勤灌處理分別減產(chǎn)22.29%和44.16%(<0.05),這主要是由于結(jié)實(shí)率下降造成的。重澇、高溫及高溫與澇交互脅迫均會(huì)導(dǎo)致水稻減產(chǎn),但與單一高溫相比,高溫與澇交互脅迫能減輕危害,可以避免水稻大幅減產(chǎn)。
[1] 黃梅,崔延春,朱玉興,等. 水稻多逆境響應(yīng)基因OsMsr8的克隆與表達(dá)[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2010,18(3):535-541. Huang Mei, Cui Yanchun, Zhu Yuxing, et al. Cloning and expression of multi-stress responsive gene (OsMsr8) in rice[J]. Chinese Journal of Eco-Agriculture, 2010, 18(3): 535-541. (in Chinese with English abstract)
[2] Boyer J S. Plant productivity and environment[J]. Science, 1982, 218(4571): 443-448.
[3] 楊舒楠,何立富. 2013年8月大氣環(huán)流和天氣分析[J]. 氣象,2013,39(11):1521-1528. Yang Shunan, He Lifu. Analysis of atmosphere circulation and weather in august 2013[J]. Meteorological Monthly, 2013, 39(11): 1521-1528. (in Chinese with English abstract)
[4] Shao G C, Deng S, Liu N, et al. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice[J]. European Journal of Agronomy, 2014, 53(53): 1-9.
[5] Shao G, Cui J, Yu S, et al. Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice[J]. Agricultural Water Management, 2015, 149: 156-165.
[6] Li C X, Wei H, Geng Y H, et alEffects of submergence on photosynthesis and growth of(Chinese wingnut) seedlings in the recently-created Three Gorges Reservoir region of China[J]. Wetlands Ecology & Management, 2010, 18(4): 485-494.
[7] 李陽生,李紹清. 淹澇脅迫對(duì)水稻生育后期的生理特性和產(chǎn)量性狀的影響[J]. 武漢植物學(xué)研究,2000,18(2):117-122. Li Yangsheng, Li Shaoqing. Effect of submergence on physiological indexes and yield component at reproductive stage in rice[J]. Journal of Wuhan Botanical Research, 2000, 18(2): 117-122. (in Chinese with English abstract)
[8] Peng S, Huang J, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971-9975.
[9] 駱宗強(qiáng),石春林,江敏,等. 孕穗期高溫對(duì)水稻物質(zhì)分配及產(chǎn)量結(jié)構(gòu)的影響[J]. 中國農(nóng)業(yè)氣象,2016,37(3):326-334. Luo Zongqiang, Shi Chunlin, Jiang Min, et al. Effect of high temperature on rice dry matter partition and yield component during booting stage[J]. Chinese Journal of Agrometeorology, 2016, 37(3): 326-334. (in Chinese with English abstract)
[10] 張倩,趙艷霞,王春乙. 長(zhǎng)江中下游地區(qū)高溫?zé)岷?duì)水稻的影響[J]. 災(zāi)害學(xué),2011,26(4):57-62. Zhang Qian, Zhao Yanxia, Wang Chunyi. Study on the impact of high temperature damage to rice in the lower and middle reaches of the Yangtze River[J]. Journal of Catastrophology, 2011, 26(4): 57-62. (in Chinese with English abstract)
[11] 田小海,松井勤,李守華,等. 水稻花期高溫脅迫研究進(jìn)展與展望[J]. 應(yīng)用生態(tài)學(xué)報(bào),2007,18(11):2632-2636. Tian Xiaohai, Song Jinqin, Li Shouhua, et al. High temperature stress on rice anthesis: Research progress and prospect[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2632-2636. (in Chinese with English abstract)
[12] 鄭建初,張彬,陳留根,等. 抽穗期高溫對(duì)水稻產(chǎn)量構(gòu)成要素和稻米品質(zhì)的影響及其基因型差異[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2005,21(4):249-254. Zheng Jianchu, Zhang Bin, Chen Liugen, et alGenotypic differences in effects of high air temperature in field on rice yield components and grain quality during heading stage[J]. Jiangsu Journal of Agricultural Sciences, 2005, 21(4): 249-254. (in Chinese with English abstract)
[13] 張桂蓮,陳立云,雷東陽,等. 水稻耐熱性研究進(jìn)展[J]. 雜交水稻,2005,20(1):1-5. Zhang Guilian, Chen Liyun, Lei Dongyang, et al. Progresses in research on heat tolerance in Rice[J]. Hybrid Rice, 2005, 20(1): 1-5. (in Chinese with English abstract)
[14] Tian X, Deng Y. Characterizing the rice field climatic factors under high temperature stress at anthesis[J]. International Crop Science, 2008, 16(4): 19-27.
[15] 甄博,郭相平,陸紅飛. 旱澇交替脅迫對(duì)水稻分蘗期根解剖結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):107-111. Zhen Bo, Guo Xiangping, Lu Hongfei. Effects of alternative stress of drought and waterlogging at tillering stage on rice root anatomical structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 107-113. (in Chinese with English abstract)
[16] 周明耀,趙瑞龍,顧玉芬,等. 水肥耦合對(duì)水稻地上部分生長(zhǎng)與生理性狀的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(8):38-43. Zhou Mingyao, Zhao Ruilong, Gu Yufen, et al. Effects of water and nitrogen coupling on growth and physiological characteristics of overground part of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(8): 38-43. (in Chinese with English abstract)
[17] 王振昌,郭相平,楊靜晗,等. 旱澇交替脅迫對(duì)水稻干物質(zhì)生產(chǎn)分配及倒伏性狀的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):114-123. Wang Zhenchang, Guo Xiangping, Yang Jinghan, et alEffect of alternate flooding and drought stress on biomass production, distribution and lodging characteristic of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 114-123. (in Chinese with English abstract)
[18] 段驊,楊建昌. 高溫對(duì)水稻的影響及其機(jī)制的研究進(jìn)展[J]. 中國水稻科學(xué),2012,26(4):393-400. Duan Hua, Yang Jianchang. Research advances in the effect of high temperature on rice and its mechanism[J]. Chin J Rice Sci, 2012, 26(4): 393-400. (in Chinese with English abstract)
[19] Zhou X, Ge Zhenming, Kellom?ki S, et alEffects of elevated CO2and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (L.) under varying water regimes[J]. Global Change Biology Bioenergy, 2011, 3(3): 223-234.
[20] 李春華,曾青,沙霖楠,等. 大氣CO2濃度和溫度升高對(duì)水稻地上部干物質(zhì)積累和分配的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2016,25(8):1336-1342. Li Chunhua, Zeng Qing, Sha Linnan, et al. Impacts of elevated atmospheric CO2and temperature on above-ground dry matter accumulation and distribution of rice (L.)[J]. Ecology and Environmental Sciences, 2016, 25(8): 1336-1342. (in Chinese with English abstract)
[21] 朱建強(qiáng),李靖. 澇漬脅迫與大氣溫、濕度對(duì)棉花產(chǎn)量的影響分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(1):13-18. Zhu Jianqiang , Li Jing. Effects of waterlogging stress with air temperature and humidity on cotton yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(1): 13-18. (in Chinese with English abstract)
[22] 吳進(jìn)東,李金才,魏鳳珍,等. 花后漬水高溫交互效應(yīng)對(duì)冬小麥旗葉光合特性及產(chǎn)量的影響[J]. 作物學(xué)報(bào),2012,38(6):1071-1079. Wu Jindong, Li Jincai, Wei Fengzhen, et alEffect of interaction of waterlogging and high temperature after anthesis on photosynthetic characteristics of flag leaf and yield in winter wheat[J]. Acta Agronomica Sinica, 2012, 38(6): 1071-1079. (in Chinese with English abstract)
[23] 馬興林,梁振興. 冬小麥分蘗衰亡過程中內(nèi)源激素作用的研究[J]. 作物學(xué)報(bào),1997,23(2):200-207. Ma Xinglin, Liang Zhenxing. Studies on the effects of endogeneous hormones in winter wheat tillers during the course of senescence[J]. Acta Agronomica Sinica, 1997, 23(2): 200-207. (in Chinese with English abstract)
[24] 張桂蓮,張順堂,肖浪濤,等. 抽穗開花期高溫脅迫對(duì)水稻花藥、花粉粒及柱頭生理特性的影響[J]. 中國水稻科學(xué),2014,28(2):155-166. Zhang Guilian, Zhang Shuntang, Xiao Langtao, et al. Effect of high temperature stress on physiological characteristics of anther, pollen and stigma of rice during heading-flowering stage[J]. Chin J Rice Sci, 2014, 28(2): 155-166. (in Chinese with English abstract)
[25] 趙雷,嚴(yán)松,黃英金,等. 高溫造成抽穗揚(yáng)花期水稻育性降低的機(jī)理研究[C]. 中國作物學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集. 2014:80.
[26] Sharma P K, Sharma S K, Choi I Y. Individual and combined effects of waterlogging and alkalinity on yield of wheat (L.) imposed at three critical stages[J]. Physiology & Molecular Biology of Plants, 2010, 16(3): 317-320.
[27] Zhao H, Dai T, Jing Q, et al. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars[J]. Plant Growth Regulation, 2007, 51(2): 149-158.
Effect of interaction of high temperature at jointing stage and waterlogging on growth and development of rice
Zhen Bo, Zhou Xinguo※, Lu Hongfei, Li Huizhen
(453002,)
Huanghuai region is characterized by high temperature and plenty of heavy precipitation during the jointing-booting stage of rice, which may result in frequent occurrence of waterlogging and hot damage on rice field. Waterlogging and high temperature may interactively impact on rice growth and yield. This study aimed to investigate the response of rice growth and yield to the interaction of waterlogging and high temperature stress. In order to make a deep understanding on the effects of high temperature and waterlogging stress on rice (L., Huodao 008) morphological characters and yield at jointing stage, 6 treatments were set up as follows: high temperature stress (T1), high temperature × light waterlogging stress (water depth of 10 cm, T2) , high temperature × heavy waterlogging stress (water depth of 15 cm, T3), light waterlogging stress (T4), heavy waterlogging stress (T5), as well as a regular irrigation with shallow water (water depth of 0-5 cm) except for yellow maturity (CK). After stress treatment, the rice plant height, leaf area, shoot dry matter and yield factors were observed. Logistic equation and Gaussian Function were used to fit curves. The change trend of rice morphological characters and yield factors under interaction of high temperature and waterlogging stress were analyzed. The results showed that: 1) Compared with CK, rice plant height under high temperature stress (T1) and heavy waterlogging (T5) treatments was decreased by 5.63 and 5.96 cm at the heading stage, respectively. The interaction stress of high temperature and waterlogging had a weak inhibitory effect on rice growth compared to T1 or T5. 2)With advance of the growth period, rice leaf area showed a decrease trend after a first increase and the leaf area reached the maximum at the late jointing stage. The leaf area under the interaction of high temperature and waterlogging stress (T2, T3) was increased. Dry matter accumulation of the above-ground part of rice under high temperature and heavy waterlogging stress (T3) was increased compared to CK, but it was reduced under only high temperature stress (T1). 3) Except for light waterlogging stress (T4), the rice yield in all stress treatments were significantly reduced. Compared with CK, the rice yield under the interaction of high temperature and light waterlogging stress (T2) and high temperature and heavy waterlogging stress (T3) were significantly decreased by 44.16% and 22.29%, respectively, which was due to the decrease of filled grain rate. Through the analysis of two factors interaction, temperature stress and the interaction stress of water and temperature had significant influence on the yield factors of rice, but the water stress only had significant influence on thespikelet length, the number of effective panicles and the yield. In sum, rice yield were reduced under heavy waterlogging, high temperature and interaction of high temperature and waterlogging stress, but interaction of high temperature and heavy waterlogging stress can effectively weaken rice yield reduction.
stresses; flooding; crop; rice; high temperature; shoot drying weight; yield
10.11975/j.issn.1002-6819.2018.21.013
S274.1
A
1002-6819(2018)-21-0105-07
2018-01-12
2018-08-06
中國農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費(fèi)專項(xiàng)(FIRI2017-16);中國農(nóng)業(yè)科學(xué)院創(chuàng)新工程項(xiàng)目
甄 博,助理研究員。主要從事農(nóng)田排水理論研究。 Email:zhenbo@caas.cn
周新國,研究員。主要從事農(nóng)田排水技術(shù)與理論研究。 Email:firizhouxg@126.com
甄 博,周新國,陸紅飛,李會(huì)貞. 拔節(jié)期高溫與澇交互脅迫對(duì)水稻生長(zhǎng)發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):105-111. doi:10.11975/j.issn.1002-6819.2018.21.013 http://www.tcsae.org
Zhen Bo, Zhou Xinguo, Lu Hongfei, Li Huizhen. Effect of interaction of high temperature at jointing stage and waterlogging on growth and development of rice [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 105-111. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.013 http://www.tcsae.org