亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        耦合非線性Schr?dinger方程初邊值問題整體解的適定性

        2018-10-17 01:45:30陳渝芝張曉強金世剛
        關鍵詞:理學院邊值問題理工大學

        陳渝芝,張曉強, 金世剛

        (重慶理工大學 理學院, 重慶 400054)

        1 Introduction

        The coupled nonlinear Schrodinger equations:

        (SE)

        were proposed by [3] to describe the two-wave interaction through cubic nonlinear optical media(see also [2,4]). LetΩbe a domain inR2with compactly smooth boundaryΓ. We consider the following initial-boudary value problem:

        (1.1)

        (1.2)

        u(t,x)=0,v(t,x)=0 (t,x)∈[0,∞)×Γ

        (1.3)

        u(0,x)=u0(x),v(0,x)=v0(x),x∈Ω

        (1.4)

        whereu(t,x) andv(t,x) are complex valued functions denoting the complex amplitudes of two interacting waves in nonlinear optical media,respectively.

        Problem (1.1)-(1.4) whenΩ=R2has been studied in[2-5],but to our best knowledge,there is no any result whenΩ≠R2. In the present paper, we study the existence and uniqueness of global solution to the initial-boundary value problem (1.1)-(1.4). The main result of this paper reads as follows.

        (1.5)

        Δφ-φ+φ3=0

        (1.6)

        Then there exists a unique solution (u,v) for the problem (1.1)-(1.4) such that

        (u,v)∈[C([0,∞);H2(Ω))∩C1([0,∞);L2(Ω))]×

        [C([0,∞);H2(Ω))∩C1([0,∞);L2(Ω))]

        2 Preliminaries

        In this section, we give some preliminaries which are key to the proof of Theorem 1.1. In what follows we denote byCvarious constants depending only onΩ.

        Firstly, the following result holds from Lemma 2 in[1]

        Lemma2.1For (u,v)∈H2(Ω)×H2(Ω) with ||u||H1(Ω)+||v||H1(Ω)≤1, we have

        (2.1)

        Lemma2.2For (u,v)∈H2(Ω)×H2(Ω), we have

        (2.2)

        (2.3)

        (2.4)

        (2.5)

        ProofFor (u,v)∈H2(Ω)×H2(Ω),letDdenote any first order differential operator, we have

        (2.6)

        which implies that

        (2.7)

        On the other hand,by Gagliardo-Nirenberg inquality,one has

        (2.8)

        (2.7) and (2.8) yield the estimante (2.2).

        We next prove the estimate (2.3).By a direct calculation, we have

        (2.9)

        (2.10)

        Combining (2.9) with (2.10) yields that

        (2.11)

        Thus, (2.3) follows from (2.11).

        Similarly,we can obtain the estimates (2.4) and (2.5).

        At the end of this section, we give the following result which is similar to Theorem 1 in Segal [6].

        Lemma2.3Assume thatHis a Hibert space andAi:D(Ai)?H→His an m-acctrtive linear operator,wherei=1,2. LetFi(i=1,2) be a mapping fromD(A1)×D(A2) into itself which is Lipschitz on every bounded set ofD(A1)×D(A2).Then for any (u0,v0)∈D(A1)×D(A2),there exists a unique solution (u,v) of the Cauchy problem

        (2.12)

        3 Proof of Theorem 1.1

        In this section,we prove Theorem 1.1.We first give a lemma which concerns the conservation laws of the energy and of the mass by a direct calculation.

        ||u(t)||L2(Ω)=||u0||L2(Ω), ||v(t)||L2(Ω)=||v0||L2(Ω)

        (3.1)

        E(u(t),v(t))=E(u0,v0)

        (3.2)

        where

        (3.3)

        We now return to show Theorem 1.1

        ProofofTheorem1.1Using Lemma 2.3, we let

        (3.4)

        We divide the proof into two steps.

        Step1In this step, we show that ||u(t)||H1(Ω)and ||v(t)||H1(Ω)remain bounded fort>0.

        (3.5)

        Applying Gagliardo-Nirenberg inequality

        (3.6)

        whereφis the ground state solution of (1.6), noting that (3.1), we have

        (3.7)

        Combining (3.5) with (3.7) yields that

        ||u(t)||H1(Ω)+||v(t)||H1(Ω)≤C

        whereCis independent oft.

        Step2In this step, we istablish that boundedness of ||u(t)||H2(Ω)and ||v(t)||H2(Ω).

        LetSu(t) be theL2isometry group generated byA1,Sv(t) be theL2isometry group generated byA2. By (1.1) and (1.2), we have

        (3.8)

        (3.9)

        and

        (3.10)

        (3.11)

        Thus one has

        (3.12)

        (3.13)

        It follows from Lemma 2.2 that

        (||u(s)||H2(Ω)+||v(s)||H2(Ω))≤C(||u(s)||L∞(Ω)+||v(s)||L∞(Ω))2·

        (||u(s)||H2(Ω)+||v(s)||H2(Ω))

        (3.14)

        (||u(s)||H2(Ω)+||v(s)||H2(Ω))≤C(||u(s)||L∞(Ω)+||v(s)||L∞(Ω))2·

        (||u(s)||H2(Ω)+||v(s)||H2(Ω))

        (3.15)

        Furthermore, Lemma 2.1, (3.12), (3.13), (3.14) and (3.15) lead to

        [1+log(1+||u(s)||H2(Ω)+||v(s)||H2(Ω))]ds

        (3.16)

        Let

        (3.17)

        Then we have

        J′(t)=C(||u(t)||H2(Ω)+||v(t)||H2(Ω))·[1+log(1+||u(t)||H2(Ω)+||v(t)||H2(Ω))]≤

        CJ(t)[1+log(1+J(t))]≤C(1+J(t))[1+log(1+J(t))]

        (3.18)

        Hence (3.18) yields that

        (3.19)

        Hence Integrating (3.19), we obtain the estimate for ||u(t)||H2(Ω)+||v(t)||H2(Ω)of the form

        ||u(t)||H2(Ω)+||v(t)||H2(Ω)≤eαeβt

        (3.20)

        whereαandβare two constants indepent oft. Therefore, ||u(t)||H2(Ω)+||v(t)||H2(Ω)remains bounded on every finite time interval. Thus we must haveTmax=∞.

        The proof of Theorem 1.1 is completed.

        猜你喜歡
        理學院邊值問題理工大學
        昆明理工大學理學院學科簡介
        昆明理工大學理學院簡介
        非線性n 階m 點邊值問題正解的存在性
        昆明理工大學
        帶有積分邊界條件的奇異攝動邊值問題的漸近解
        昆明理工大學
        昆明理工大學
        浙江理工大學
        西安航空學院專業(yè)介紹
        ———理學院
        非線性m點邊值問題的多重正解
        久久性爱视频| 18禁黄久久久aaa片| 国产精品午夜高潮呻吟久久av | 久久99人妖视频国产| 无码毛片内射白浆视频| 亚洲欧洲∨国产一区二区三区| 国产日韩A∨无码免费播放| 成人激情视频一区二区三区| 日韩精品久久中文字幕| 亚洲а∨精品天堂在线| 亚洲аv天堂无码| av福利资源在线观看| 蜜桃尤物在线视频免费看| 午夜福利院电影| 精品无码av不卡一区二区三区| av免费观看在线网站| 伊人中文字幕亚洲精品乱码| 色屁屁www影院免费观看入口| 国内精品一区二区2021在线| 国产精品亚洲av一区二区三区| 人禽杂交18禁网站免费| 免费观看黄网站在线播放| 亚洲高清视频在线播放| 白嫩少妇高潮喷水av| 欧美丰满熟妇bbbbbb| 极品熟妇大蝴蝶20p| 青青草视频原手机在线观看| 精品女同一区二区三区| 国产成人精品综合在线观看| 精品一精品国产一级毛片| 日本97色视频日本熟妇视频 | 中文字幕久久久人妻无码| 99久久综合精品五月天| 全程国语对白资源在线观看 | 97人人模人人爽人人少妇| 一级片麻豆| 人妻丰满精品一区二区| 东京热人妻系列无码专区| 国产午夜激无码av毛片| 熟女少妇丰满一区二区| 人妻夜夜爽天天爽三区丁香花|