亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        耦合非線性Schr?dinger方程初邊值問題整體解的適定性

        2018-10-17 01:45:30陳渝芝張曉強金世剛
        關鍵詞:理學院邊值問題理工大學

        陳渝芝,張曉強, 金世剛

        (重慶理工大學 理學院, 重慶 400054)

        1 Introduction

        The coupled nonlinear Schrodinger equations:

        (SE)

        were proposed by [3] to describe the two-wave interaction through cubic nonlinear optical media(see also [2,4]). LetΩbe a domain inR2with compactly smooth boundaryΓ. We consider the following initial-boudary value problem:

        (1.1)

        (1.2)

        u(t,x)=0,v(t,x)=0 (t,x)∈[0,∞)×Γ

        (1.3)

        u(0,x)=u0(x),v(0,x)=v0(x),x∈Ω

        (1.4)

        whereu(t,x) andv(t,x) are complex valued functions denoting the complex amplitudes of two interacting waves in nonlinear optical media,respectively.

        Problem (1.1)-(1.4) whenΩ=R2has been studied in[2-5],but to our best knowledge,there is no any result whenΩ≠R2. In the present paper, we study the existence and uniqueness of global solution to the initial-boundary value problem (1.1)-(1.4). The main result of this paper reads as follows.

        (1.5)

        Δφ-φ+φ3=0

        (1.6)

        Then there exists a unique solution (u,v) for the problem (1.1)-(1.4) such that

        (u,v)∈[C([0,∞);H2(Ω))∩C1([0,∞);L2(Ω))]×

        [C([0,∞);H2(Ω))∩C1([0,∞);L2(Ω))]

        2 Preliminaries

        In this section, we give some preliminaries which are key to the proof of Theorem 1.1. In what follows we denote byCvarious constants depending only onΩ.

        Firstly, the following result holds from Lemma 2 in[1]

        Lemma2.1For (u,v)∈H2(Ω)×H2(Ω) with ||u||H1(Ω)+||v||H1(Ω)≤1, we have

        (2.1)

        Lemma2.2For (u,v)∈H2(Ω)×H2(Ω), we have

        (2.2)

        (2.3)

        (2.4)

        (2.5)

        ProofFor (u,v)∈H2(Ω)×H2(Ω),letDdenote any first order differential operator, we have

        (2.6)

        which implies that

        (2.7)

        On the other hand,by Gagliardo-Nirenberg inquality,one has

        (2.8)

        (2.7) and (2.8) yield the estimante (2.2).

        We next prove the estimate (2.3).By a direct calculation, we have

        (2.9)

        (2.10)

        Combining (2.9) with (2.10) yields that

        (2.11)

        Thus, (2.3) follows from (2.11).

        Similarly,we can obtain the estimates (2.4) and (2.5).

        At the end of this section, we give the following result which is similar to Theorem 1 in Segal [6].

        Lemma2.3Assume thatHis a Hibert space andAi:D(Ai)?H→His an m-acctrtive linear operator,wherei=1,2. LetFi(i=1,2) be a mapping fromD(A1)×D(A2) into itself which is Lipschitz on every bounded set ofD(A1)×D(A2).Then for any (u0,v0)∈D(A1)×D(A2),there exists a unique solution (u,v) of the Cauchy problem

        (2.12)

        3 Proof of Theorem 1.1

        In this section,we prove Theorem 1.1.We first give a lemma which concerns the conservation laws of the energy and of the mass by a direct calculation.

        ||u(t)||L2(Ω)=||u0||L2(Ω), ||v(t)||L2(Ω)=||v0||L2(Ω)

        (3.1)

        E(u(t),v(t))=E(u0,v0)

        (3.2)

        where

        (3.3)

        We now return to show Theorem 1.1

        ProofofTheorem1.1Using Lemma 2.3, we let

        (3.4)

        We divide the proof into two steps.

        Step1In this step, we show that ||u(t)||H1(Ω)and ||v(t)||H1(Ω)remain bounded fort>0.

        (3.5)

        Applying Gagliardo-Nirenberg inequality

        (3.6)

        whereφis the ground state solution of (1.6), noting that (3.1), we have

        (3.7)

        Combining (3.5) with (3.7) yields that

        ||u(t)||H1(Ω)+||v(t)||H1(Ω)≤C

        whereCis independent oft.

        Step2In this step, we istablish that boundedness of ||u(t)||H2(Ω)and ||v(t)||H2(Ω).

        LetSu(t) be theL2isometry group generated byA1,Sv(t) be theL2isometry group generated byA2. By (1.1) and (1.2), we have

        (3.8)

        (3.9)

        and

        (3.10)

        (3.11)

        Thus one has

        (3.12)

        (3.13)

        It follows from Lemma 2.2 that

        (||u(s)||H2(Ω)+||v(s)||H2(Ω))≤C(||u(s)||L∞(Ω)+||v(s)||L∞(Ω))2·

        (||u(s)||H2(Ω)+||v(s)||H2(Ω))

        (3.14)

        (||u(s)||H2(Ω)+||v(s)||H2(Ω))≤C(||u(s)||L∞(Ω)+||v(s)||L∞(Ω))2·

        (||u(s)||H2(Ω)+||v(s)||H2(Ω))

        (3.15)

        Furthermore, Lemma 2.1, (3.12), (3.13), (3.14) and (3.15) lead to

        [1+log(1+||u(s)||H2(Ω)+||v(s)||H2(Ω))]ds

        (3.16)

        Let

        (3.17)

        Then we have

        J′(t)=C(||u(t)||H2(Ω)+||v(t)||H2(Ω))·[1+log(1+||u(t)||H2(Ω)+||v(t)||H2(Ω))]≤

        CJ(t)[1+log(1+J(t))]≤C(1+J(t))[1+log(1+J(t))]

        (3.18)

        Hence (3.18) yields that

        (3.19)

        Hence Integrating (3.19), we obtain the estimate for ||u(t)||H2(Ω)+||v(t)||H2(Ω)of the form

        ||u(t)||H2(Ω)+||v(t)||H2(Ω)≤eαeβt

        (3.20)

        whereαandβare two constants indepent oft. Therefore, ||u(t)||H2(Ω)+||v(t)||H2(Ω)remains bounded on every finite time interval. Thus we must haveTmax=∞.

        The proof of Theorem 1.1 is completed.

        猜你喜歡
        理學院邊值問題理工大學
        昆明理工大學理學院學科簡介
        昆明理工大學理學院簡介
        非線性n 階m 點邊值問題正解的存在性
        昆明理工大學
        帶有積分邊界條件的奇異攝動邊值問題的漸近解
        昆明理工大學
        昆明理工大學
        浙江理工大學
        西安航空學院專業(yè)介紹
        ———理學院
        非線性m點邊值問題的多重正解
        国产精品久久婷婷六月| av无码久久久久久不卡网站 | 亚洲av综合色区无码另类小说| 插b内射18免费视频| 亚洲综合欧美日本另类激情| 中文字幕色视频在线播放| 中文字幕高清不卡视频二区| 午夜男女很黄的视频| 婷婷开心深爱五月天播播| 亚洲人成无码网站十八禁| 中文字幕一区二区黄色| 亚洲熟妇丰满多毛xxxx| 丰满爆乳无码一区二区三区| 亚洲成A人A∨久在线观看| 日韩国产精品一区二区三区 | 亚洲人成色7777在线观看不卡 | 疯狂做受xxxx高潮视频免费| 亚洲成色在线综合网站| 曰本亚洲欧洲色a在线| 99精品久久精品一区| 内射人妻视频国内| 国产亚洲亚洲精品777| 二区三区视频在线观看| 国产自拍高清在线观看| 国产成人无码区免费内射一片色欲| 日本午夜国产精彩| 日本一区二区在线播放| 天天摸天天做天天爽水多| 亚洲精品久久久无码av片软件| 亚洲第一区无码专区| 亚洲女厕偷拍一区二区| 人妻体体内射精一区二区| 国产精品视频yuojizz| 成年女人午夜特黄特色毛片免| 男吃奶玩乳尖高潮视频| 欧美粗大无套gay| 香蕉久久夜色精品国产| 在线视频色系中文字幕| 国产精品无码午夜福利| 亚洲一区二区欧美色妞影院| 久久综合激情的五月天|