雷小龍,李蒙良,張黎驊,任萬軍
?
顆?;仕綒馑褪铰菪M合可調(diào)定量供肥裝置設(shè)計(jì)與試驗(yàn)
雷小龍1,2,李蒙良1,張黎驊1,任萬軍2
(1. 四川農(nóng)業(yè)大學(xué)機(jī)電學(xué)院,雅安 625014;2. 農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,成都 611130)
為適應(yīng)不同施肥量要求和實(shí)現(xiàn)水平氣送式集中排肥器定量變量排肥,該文設(shè)計(jì)了一種顆?;事菪M合式集中供肥裝置。闡述了顆?;事菪M合式集中供肥裝置的工作原理,基于顆?;实臋C(jī)械物理特性和施肥量要求,提出了傾斜螺旋狀型孔結(jié)構(gòu),確定了其主要結(jié)構(gòu)參數(shù),構(gòu)建了顆?;式M合體在肥料充填區(qū)和投肥區(qū)的力學(xué)模型。應(yīng)用臺架試驗(yàn)研究了螺旋式排肥輪數(shù)量和轉(zhuǎn)速對供肥速率及供肥穩(wěn)定性變異系數(shù)的影響。結(jié)果表明:傾斜螺旋狀型孔結(jié)構(gòu)有利于充肥和排肥;螺旋式排肥輪數(shù)量和轉(zhuǎn)速分別為1~4個(gè)和10~40 r/min條件下,供肥速率隨螺旋式排肥輪數(shù)量與轉(zhuǎn)速增加而增加,供肥速率范圍為912.67~13 164.26 g/min。螺旋組合式集中供肥裝置能適應(yīng)不同機(jī)械物理特性參數(shù)的顆粒化肥,3種顆?;实墓┓仕俾手g的差值低于5%。構(gòu)建了螺旋式排肥輪數(shù)量和轉(zhuǎn)速與供肥速率的回歸預(yù)測模型,在目標(biāo)施肥量150~750 kg/hm2和拖拉機(jī)前進(jìn)速度2.52~5.88 km/h條件下,供肥速率試驗(yàn)值與模型預(yù)測值的偏差在3%以內(nèi),供肥穩(wěn)定性變異系數(shù)低于1.0%。田間試驗(yàn)結(jié)果表明,顆?;蕦?shí)際施用量與模型預(yù)測值相對誤差為3.54%。該研究提出的傾斜螺旋狀型孔和組合排肥輪結(jié)構(gòu)可滿足農(nóng)業(yè)生產(chǎn)的變量、定量集中供肥要求,可為顆?;仕綒馑褪郊信欧势鹘Y(jié)構(gòu)設(shè)計(jì)提供參考。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);傾斜螺旋狀型孔;集中排肥器;顆?;?/p>
化肥的廣泛應(yīng)用為中國糧食增產(chǎn)做出了重要貢獻(xiàn)[1],但存在利用率低、化肥過度施用導(dǎo)致土壤板結(jié)、環(huán)境污染等諸多問題[2],降低化肥施用量和提高利用率成為優(yōu)質(zhì)高效綠色的重要方式和途徑,也是“兩減一控”的核心內(nèi)容[3-5]。機(jī)械化定量按需施肥成為降低化肥用量和提高化肥利用率的發(fā)展方向。
顆?;试谵r(nóng)業(yè)生產(chǎn)中應(yīng)用廣泛,具有流動性偏差、吸濕性強(qiáng)、架空性和粘結(jié)性等特點(diǎn)[6]。根據(jù)作物的營養(yǎng)需肥時(shí)間,施肥方式可分為基肥、追肥和穗肥等類型,不同作物和施肥方式的單位面積施肥量差異大。目前,機(jī)械化排肥方式主要包括離心式撒施和條施2種方式。離心式撒肥機(jī)以離心圓盤為核心部件,主要利用圓盤高速旋轉(zhuǎn)產(chǎn)生的離心力將肥料均勻拋撒[7]。Edward等[8]研究了旋轉(zhuǎn)圓盤式撒肥機(jī)精確定位施肥的模型,獲得了肥料拋撒的運(yùn)動軌跡和分布特征;通過構(gòu)建顆粒肥料在旋轉(zhuǎn)盤上的運(yùn)動方程,確定了撒肥機(jī)的機(jī)械物理參數(shù)。Villette等采用高速攝像技術(shù)從三維角度分析了肥料的運(yùn)動軌跡,確定了肥料拋撒時(shí)水平方向的出口角度[9];并應(yīng)用臺架試驗(yàn)測定水平和豎直2個(gè)方向復(fù)合肥和氮磷鉀肥料的流量分布。離心式撒肥機(jī)適用于尿素、復(fù)合肥等多種顆?;剩芑饰锪咸匦院惋L(fēng)力的影響,施肥均勻性、精確度難以得到保證[10-11]。
條狀施肥是聯(lián)合播種機(jī)的重要組成部分,以外槽輪式、鏈條式和螺旋式等排肥器為核心部件。變量施肥機(jī)采用外槽輪式排肥器完成排肥,應(yīng)用直流電機(jī)控制排肥軸轉(zhuǎn)動和步進(jìn)電機(jī)控制槽輪開度實(shí)現(xiàn)變量施肥[12-13]。齊興源等[14]設(shè)計(jì)了一種外槽輪式排肥、氣流輸送肥料的稻田氣力式變量施肥機(jī),可實(shí)現(xiàn)施肥量在40~200 kg/hm2范圍內(nèi)調(diào)節(jié)。左興健等[15]采用電機(jī)驅(qū)動排肥、風(fēng)送肥料實(shí)現(xiàn)水稻側(cè)位深施肥;曾山等[16]設(shè)計(jì)了同步開溝起壟施肥水稻精量旱穴直播機(jī),排肥器的施肥量范圍為300~1 500 kg/hm2。陳雄飛等[17]設(shè)計(jì)了兩級螺旋排肥裝置,可適用于復(fù)合肥、水稻專用肥等排肥;張睿等[18]設(shè)計(jì)了鏈條輸送式變量施肥拋撒機(jī),可根據(jù)處方圖變量施肥。此外,葉片調(diào)節(jié)式側(cè)深施肥裝置和外槽輪排肥器用于水田深施肥[19-20],同步完成播種和側(cè)位深施肥等工序。
為適應(yīng)高速高效復(fù)式作業(yè)的要求,氣力輸送集排式聯(lián)合播種機(jī)成為國外發(fā)展和應(yīng)用的主要機(jī)型。氣力輸送集排式播種機(jī)采用氣流輸送種子和化肥,其核心部件為集中排種和排肥裝置。與上述的離心式撒肥機(jī)和槽輪式排肥器相比,集中氣送排肥方式精簡整機(jī)和傳動結(jié)構(gòu),有效提高作業(yè)效率。集中氣送排肥是以“機(jī)械定量供肥+氣流均勻分配成行”的方式,供肥裝置是實(shí)現(xiàn)定量變量排肥的關(guān)鍵部件[21-23]。德國阿瑪松公司的Primera DMC氣力式播種機(jī)、美國約翰迪爾公司的1890型氣吹式播種機(jī)和意大利馬斯奇奧公司的Alliante Plus Drago DC Combi動力驅(qū)動耙聯(lián)合氣吹條播機(jī)等寬幅高速播種機(jī)均采用氣流輸送化肥,化肥施用量大,利用氣力輸肥與分配作業(yè)需配套大功率風(fēng)機(jī)及拖拉機(jī),在南方小面積田塊中使用受限。集中排肥裝置具有結(jié)構(gòu)簡單、作業(yè)高效和功耗低的特點(diǎn),研制水平氣送式排肥裝置以適應(yīng)中小田塊的成為發(fā)展方向。
為適應(yīng)不同時(shí)期作物對養(yǎng)分的需要,本文分析顆?;实臋C(jī)械物理特性和農(nóng)藝要求,設(shè)計(jì)了顆?;事菪M合式集中供肥裝置,確定了傾斜螺旋狀型孔關(guān)鍵結(jié)構(gòu)參數(shù),并分析排肥輪數(shù)量與轉(zhuǎn)速對供肥速率和供肥穩(wěn)定性變異系數(shù)的影響,從而滿足不同施肥時(shí)期或作物變量精確施肥需求。本研究可為顆?;识考泄┓恃b置設(shè)計(jì)提供參考。
水平氣送式集中排肥器包括供肥裝置、水平式分配裝置、風(fēng)泵、導(dǎo)肥管、電機(jī)、變速控制器和蓄電池等,結(jié)構(gòu)示意圖如圖1所示。水平氣送式集中排肥器工作時(shí),蓄電池作為動力源,變速控制器調(diào)節(jié)電機(jī)的轉(zhuǎn)速,從而帶動供肥裝置的排肥輪轉(zhuǎn)動,按施肥量需求提供均勻的顆?;士偭?;風(fēng)泵提供高速正壓氣流,在水平式分配裝置中將肥料分散均勻分配吹入6個(gè)導(dǎo)肥管中,從而實(shí)現(xiàn)一個(gè)集中排肥器同時(shí)排出6行肥料。供肥裝置為控制總排肥量的機(jī)械式供肥裝置,決定排肥的穩(wěn)定性;水平式分配裝置在正壓氣流的作用下將肥料均勻分配,主要影響各行排肥量一致性。顆粒化肥存在吸濕性強(qiáng)、流動性差的特性,供肥裝置是實(shí)現(xiàn)變量定量提供顆粒化肥總量的關(guān)鍵部件。
1. 肥箱 2. 風(fēng)泵 3. 供肥裝置 4. 電機(jī) 5. 變速控制器 6. 蓄電池 7. 機(jī)架 8. 水平式分配裝置 9. 導(dǎo)肥管
螺旋組合式供肥裝置結(jié)構(gòu)如圖2所示,主要包括肥箱、供肥裝置外殼、排肥軸、攪肥機(jī)構(gòu)、擋板、毛刷、螺旋式排肥輪、端蓋、空白輪和隔板等。肥箱安裝于供肥裝置外殼上方,螺旋式排肥輪、端蓋、空白輪和隔板安裝于排肥軸上形成排肥機(jī)構(gòu),攪肥機(jī)構(gòu)安裝于排肥機(jī)構(gòu)正上方,攪肥機(jī)構(gòu)中心與排肥機(jī)構(gòu)中心距離為70 mm。擋板和毛刷呈倒錐形位于排肥機(jī)構(gòu)上,供肥裝置外殼、擋板和毛刷共同作用形成充肥室。螺旋式排肥輪數(shù)量可在1~4個(gè)之間調(diào)節(jié);空白輪可替換螺旋式排肥輪,螺旋式排肥輪數(shù)量與排肥軸轉(zhuǎn)速共同調(diào)節(jié)排肥量。
1. 肥箱 2. 攪肥機(jī)構(gòu) 3. 充肥室 4. 供肥裝置外殼 5. 擋板 6. 毛刷 7. 卸肥板 8. 螺旋式排肥輪 9. 排肥口 10. 排肥軸 11. 端蓋 12. 空白輪 13. 隔板 Ⅰ. 肥料充填區(qū) Ⅱ. 清肥區(qū) Ⅲ. 投肥區(qū)
1. Fertilizer box 2. Fertilizer churning mechanism 3. Fertilizer filling room 4. Shell 5. Blocking plate 6. Brush 7. Unloaded plate 8. Screw-type fertilizer feeding unit 9. Feeding port 10. Discharging shaft 11. End cover 12. Replace wheel 13. Clapboard Ⅰ. Fertilizer filling zone Ⅱ. Fertilizer clearing zone Ⅲ. Fertilizer feeding zone
注:為螺旋式排肥輪的轉(zhuǎn)速,r·min–1;1為攪肥機(jī)構(gòu)的角速度,r·min–1;為螺旋式排肥輪直徑,mm;下同。
Note:is rotational speed of screw-type fertilizer feeding unit, r·min–1;1is rotational speed of fertilizer churning device, r·min–1;is diameter of screw-type fertilizer feeding unit, mm; Same as below.
圖2 螺旋組合式供肥裝置結(jié)構(gòu)示意圖
Fig.2 Structure diagram of screw-type fertilizer feeding device
螺旋組合式供肥裝置工作時(shí),肥箱中的顆?;蔬M(jìn)入到充肥區(qū),排肥軸帶動排肥機(jī)構(gòu)和攪肥機(jī)構(gòu)同步轉(zhuǎn)動。攪肥機(jī)構(gòu)擾動顆?;试鰪?qiáng)充肥能力和防止化肥粘結(jié)、結(jié)拱等,螺旋式排肥輪將顆?;蕪某浞蕝^(qū)充肥經(jīng)毛刷清肥進(jìn)入到投肥區(qū),顆?;试谥亓碗x心力作用下脫離螺旋式排肥輪,均勻連續(xù)的顆?;释ㄟ^排肥口進(jìn)入水平式分配裝置,完成定量排肥過程。
顆?;蕶C(jī)械物理特性參數(shù)是確定螺旋組合式供肥裝置結(jié)構(gòu)尺寸的重要依據(jù),本研究選取了廣泛應(yīng)用的住商復(fù)合肥、三寧復(fù)合肥和云頂復(fù)合肥共3種類型復(fù)合化肥為研究對象,測得不同顆?;实臋C(jī)械物理特性參數(shù)如表1所示。3種類型的顆?;实钠骄S尺寸約為3.89 mm×3.59 mm×3.32 mm,球形度均大于90%。其中,三寧復(fù)合肥的三軸尺寸和千粒質(zhì)量最小,球形度和容重均最高。不同復(fù)合肥的休止角均低于34°,平均為31.84°。因此,以復(fù)合肥為代表的顆?;拾ǖ?、磷和鉀等多種營養(yǎng)成分,球形度較高,適用于機(jī)械化排肥;但不同類型復(fù)合肥的機(jī)械物理特性參數(shù)仍有差異,本研究以3種復(fù)合肥平均值為依據(jù)進(jìn)行結(jié)構(gòu)參數(shù)設(shè)計(jì),并通過試驗(yàn)開展不同類型顆?;实倪m應(yīng)性分析。
表1 不同顆?;实臋C(jī)械物理特性參數(shù)
在重力和攪肥機(jī)構(gòu)擾動作用下,顆?;食淙肼菪隣钚涂?,通過排肥量轉(zhuǎn)動將肥料排出。田間作業(yè)時(shí),農(nóng)藝要求的施肥速率為[24]
式中s為農(nóng)藝要求的施肥速率,g/s;t為農(nóng)藝要求的單位面積目標(biāo)施肥量,kg/hm2;為施肥作業(yè)速度,m/s;為施肥幅寬,m。
供肥裝置的供肥速率為
式中Q為單位時(shí)間供肥裝置的供肥速率,g/s;b為顆?;实娜葜?,g/m3;為肥料充填系數(shù);為型孔截面積,m2;H為型孔螺旋線長度,m;為排肥輪徑向型孔數(shù);為排肥輪數(shù)量;為排肥輪轉(zhuǎn)速,r/min。
由式(1)、(2)可知,農(nóng)藝要求的施肥速率應(yīng)與供肥裝置的供肥速率相同,則
式(3)表明,若滿足農(nóng)藝要求的施肥量,當(dāng)施肥幅寬、前進(jìn)速度一定時(shí),傾斜螺旋狀型孔容積、排肥輪徑向型孔數(shù)、排肥輪數(shù)量、肥料充填系數(shù)和轉(zhuǎn)速之間呈負(fù)相關(guān)關(guān)系。排肥輪轉(zhuǎn)速具有適宜的區(qū)間,轉(zhuǎn)速和排肥輪徑向型孔數(shù)均受排肥量直徑的影響。增加排肥輪直徑可增加排肥輪徑向型孔數(shù)量,在相同供肥速率條件下降低轉(zhuǎn)速,提高肥料充填性能。因此,結(jié)合外槽輪和螺旋排肥器的設(shè)計(jì)要求,確定排肥輪直徑為80 mm。
型孔形狀和尺寸對型孔容積以及充肥、排肥性能均有顯著影響,進(jìn)而影響供肥速率和穩(wěn)定性?;陬w?;市铦M足易充入、排出且連續(xù)的要求,設(shè)計(jì)了傾斜螺旋狀型孔,結(jié)構(gòu)如圖3a所示。為提高顆?;实某浞屎团欧市阅埽WC顆?;实某涮疃龋ㄝ^穩(wěn)定的肥料充填系數(shù)),傾斜螺旋狀型孔的截面呈倒梯形,包括型孔底槽寬度1、型孔上沿寬度2和型孔深度,型孔的左傾角和右傾角分別為和。根據(jù)型孔的幾何尺寸,得
1. 型孔 2. 螺旋式排肥輪殼體 3. 螺旋式排肥輪 4. 螺旋線 5. 排肥輪圓柱
1. Model-hole 2.Shell of screw-type fertilizer feeding unit 3. Screw-type fertilizer feeding unit 4. Helix 5. Cylinder of fertilizer feeding unit
注:1為型孔底槽寬度,mm;2為型孔上沿寬度,mm;為型孔深度,mm;為型孔左傾角,(°);為型孔右傾角,(°);為螺旋線導(dǎo)程,mm;為排肥輪圓柱周長,mm;為螺旋式排肥輪長度,mm;為螺旋升角,(°);下同。
Note:1is the bottom width of model-hole, mm;2is the upper width of model-hole, mm;is the depth of model-hole, mm;is left inclined angle, (°);is right inclined angle, (°);is helical pitch,mm;is circumference of fertilizer feeding unit, mm;is length of fertilizer feeding unit, mm;is helix angle, (°). Same as below.
圖3 傾斜螺旋狀型孔結(jié)構(gòu)
Fig.3 Structure of inclined screw-type model-hole
為方便顆?;食淙牒团懦鲂涂祝髢A角和右傾角應(yīng)滿足
式中為顆?;市葜菇牵ā悖?。
為提高供肥速率,確定型孔底槽寬度1和型孔深度分別為12.0和18.0 mm。排肥輪徑向型孔數(shù)與型孔上沿寬度2相關(guān),增加傾斜螺旋狀型孔數(shù)量可提高肥料容量,但需滿足排肥量強(qiáng)度,則
綜合式(4)~(6)和顆?;市葜菇牵醪酱_定左傾角和右傾角分別為24°和37°,則型孔上沿寬度2為30.0 mm。求得排肥輪徑向型孔數(shù)4<<8,綜合考慮傾斜螺旋狀排肥輪排肥量與強(qiáng)度要求,本文取排肥輪徑向型孔數(shù)為6。
傾斜螺旋狀型孔是倒梯形截面沿螺旋線方向形成,以螺旋升角繞排肥量圓柱體形成了螺旋線(圖3b),螺旋升角與導(dǎo)程之間的關(guān)系為
螺旋升角與導(dǎo)程呈正相關(guān)關(guān)系,螺旋升角太小不利于增加了自鎖性,綜合分析確定單一螺旋線的升角取60°,則導(dǎo)程為450 mm。顆?;实墓┓仕俾视赊D(zhuǎn)速和型孔尺寸共同決定,考慮排肥量調(diào)節(jié)范圍大的要求,確定螺旋式排肥輪可在1~4個(gè)之間調(diào)節(jié),螺旋式排肥輪和空白輪總和為4,排肥輪長度為40 mm。螺旋式排肥輪和空白輪均應(yīng)用3D打印技術(shù)加工,材料為ABS(acrylonitrile butadiene styrene copolymer)工程塑料。
供肥裝置工作時(shí),在重力和攪肥機(jī)構(gòu)的擾動作用下,顆?;室陨⒘sw的形式充入螺旋式排肥輪的型孔。由于顆?;实某叽缧∮谛涂?,則假設(shè)顆?;室猿錆M型孔的微小群體運(yùn)動;取肥料充填區(qū)的顆?;式M合體為研究對象(圖4a),顆粒化肥組合體的受力分析如圖4b所示。顆?;式M合體在充填區(qū)受到肥料散粒體垂直壓力Z、橫向壓力H、切向摩擦力F和重力,垂直壓力Z和橫向壓力H為肥料充填室和肥箱中的壓力;切向摩擦力F受攪肥機(jī)構(gòu)擾動及排肥輪轉(zhuǎn)動產(chǎn)生的顆?;手g的摩擦力?;谏顐}壓力分布理論[25]分析顆粒化肥在肥料充填室的壓力,得到顆粒化肥深度y的垂直應(yīng)力:
式中為垂直應(yīng)力,Pa;R為肥箱的等效直徑,本研究為0.088 m;為側(cè)壓系數(shù),取0.44;為靜態(tài)滑動摩擦系數(shù),取0.5[19];y顆?;实纳疃龋琺。本設(shè)計(jì)的肥箱深度為0.5 m,則肥料充填區(qū)的垂直應(yīng)力為2 631.3 Pa,則垂直壓力Z和橫向壓力H分別為
根據(jù)顆粒化肥組合體的受力分析和達(dá)朗貝爾原理,建立受力平衡方程
式中為顆粒化肥組合體的質(zhì)量,kg;N為型孔底部對顆?;式M合體支持力,N;I為科氏加速度,m/s2;為排肥輪的角速度,rad/s;為重力加速度,m/s2;為顆?;书g的摩擦系數(shù),取0.55;為軸與水平面的夾角,(°);為排肥輪的半徑,m。
1. 螺旋式排肥輪 2. 顆?;式M合體
1. Screw-type fertilizer feeding unit 2. Fertilizer assemblage
圖4 顆?;式M合體在肥料充填區(qū)的受力分析
Fig.4 Mechanics analysis of fertilizer assemblage in fertilizer filling zone
聯(lián)立式(9)和式(10),得
由式(11)可以看出,顆?;食涮畛跏嘉恢门c型孔左傾角、排肥輪轉(zhuǎn)速和型孔右傾角等相關(guān)。當(dāng)排肥輪轉(zhuǎn)速一定時(shí),顆?;食涮畛跏嘉恢门c型孔左傾角呈正相關(guān),說明型孔左傾角增加會使充填時(shí)間縮短,降低型孔充填率;設(shè)定為0°時(shí)進(jìn)行滿量充填,則型孔左傾角應(yīng)低于顆粒化肥休止角,即31.84°;為保證型孔保持高充填率進(jìn)入清肥區(qū),此時(shí)顆?;式M合體受垂直壓力Z,不受橫向壓力H,型孔左傾角應(yīng)大于清肥角,則>5°,則型孔左傾角取24°是可行的。
由于顆?;室孜鼭?、粘結(jié),設(shè)計(jì)較優(yōu)的型孔結(jié)構(gòu)有利于避免型孔堵塞。顆粒化肥組合體在投肥過程的受力分析如圖5所示。顆?;式M合體處于臨界投肥狀態(tài)時(shí),平衡方程如式(12)所示。
式中1為顆?;逝c型孔間的摩擦系數(shù),取0.5;為軸與水平面的夾角,(°)。
注:為軸與水平面的夾角,(°)。
Note:is angle betweenaxis and horizontal plane, (°).
圖5 顆?;式M合體在投肥區(qū)的受力分析
Fig.5 Mechanics analysis of fertilizer assemblage in fertilizer feeding zone
由式(12)得
式(13)表明,投肥位置相同時(shí),排肥輪轉(zhuǎn)速隨型孔右傾角增加而降低;在相同轉(zhuǎn)速下,投肥位置角隨型孔右傾角增加明顯增加,說明右傾角適當(dāng)增加可促使投肥位置提前,增加投肥時(shí)間,避免顆?;识氯涂住>C合考慮清肥區(qū)位置和投肥時(shí)間,投肥位置角?[0°, 30°],排肥輪轉(zhuǎn)速為10~60 r/min時(shí),得右傾角的范圍為17.43°~47.97°,本研究取右傾角為37°是合理的。
本試驗(yàn)以住商復(fù)合肥、三寧復(fù)合肥和云頂復(fù)合肥3種顆粒化肥為試驗(yàn)材料,其機(jī)械物理特性參數(shù)見表1。應(yīng)用自制的供肥裝置試驗(yàn)臺開展供肥性能試驗(yàn)研究,供肥裝置試驗(yàn)臺如圖6所示。
1. 肥箱 2. 螺旋組合式供肥裝置 3. 減速電機(jī) 4. 調(diào)速系統(tǒng) 5. 盛肥容器 6. 系統(tǒng)臺架
為確定螺旋組合式供肥裝置供肥速率以適應(yīng)不同施肥量要求和拖拉機(jī)作業(yè)速度,以住商復(fù)合肥為試驗(yàn)材料開展了螺旋式排肥輪數(shù)量和轉(zhuǎn)速的雙因素試驗(yàn),根據(jù)施肥量要求,螺旋式排肥輪數(shù)量設(shè)1、2、3和4共4個(gè)水平,排肥輪轉(zhuǎn)速設(shè)10~40 r/min共4個(gè)水平,增量為10 r/min。為驗(yàn)證螺旋組合式供肥裝置對不同顆?;实倪m應(yīng)性,以3種類型的顆?;剩ㄗ∩虖?fù)合肥、三寧復(fù)合肥和云頂復(fù)合肥)為試驗(yàn)材料,分析轉(zhuǎn)速為10、20和30 r/min條件下的供肥性能。試驗(yàn)中均以供肥速率[26-28](1 min內(nèi)供肥裝置的供肥量)和供肥穩(wěn)定性變異系數(shù)為評價(jià)指標(biāo)。
試驗(yàn)按照GB/T 9478-2005“谷物條播機(jī)試驗(yàn)方法”進(jìn)行供肥裝置供肥性能試驗(yàn)和測定[29]。用容器收集供肥口排出的顆?;?,稱量顆?;寿|(zhì)量,采集時(shí)間為1 min,重復(fù)3次,計(jì)算不同處理下供肥速率和供肥穩(wěn)定性變異系數(shù),按式(14)~(15)計(jì)算。
式中為供肥速率,g/min;q為第次1 min內(nèi)供肥量,g/min;為試驗(yàn)次數(shù);CV為供肥穩(wěn)定性變異系數(shù),%。
3.3.1 螺旋式排肥輪數(shù)量與轉(zhuǎn)速對供肥性能的影響
螺旋式排肥輪數(shù)量與轉(zhuǎn)速對供肥性能影響結(jié)果表明(圖7),供肥速率隨螺旋式排肥輪數(shù)量與轉(zhuǎn)速增加而增加,供肥速率范圍為912.67~13 164.26 g/min,供肥速率變化范圍大,可滿足不同的施肥量要求。供肥穩(wěn)定性變異系數(shù)隨轉(zhuǎn)速和螺旋式排肥輪數(shù)量增加均呈先降后升趨勢,均低于0.6%。穩(wěn)定性變異系數(shù)在螺旋式排肥輪數(shù)量和轉(zhuǎn)速分別為2~3個(gè)和20~40 r/min時(shí)較低。應(yīng)用Matlab軟件對供肥速率進(jìn)行二次多元回歸擬合,得到螺旋式排肥輪數(shù)量和轉(zhuǎn)速與供肥速率的回歸方程為
式中1為螺旋式排肥輪數(shù)量;2為螺旋式排肥輪轉(zhuǎn)速,r/min。
經(jīng)顯著性檢驗(yàn)分析,該模型決定系數(shù)為0.995 8(<0.001),表明該回歸模型顯著且回歸方程失擬性不顯著,能夠較好地描述試驗(yàn)結(jié)果,說明使用式(16)可預(yù)測給定供肥速率求解螺旋式排肥輪數(shù)量和轉(zhuǎn)速。
3.3.2 供肥裝置對顆?;实倪m應(yīng)性分析
在2個(gè)螺旋式排肥輪數(shù)量條件下,不同類型的顆?;试囼?yàn)材料和轉(zhuǎn)速對供肥性能的影響結(jié)果如表2所示。顆?;暑愋汀⑥D(zhuǎn)速及其交互作用對供肥速率均有極顯著影響(<0.01)。在相同轉(zhuǎn)速下,供肥速率以三寧復(fù)合肥最高,住商復(fù)合肥次之,云頂復(fù)合肥最低,但3種顆粒化肥的供肥速率之間的相對最大差值低于5%,這是由于顆?;实娜S尺寸和容重差異較大引起的。顆粒化肥類型和轉(zhuǎn)速對供肥穩(wěn)定性變異系數(shù)影響不顯著,不同處理的供肥穩(wěn)定性變異系數(shù)低于0.8%。綜上所述,螺旋組合式供肥裝置能夠適應(yīng)不同物理機(jī)械特性的顆?;?,并能保證較低的供肥穩(wěn)定性變異系數(shù)。
圖7 螺旋式排肥輪數(shù)量與轉(zhuǎn)速對顆?;使┓市阅艿挠绊?/p>
表2 供肥裝置對顆?;实倪m應(yīng)性分析
注:*和**分別表示方差分析在0.05和0.01水平上差異顯著。
Note: * and ** denotes significance of variance analysis at the 0.05 and 0.01 levels, respectively.
3.3.3 供肥速率模型的驗(yàn)證分析
為驗(yàn)證供肥速率理論公式(式2),比較了排肥輪數(shù)量為1~4個(gè)和轉(zhuǎn)速為10~40 r/min條件下理論值與試驗(yàn)值之間的差異(表3)。以理論分析得到的結(jié)構(gòu)參數(shù)為依據(jù),得到供肥速率理論值,供肥速率理論值與試驗(yàn)值之間的偏差總體在10%以內(nèi),這主要與肥料充填系數(shù)的取值相關(guān)。肥料充填系數(shù)隨轉(zhuǎn)速增加呈降低趨勢,在攪肥機(jī)構(gòu)的作用下肥料充填系數(shù)均較高。說明該理論公式(式2)可以為結(jié)構(gòu)參數(shù)設(shè)計(jì)和理論分析提供參考,但由于肥料充填系數(shù)無法準(zhǔn)確測定,生產(chǎn)實(shí)踐則需依據(jù)臺架試驗(yàn)預(yù)測(式15)的結(jié)果開展。
表3 供肥裝置供肥速率模型預(yù)測值與試驗(yàn)值的比較
注:理論值計(jì)算中肥料充填系數(shù)在轉(zhuǎn)速為10 r×min-1時(shí)取0.9,20~40 r×min-1為0.8[31]。
Note: The filling coefficient of fertilizeris 0.9 for 10 r×min-1of rotational speed and 0.8 for 20-40 r×min-1of rotational speed in theoretical value's calculation.
為適應(yīng)不同施肥量要求、工作條件及檢驗(yàn)供肥速率預(yù)測模型的準(zhǔn)確性,以幅寬2 m的直播機(jī)為平臺和住商復(fù)合肥為試驗(yàn)材料,選取東方紅-LX854拖拉機(jī)的4個(gè)前進(jìn)速度(2.52、3.09、4.91、5.88 km/h)為條件,分別以目標(biāo)施肥量150、300、450、600和750 kg/hm2計(jì)算供肥速率理論值,將結(jié)果帶入式(15)得預(yù)測的螺旋式排肥輪數(shù)量和轉(zhuǎn)速。根據(jù)施肥量和拖拉機(jī)前進(jìn)速度所需的螺旋式排肥輪數(shù)量和轉(zhuǎn)速開展供肥性能試驗(yàn),每組試驗(yàn)重復(fù)3次取平均值,結(jié)果如表4所示。
由表4可知,供肥速率試驗(yàn)值與模型預(yù)測值之間的偏差在3%范圍內(nèi),說明該供肥速率模型較精確。螺旋組合式供肥裝置能夠適應(yīng)較大范圍的施肥量和拖拉機(jī)前進(jìn)速度,且供肥穩(wěn)定性變異系數(shù)均低于1.0%,滿足JB/T 6274.1-2001“谷物條播機(jī)技術(shù)條件”[30]中對總排肥量穩(wěn)定性變異系數(shù)的要求。該供肥速率模型能夠根據(jù)施肥量要求和前進(jìn)速度實(shí)時(shí)調(diào)節(jié)螺旋式排肥輪數(shù)量和轉(zhuǎn)速,為適應(yīng)不同施肥需求和變量施肥提供參考。試驗(yàn)尚未出現(xiàn)顆?;收辰Y(jié)和架空現(xiàn)象,說明供肥裝置采用上方充肥和攪肥機(jī)構(gòu)擾動的方式可防止化肥粘結(jié)、結(jié)拱的發(fā)生。
表4 螺旋組合式供肥裝置供肥速率預(yù)測模型驗(yàn)證結(jié)果
為進(jìn)一步驗(yàn)證臺架試驗(yàn)結(jié)果,考察顆?;事菪M合式集中供肥裝置的供肥性能,于2018年5月14日在四川省崇州市四川農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)研發(fā)基地開展了水稻直播同步施肥試驗(yàn)(圖8),前茬為小麥。顆?;蕿槿龑帍?fù)合肥,作基肥施用,目標(biāo)施肥量為600 kg/hm2。試驗(yàn)以久保田M954KQ拖拉機(jī)為牽引動力,機(jī)組平均前進(jìn)速度為2.48 km/h,幅寬2 m,采用化肥帶狀混施方式,施肥6行,行距為300 mm。試驗(yàn)中應(yīng)用12 V蓄電池提供直流電機(jī)的動力源,通過直流電機(jī)調(diào)速器驅(qū)動并調(diào)節(jié)螺旋式排肥輪轉(zhuǎn)速,轉(zhuǎn)速為31 r/min,螺旋式排肥輪數(shù)量為2個(gè)。試驗(yàn)田面積為0.090 3 hm2,預(yù)測施肥量為54.18 kg,實(shí)際施肥量為56.10 kg,實(shí)際施肥量與模型預(yù)測值的相對誤差為3.54%,滿足水稻種植對基肥的施用要求[32]。
1. 拖拉機(jī) 2. 肥箱 3. 供肥裝置 4. 導(dǎo)肥管 5. 顆?;?6. 直流電機(jī)調(diào)速器 7. 蓄電池
本文通過分析顆?;实臋C(jī)械物理特性和施肥量要求,提出了傾斜螺旋狀型孔結(jié)構(gòu),設(shè)計(jì)了一種顆?;事菪M合式集中供肥裝置,確定了型孔和排肥輪的主要結(jié)構(gòu)參數(shù),構(gòu)建了顆粒化肥組合體在肥料充填區(qū)和投肥區(qū)的力學(xué)模型,驗(yàn)證了傾斜螺旋狀型孔結(jié)構(gòu)參數(shù)的合理性。
1)排肥性能臺架試驗(yàn)表明:螺旋式排肥輪數(shù)量和轉(zhuǎn)速分別為1~4個(gè)和10~40 r/min條件下,供肥速率隨螺旋式排肥輪數(shù)量與轉(zhuǎn)速增加而增加,供肥速率范圍為912.67~13 164.26 g/min。3種類型顆?;蔬m應(yīng)性結(jié)果表明,螺旋組合式集中供肥裝置能適應(yīng)不同機(jī)械物理特性參數(shù)的顆?;剩煌w?;实墓┓仕俾手g的差值低于5%。
2)構(gòu)建了螺旋式排肥輪數(shù)量和轉(zhuǎn)速與供肥速率的回歸預(yù)測模型,其決定系數(shù)為0.995 8。試驗(yàn)研究了目標(biāo)施肥量150~750 kg/hm2和拖拉機(jī)前進(jìn)速度2.52~5.88 km/h條件下的供肥速率,供肥速率試驗(yàn)值與模型預(yù)測值之間的偏差在3%以內(nèi),供肥穩(wěn)定性變異系數(shù)均低于1.0%。田間試驗(yàn)表明,顆?;蕦?shí)際施用量與模型預(yù)測值相對誤差為3.54%,該顆?;事菪M合式集中供肥裝置可實(shí)現(xiàn)變量、定量、集中排出顆粒化肥,滿足農(nóng)業(yè)生產(chǎn)中對變量精量施肥及排肥穩(wěn)定性要求。
本研究以含N、P、K多元素的復(fù)合肥為試驗(yàn)材料,未對尿素、過磷酸鈣和氯化鉀等單元素的化肥開展研究,且這些肥料偏粉狀,本研究的供肥裝置對粉狀化肥的適應(yīng)性尚需進(jìn)一步分析。研究中采用12 V蓄電池作動力源和直流電機(jī)主動驅(qū)動的方式,可以簡化傳動機(jī)構(gòu),但拖拉機(jī)同步測速反饋控制系統(tǒng)尚需完善以提高同步性和智能化。
[1] 李忠芳,徐明崗,張會民,等. 長期施肥下中國主要糧食作物產(chǎn)量的變化[J]. 中國農(nóng)業(yè)科學(xué),2009,42(7):2407-2414. Li Zhongfang, Xu Minggang, Zhang Huimin, et al. Grain yield trends of different food crops under long-term fertilization in China[J]. Scientia Agricultura Sinica, 2009, 42(7): 2407-2414. (in Chinese with English abstract)
[2] 彭少兵,黃建良,鐘旭華,等. 提高中國稻田氮肥利用率的研究策略[J]. 中國農(nóng)業(yè)科學(xué),2002,35(9):1059-1003. Peng Shaobing, Huang Jianliang, Zhong Xuhua, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1059-1003. (in Chinese with English abstract)
[3] 王偉妮,魯劍巍,李銀水,等. 當(dāng)前生產(chǎn)條件下不同作物施肥效果和肥料貢獻(xiàn)率研究[J]. 中國農(nóng)業(yè)科學(xué),2010,43(19):3997-4007. Wang Weini, Lu Jianwei, Li Yinshui, et al. Study on fertilization effect and fertilizer contribution rate of different crops at present production conditions[J]. Scientia Agricultura Sinica, 2010, 43(19): 3997-4007. (in Chinese with English abstract)
[4] 谷潔,高華. 提高化肥利用率技術(shù)創(chuàng)新展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(2):17-20. Gu Jie, Gao Hua. Prospects on the technical innovation to increase fertilizer use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(2): 17-20. (in Chinese with English abstract)
[5] Yang Xianlong, Lu Yongli, Ding Yan, et al. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014)[J]. Field Crops Research, 2017, 206: 1-10.
[6] 李寶筏. 農(nóng)業(yè)機(jī)械學(xué)[M]. 北京:中國農(nóng)業(yè)大學(xué)出版社,2003.
[7] 陳書法,張石平,孫星釗,等. 水田高地隙自走式變量撒肥機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(11):16-21. Chen Shufa, Zhang Shiping, Sun Xingzhao, et al. Design and experiment of self-propelled high-ground-clearance spreader for paddy variable-rate fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 16-21. (in Chinese with English abstract)
[8] Edward D, Engelbert T, Robert O, et al. Calibration of a spinning disc spreader simulation model for accurate site-specific fertiliser application[J]. Biosystems Engineering, 2004, 88(1): 49-62.
[9] Villette S, Cointault F, Piron E, et al. Centrifugal spreading: An analytical model for the motion of fertiliser particles on a spinning disc[J]. Biosystems Engineering, 2005, 92(2): 157-164.
[10] Simon R C, Jan G P, Joris V A, et al. Determining the effect of wind on the ballistic flight of fertiliser particles[J]. Biosystems Engineering, 2016, 151: 425-434.
[11] Sylvain V, Emmanuel P, Richard M, et al. Estimation of two-dimensional fertiliser mass flow distributions by recording granule impacts[J]. Biosystems Engineering, 2013, 115: 463-473.
[12] 施印炎,陳滿,汪小旵,等. 稻麥精準(zhǔn)變量施肥機(jī)排肥性能分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):97-103. Shi Yinyan, Chen Man, Wang Xiaochan, et al. Analysis and experiment of fertilizing performance for precision fertilizer applicator in rice and wheat fields[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 97-103. (in Chinese with English abstract)
[13] 金鑫,李倩文,苑嚴(yán)偉,等. 2BFJ-24型小麥精量播種變量施肥機(jī)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):84-92. Jin Xin, Li Qianwen, Yuan Yanwei, et al. Design and test of 2BFJ-24 type variable fertilizer and wheat precision seed sowing machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 84-92. (in Chinese with English abstract)
[14] 齊興源,周志艷,楊程,等. 稻田氣力式變量施肥機(jī)關(guān)鍵部件的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):20-26.Qi Xingyuan, Zhou Zhiyan, Yang Cheng, et al. Design and experiment of key parts of pneumatic variable-rate fertilizer applicator for rice production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 20-26. (in Chinese with English abstract)
[15] 左興健,武廣偉,付衛(wèi)強(qiáng),等. 風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):14-21. Zuo Xingjian, Wu Guangwei, Fu Weiqiang, et al. Design and experiment on air-blast rice side deep precision fertilization device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 14-21. (in Chinese with English abstract)
[16] 曾山,湯海濤,羅錫文,等. 同步開溝起壟施肥水稻精量旱穴直播機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):12-19. Zeng Shan, Tang Haitao, Luo Xiwen, et al. Design and experiment of precision rice hill-drop drilling machine for dry landwith synchronous fertilizing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 12-19. (in Chinese with English abstract)
[17] 陳雄飛,羅錫文,王在滿,等. 兩級螺旋排肥裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):10-16. Chen Xiongfei, Luo Xiwen, Wang Zaiman, et al. Design and experiment of a fertilizer distribution apparatus with double-level screws[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 10-16. (in Chinese with English abstract)
[18] 張睿,王秀,趙春江,等. 鏈條輸送式變量施肥拋撒機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):20-25. Zhang Rui, Wang Xiu, Zhao Chunjiang, et al. Design and experiment of variable rate fertilizer spreader with conveyor chain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 20-25. (in Chinese with English abstract)
[19] 王金峰,高觀保,王金武,等. 葉片調(diào)節(jié)式水田側(cè)深施肥裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(3):68-76. Wang Jinfeng, Gao Guanbao, Wang Jinwu, et al. Design and test of adjustable blades side deep fertilizing device for paddy Field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 68-76. (in Chinese with English abstract)
[20] Wang Jinwu, Li Shuwei, Zhang Zhao, et al. Design and experiment of electrical drive side deep hill-drop fertilization system for precision rice hill-direct-seeding machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 43-54.
[21] Yatskul A, Lemiere J P, Cointault F. Influence of the divider head functioning conditions and geometry on the seed's distribution accuracy of the air-seeder[J]. Biosystems Engineering, 2017, 161: 120-134.
[22] Maleki M R, Mouazen A M, Ketelaere B D, et al. On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor[J]. Biosystems Engineering, 2008, 99(1): 35-46.
[23] Maleki M R, Ramon H, Baerdemaeker J D, et al. A study on the time response of a soil sensor-based variable rate granular fertiliser applicator[J]. Biosystems Engineering, 2008, 100(2): 160-166.
[24] 中國農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(上冊)[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.
[25] 劉宏新,徐曉萌,郭麗峰,等. 具有復(fù)合充填力的立式淺盆型排種器充種機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(21): 9-16. Liu Hongxin, Xu Xiaomeng, Guo Lifeng, et al. Research on seed-filling mechanism of vertical shallow basin type seed-metering device with composite filling force[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 9-16. (in Chinese with English abstract)
[26] 雷小龍,廖宜濤,李兆東,等. 油麥兼用型氣送式集排器供種裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):10-18. Lei Xiaolong, Liao Yitao, Li Zhaodong, et al. Design and experiment of seed feed device in air-assisted centralized metering device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 10-18. (in Chinese with English abstract)
[27] 雷小龍,廖宜濤,李兆東,等. 種層厚度對油麥兼用集排器供種裝置充種性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):11-19. Lei Xiaolong,Liao Yitao,Li Zhaodong,et al. Effects of seed layer thickness on seed filling performance of seed feeding device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 11-19. (in Chinese with English abstract)
[28] 雷小龍,廖宜濤,李兆東,等. 油菜小麥兼用氣送式集排器攪種裝置設(shè)計(jì)及充種性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):26-34. Lei Xiaolong, Liao Yitao, Li Zhaodong, et al. Design of seed churning device in air-assisted centralized metering device for rapeseed and wheat and experiment on seed filling performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 26-34. (in Chinese with English abstract)
[29] 谷物條播機(jī)試驗(yàn)方法國家標(biāo)準(zhǔn):GB/T 9478-2005[S]. 北京:中國標(biāo)準(zhǔn)出版社,2005.
[30] 谷物播種機(jī)技術(shù)條件機(jī)械標(biāo)準(zhǔn):JB/T 6274.1-2001[S]. 北京:機(jī)械科學(xué)研究院,2001.
[31] 李凱. 變量施肥系統(tǒng)的設(shè)計(jì)與研究[D]. 石河子:石河子大學(xué),2017.
Li Kai. Design and Research of Variable Rate Fertilization System[D]. Shihezi: Shihezi University, 2017. (in Chinese with English abstract)
[32] 水稻覆土直播機(jī)國家標(biāo)準(zhǔn):GB/T 25418-2010[S]. 北京:中國標(biāo)準(zhǔn)出版社,2010.
Design and experiment of horizontal pneumatic screw combination adjustable quantitative fertilizer feeding device for granular fertilizer
Lei Xiaolong1,2, Li Mengliang1, Zhang Lihua1, Ren Wanjun2
(1.625014,; 2.611130,)
Nutrients including the elements of N, P and K are beneficial to the growth and yield of crops. Reducing the application amount of chemical fertilizer and increasing the utilization rate have become the important ways and means of high quality and high efficiency green agriculture. Granular fertilizer has been widely used in agricultural production because of its low fluidity, strong hygroscopicity and cohesion. Meanwhile, the amount of fertilizer applied depends on the crops, the fertilization application time, and the fertilizer varieties. In order to adjust the requirements of fertilization and precision fertilization, the horizontal pneumatic centralized feeder of fertilizer was developed. The fertilizing device is the core part of the horizontal pneumatic centralized feeder. According to the mechanical and physical properties, and fertilizer requirements of granular fertilizers, the inclined screw-type model-hole and combined fertilizer feeding unit was designed. The main structural parameters of the inclined screw-type model-hole and the fertilizing unit were determined. The bottom width, upper width and depth of model-hole were 12.0 mm, 30.0 mm and 18.0 mm, respectively. The left inclined angle, right inclined angle and number of screw-type model-hole was 24°, 37° and 6, respectively. The helical pitch,helix angle and length of fertilizer feeding unit were450mm, 60° and 40 mm, respectively. The number of fertilizing unit could be adjusted from 1 to 4. The amount of fertilizer applied varied with the number of fertilizing units and the rotational speed. The mechanical models of fertilizer combination in fertilizer filling and feeding zone were established. The results showed that filling and feeding performance of fertilizer could be improved significantly by tilting angle between left and right. The fertilization performance experiments were performed in the bench test. The effects of fertilization unit number of and rotation speed on fertilizer application and coefficient of variation were studied using Zhushang Fertilizer. Furthermore, the fertilizer adaptability of fertilization device was studied with Zhushang Fertilizer, Sanning Fertilizer and Yunding Fertilizer. The results showed that: 1) When the fertilization unit number and rotational speed were 1-4 and 10-40 r/min, respectively, the fertilization amount increased with the increase of number of fertilization unit number and rotational speed. The range of fertilizer feeding rate was 912.67-13 164.26 g/min. 2) The amount of fertilizer application was significantly affected by the fertilizer types, rotation speed and interaction between fertilizer types and rotation speed. With the same rotation speed of 10-30 r/min, the fertilizer feeding rate of Sanning Fertilizer was the largest, while that of Yunding Fertilizer was the lowest. The difference of fertilizer feeding rate among three fertilizer types was less than 5%. It indicated that the fertilizer feeding device could be applied to different compound granular fertilizer. 3) The quadratic regression predicted model of fertilizer amount was established with the factors of fertilization unit number and rotational speed. The determination coefficient of the regression prediction model was 0.995 8, which indicated that the prediction model was feasible. The fertilizer feeding rate was studied under the condition of target fertilizer application range of 150-750 kg/hm2and tractor velocity of 2.52-5.88 km/h. The deviations between the experimental value and the predicted value of fertilizer feeding rate were not more than 3%. In addition, the coefficients of variation of fertilizer feeding rate in each treatment were less than 1.0%. The results showed that the model can accurately predict the fertilizer feeding rate and calculate the fertilizer feeding unit number and rotational speed. The field experiment showed that the relative error between the fertilizer feeding amount and the theoretical value was 3.54%. The structure of the inclined screw-type model-hole and combined fertilizer feeding unit can realize the adjustment of fertilizer feeding rate in a wide range for granular fertilizer. The fertilizer feeding performance of fertilizer feeding device could meet the requirements of fertilizer application amount and fertilizer feeding stability. This research can provide the basis for the structue design of horizontal pneumatic centralized feeder and variable-rate precision fertilization.
agricultural machinery; design; experiments; inclined screw-type model-hole; pneumatic centralized feeder; granular fertilizer
10.11975/j.issn.1002-6819.2018.19.002
S223.2+3
A
1002-6819(2018)-19-0009-10
2018-06-15
2018-08-21
十三五國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0301204, 2017YFD030171);國家玉米產(chǎn)業(yè)體系專項(xiàng)資助項(xiàng)目(CARS-02-29)
雷小龍,博士,講師,主要從事現(xiàn)代農(nóng)業(yè)裝備設(shè)計(jì)與測控研究。Email:leixl1989@163.com
雷小龍,李蒙良,張黎驊,任萬軍.顆粒化肥水平氣送式螺旋組合可調(diào)定量供肥裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):9-18. doi:10.11975/j.issn.1002-6819.2018.19.002 http://www.tcsae.org
Lei Xiaolong, Li Mengliang, Zhang Lihua, Ren Wanjun. Design and experiment of horizontal pneumatic screw combination adjustable quantitative fertilizer feeding device for granular fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 9-18. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.002 http://www.tcsae.org