亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于熱解-重整-燃燒解耦三床氣化系統(tǒng)的生物質(zhì)催化制富氫氣體

        2018-09-03 03:29:06亞力昆江吐爾遜別爾德汗瓦提汗迪麗努爾塔力甫阿布力克木阿布力孜馬鳳云徐紹平
        農(nóng)業(yè)工程學報 2018年17期

        亞力昆江·吐爾遜,潘 岳,別爾德汗·瓦提汗,迪麗努爾·塔力甫,阿布力克木·阿布力孜,馬鳳云,徐紹平

        ?

        基于熱解-重整-燃燒解耦三床氣化系統(tǒng)的生物質(zhì)催化制富氫氣體

        亞力昆江·吐爾遜1,潘 岳1,別爾德汗·瓦提汗1,迪麗努爾·塔力甫1,阿布力克木·阿布力孜1,馬鳳云1,徐紹平2

        (1. 新疆大學化學化工學院煤炭潔凈轉(zhuǎn)化與化工過程自治區(qū)重點實驗室,烏魯木齊 830046;2. 大連理工大學化工學院精細化工國家重點實驗室,大連 116024)

        生物質(zhì)催化氣化是將生物質(zhì)轉(zhuǎn)換成富氫氣體的有效途徑。該研究提出了一種由熱解反應器、重整反應器和提升管燃燒器三部分構(gòu)成的解耦三床生物質(zhì)氣化(decoupled triple bed gasification,DTBG)工藝。在實驗室規(guī)模的DTBG氣化反應裝置上,以水蒸氣為氣化劑,以橄欖石為原位焦油裂解催化床料,進行了生物質(zhì)水蒸氣催化氣化試驗,考察了生物質(zhì)種類、重整器溫度、生物質(zhì)進料速率對氣化效果的影響規(guī)律,并且對氣化副產(chǎn)物焦油的特性進行了分析。試驗結(jié)果表明,生物質(zhì)原料的揮發(fā)分對氣化產(chǎn)物分布的影響很大,原料揮發(fā)分含量越高,氣體產(chǎn)率越高,碳轉(zhuǎn)化率越高,氣體中的H2和CO體積分數(shù)越大、CO2體積分數(shù)越低。當重整器溫度由750升高到850 ℃時,氣體產(chǎn)率從0.91增加到1.08 m3/kg,焦油質(zhì)量濃度從19.1降低到7.3 g/m3,同時氣體品質(zhì)大幅度提升。隨著生物質(zhì)進料速率的增加,產(chǎn)氣中H2體積分數(shù)大幅度增加,CO2體積分數(shù)大幅度降低,但是焦油質(zhì)量濃度基本不變。當重整器溫度為800 ℃,白松木屑進料速率為220 g/h時,H2和CO體積分數(shù)分別達到了42.2%和14.6%,產(chǎn)氣中焦油質(zhì)量濃度為10.1 g/m3。氣化焦油的主要成分為多環(huán)芳烴,其中萘含量最高。當重整器溫度從700℃升高到850 ℃時,焦油中單環(huán)化合物幾乎全部分解,3~4環(huán)多環(huán)芳烴化合物逐步降低,萘的相對含量從54.7%升高到75.6%。該研究結(jié)果可為大規(guī)模氣化裝置的設(shè)計、運行以及優(yōu)化提供理論指導。

        生物質(zhì);氣化;催化;解耦三床;橄欖石;原位焦油裂解

        0 引 言

        目前,在新型可再生清潔能源中,生物質(zhì)能源被認為是唯一可以儲存和運輸?shù)目稍偕茉础I镔|(zhì)氣化是在所有的生物質(zhì)能利用方法中廣泛應用的技術(shù)之一。在生物質(zhì)氣化過程中常用的氣化劑有氧氣、水蒸氣、空氣、二氧化碳或這些氣體的混合物。根據(jù)氣化劑的不同,產(chǎn)品氣體的質(zhì)量和數(shù)量會有所不同。其中,水蒸氣氣化能夠產(chǎn)生高濃度的H2和CO,因此越來越受到人們的關(guān)注[1]。然而,焦油是生物質(zhì)氣化過程中不可避免的副產(chǎn)物,同時也是影響氣化技術(shù)推廣應用的最大障礙。近年來很多研究者對原位焦油裂解催化劑進行了大量的研究。其中,橄欖石(olivine)由于價格廉價、耐磨性、穩(wěn)定性強以及機械強度高并具有焦油裂解催化活性而引起了很多研究者極大興趣[2-7]。橄欖石是一種鎂鐵硅酸鹽的天然礦物,化學結(jié)構(gòu)可以用(Mg,Fe)2SiO4表示,以往一直用于耐火材料產(chǎn)業(yè)。卜憲昵等[8]發(fā)現(xiàn),橄欖石對甲苯的裂解具有非常好的催化活性,而且催化活性與橄欖石的化學組成有關(guān)。楊小芹等[9]以苯為模型化合物研究了不同礦源的橄欖石的催化活性,結(jié)果表明橄欖石的催化活性與煅燒溫度密切相關(guān)。鄧靖等[10]發(fā)現(xiàn),在褐煤熱解過程中橄欖石的添加減少了焦油中的重質(zhì)組分。Koppatz等[2]報道,相對于石英砂,橄欖石可以減少產(chǎn)氣中50%的焦油。Devi等[11]發(fā)現(xiàn),橄欖石對焦油的催化活性隨著橄欖石中Fe2O3增加而提高。

        生物質(zhì)氣化過程比較復雜,過程中不僅僅發(fā)生一個化學反應,而是包括一系列按順序或同時發(fā)生的子反應,比如生物質(zhì)熱解、焦油裂解、半焦氣化、半焦燃燒等。在很多傳統(tǒng)的氣化工藝中,這些反應發(fā)生在同一個反應器內(nèi)或同一個空間內(nèi),而且通常以空氣或空氣和水蒸氣的混合氣體作為氣化劑,通過內(nèi)部的部分燃燒供給氣化反應所需的熱量,因此燃氣的熱值比較低(4~6 MJ/m3)[12]。此外,氣化溫度和能耗高,設(shè)備投資大,氣化效率低,并且環(huán)境污染等問題仍未得到很好解決。因此,開發(fā)具有工藝簡單、低能耗、產(chǎn)氣焦油含量低、品質(zhì)高的高效、清潔的新型轉(zhuǎn)化技術(shù)成為目前生物質(zhì)氣化研究的熱點。近年來,以水蒸氣為氣化劑的新型解耦氣化工藝因其高的焦油轉(zhuǎn)化率和氣化效率而備受關(guān)注[13-15]。解耦氣化過程將把干燥、熱解、氣化和燃燒等過程在空間上進行解耦分離,針對不同的原料以及產(chǎn)品用途,對各過程分別進行控制優(yōu)化組合。

        基于此,本文提出了適合生物質(zhì)焦油原位裂解的一種解耦三床氣化(decoupled triple bed gasification,DTBG)技術(shù)。該體系主要由固-固并流快速熱解反應器(熱解器)、氣-固徑向錯流移動床焦油水蒸氣催化重整反應器(重整器)和提升管燃燒反應器(燃燒器)3個獨立反應器構(gòu)成。該工藝與傳統(tǒng)固定床和流化床工藝的區(qū)別在于,生物質(zhì)氣化過程中發(fā)生的熱解反應、焦油的重整氣化反應以及半焦的燃燒反應解耦分離,分別發(fā)生在單獨控制的熱解器、重整器和燃燒器等3個反應器內(nèi)。目前,國內(nèi)外大多數(shù)解耦氣化體系由氣化反應器和燃燒反應器構(gòu)成,而將熱解、重整、燃燒等3個反應過程完全解耦的三床氣化系統(tǒng)尚未見報道。本文利用實驗室規(guī)模的解耦三床氣化反應器,以水蒸氣為氣化劑,以煅燒橄欖石催化劑為催化床料,考察了不同生物質(zhì)原料、重整反應溫度、原料進料速率對氣化效果的影響規(guī)律,并且對氣化副產(chǎn)物焦油的特性進行了分析。

        1 試驗部分

        1.1 生物質(zhì)原料

        試驗采用的生物質(zhì)原料為白松木屑、稻秸稈、麥秸稈、棉桿。所有原料顆粒大小均為0.45~0.90 mm(20~40目)。試驗前將原料置于恒溫鼓風干燥箱中在105~110 ℃干燥4 h,原料的工業(yè)分析和元素分析見表1。

        表1 原料的工業(yè)分析和元素分析

        1.2 催化床料

        試驗采用的催化劑床料是粒度為0.45~0.90 mm的天然橄欖石,由湖北宜昌科博橄欖石有限公司提供。橄欖石相(Mg,Fe)2SiO4中的Fe(Ⅱ)在煅燒條件下從橄欖石結(jié)構(gòu)中游離出來,被氧化成 Fe(Ⅲ),而在氣化反應器中被還原成低價態(tài)的鐵氧化物(Fe3O4,F(xiàn)eO)或者單質(zhì)Fe,充當焦油轉(zhuǎn)化的活性組分[16]。因此試驗前將橄欖石于馬弗爐中900 ℃煅燒4 h[17],對煅燒橄欖石采用X射線熒光光譜(X-ray fluorescence,XRF)進行分析,其化學組成見表2。

        表2 橄欖石的XRF化學組成分析

        1.3 試驗裝置及方法

        DTBG工藝原理如圖1所示。其中,熱解器采用固/固并流、氣/固逆流移動床,重整反應器采用氣/固錯流徑向移動床氣化,燃燒器采用提升管流化床。該系統(tǒng)中,從熱解器上端進入的生物質(zhì)和來自于重整反應器的高溫床料充分混合,傳熱并快速熱解析出揮發(fā)分,產(chǎn)生的揮發(fā)分和熱解器上端進入的水蒸氣一起上行進入徑向移動床重整器,在此揮發(fā)分中的輕質(zhì)烴和重質(zhì)焦油通過環(huán)形催化床層與水蒸氣發(fā)生重整反應裂解為合成氣。熱解器中產(chǎn)生的生物質(zhì)半焦和積炭失活的熱載體催化劑一起下行進入提升管燃燒反應器,此反應器中熱解半焦和催化劑表面的積炭與空氣進行燃燒反應,釋放的熱量被床料吸收,吸熱后的高溫床料經(jīng)過反應器上端的氣固分離器分離后再進入重整器,為焦油的水蒸氣重整反應及生物質(zhì)的熱解提供熱源,同時催化劑得到再生,解決了催化劑的積炭失活問題。

        圖1 解耦三床氣化工藝示意圖

        實驗室規(guī)模的DTBG裝置如圖2所示,該系統(tǒng)主要由熱解器、重整器和燃燒器組成。以上反應器均采用耐熱不銹鋼制造,其規(guī)格為:熱解器內(nèi)徑40 mm,高度400 mm;重整器內(nèi)徑128 mm,高度330 mm,重整器內(nèi)環(huán)的催化劑床層高度220 mm,厚度40 mm;燃燒器內(nèi)徑28 mm,高度1 956 mm。在各反應器上都安裝熱電偶和測壓計,以檢測溫度和壓力變化。

        圖2 解耦三床氣化反應裝置示意圖

        試驗開始前,先將5.0 kg橄欖石由料倉頂部加入,將各反應器在N2保護下加熱升溫至設(shè)定溫度。當各反應器達到設(shè)定溫度后,調(diào)節(jié)熱載體循環(huán)流量和提升管預熱空氣流量,使熱載體以4.5 kg/h循環(huán)速率在各反應器間穩(wěn)定循環(huán),床料循環(huán)速率可以由熱解器和燃燒器之間的螺旋送料器控制。生物質(zhì)原料經(jīng)2臺螺旋進料器進入熱解器(溫度為700 ℃),一級螺桿進料器控制生物質(zhì)進料速率,二級螺桿進料器快速將生物質(zhì)原料推入熱解器內(nèi),與此同時水蒸汽以一定流量加入反應系統(tǒng),每組試驗S/B(水蒸氣和生物質(zhì)質(zhì)量比)均為0.65。所產(chǎn)氣體經(jīng)過除塵器過濾進入多級冷凝系統(tǒng)(?15 ℃)實現(xiàn)氣-液分離。從進料開始每隔10~15 min采集氣體樣品,并用氣相色譜(GC7890II型)進行分析。氣體中的 H2利用熱導檢測器(TCD)分析,CH4、CO、CO2、C2H4、C2H6等組分利用氫火焰離子檢測器(FID)分析。試驗過程中,上下料封和原料料倉通入N2防止空氣進入系統(tǒng),因此產(chǎn)氣中N2體積分數(shù)大概在2%~10%。最終氣體組成結(jié)果為系統(tǒng)達到穩(wěn)定狀態(tài)后,N2扣去后的各氣體組成的平均值。液體產(chǎn)品收集于圓底燒瓶中,用萃取和減壓蒸餾方法將液體產(chǎn)品分離為焦油和水,計算出焦油質(zhì)量濃度和水含量[6]。冷凝的焦油用Agilent-5975C氣相色譜儀進行分析,色譜條件為:檢測器為FID;色譜柱為HP-5MS (30 m×0.25 mm× 0.25m);氣化室溫度為250 ℃;分流比為50:1;色譜柱升溫程序為:50℃恒溫2 min,再以12 ℃/min升溫到320 ℃,恒溫10 min。

        氣體產(chǎn)率、焦油質(zhì)量濃度、氣化效率和碳轉(zhuǎn)化率按以下公式進行計算:

        2 結(jié)果與討論

        2.1 不同生物質(zhì)種類的氣化效果比較

        以木屑、稻殼、麥稈和棉桿作為生物質(zhì)原料,在熱解器溫度為700 ℃,重整器溫度為800 ℃,生物質(zhì)進料率為200 g/h的工況件下,考察生物質(zhì)種類對氣化效果的影響其結(jié)果如圖3所示。由圖3a可以看出,在4種生物質(zhì)中,白松木屑氣化所得氣體產(chǎn)率最大為0.95 m3/kg,麥稈次之,棉桿最?。话姿山褂唾|(zhì)量濃度最大(11.5 g/m3),其值顯著低于傳統(tǒng)鼓泡流化床白松木屑氣化(800 ℃)產(chǎn)氣焦油質(zhì)量濃度(12~25 g/m3)[18]。麥秸稈、稻秸稈和棉桿等秸稈類生物質(zhì)氣化的焦油質(zhì)量濃度基本上一致。植物類生物質(zhì)主要是由纖維素、半纖維素和木質(zhì)素構(gòu)成[19]。其中,纖維素和半纖維素熱分解主要產(chǎn)生揮發(fā)性物質(zhì),而木質(zhì)素分解主要產(chǎn)生炭。由原料的工業(yè)分析(表1)可知,白松揮發(fā)分含量最高,灰分含量最低,其他生物質(zhì)揮發(fā)分含量都小于白松木屑。原料的揮發(fā)分含量越高,氣化所得到的氣體產(chǎn)率和焦油質(zhì)量濃度越大。其原因在于,在DTBG氣化系統(tǒng)中,氣體產(chǎn)物主要來自于生物質(zhì)原料在熱解反應器中熱解產(chǎn)生的熱解氣(pyrogas),熱解氣在重整器中發(fā)生水蒸氣重整和熱裂解反應生成小分子氣體,因此,原料揮發(fā)分越高氣體產(chǎn)率和焦油質(zhì)量濃度越大。由圖3b可看出,4種生物質(zhì)原料中白松木屑產(chǎn)氣中H2體積分數(shù)為40.55%,高于其他3種生物質(zhì)原料,麥稈、稻秸稈和棉桿的H2體積分數(shù)分別為36.9%、36.9%和34.8%。然而,麥稈、稻秸稈和棉桿產(chǎn)氣中的CO2體積分數(shù)相比于白松較高,分別為41.5%、37.3%和42.6%,白松木屑只有34.5%。一般認為,生物質(zhì)原料中H/C原子比越高,產(chǎn)氣中H2含量越大[20]。本研究中采用的生物質(zhì)原料H/C原子比相差并不大(均為0.15左右),說明原料的H/C比對氣體中H2體積分數(shù)的高低不起主導作用。從氣體組成和原料的工業(yè)分析數(shù)據(jù)可以看出,白松木屑的揮發(fā)分含量最高,產(chǎn)氣中H2體積分數(shù)最高,CO2體積分數(shù)最小。這說明在DTBG氣化系統(tǒng)中原料揮發(fā)分含量越高,在橄欖石的催化作用下氣體產(chǎn)率和產(chǎn)氣中H2體積分數(shù)越高,CO2體積分數(shù)越少。因此,對于本氣化系統(tǒng)從生物質(zhì)水蒸氣催化氣化制富氫氣體要求來說,白松更適于作氣化原料。由圖3c可看出,4種生物質(zhì)氣化碳轉(zhuǎn)化率和氣化效率與氣體產(chǎn)率的變化趨勢一致,其中白松的碳轉(zhuǎn)化率和氣化效率分別為75.3%和58.5%。在DTBG氣化系統(tǒng)中熱解、重整和燃燒分別發(fā)生在3個反應器內(nèi),生物質(zhì)在熱解器中產(chǎn)生的大部分半焦不參與水蒸氣氣化反應,而在燃燒反應器中燃燒給熱載體提供熱量,因此碳轉(zhuǎn)化率主要與原料在熱解反應器中的熱解程度有關(guān)。

        2.2 重整器溫度對氣化效果的影響

        為了研究重整器溫度對生物質(zhì)氣化的影響,選用白松木屑作為試驗對象,在原料進料速率為200 g/h的條件下,考察重整器溫度分別為750、800及850 ℃時,溫度對氣化效果的影響,其結(jié)果如圖4所示。

        圖3 不同生物質(zhì)原料氣化效果比較

        圖4 重整器溫度對氣體產(chǎn)率、低位熱值、焦油質(zhì)量濃度、氣體組成、碳轉(zhuǎn)化率和氣化效率的影響

        由圖4a可以看出,當重整器溫度由700升高到850 ℃時,氣體產(chǎn)率由0.91增加到1.08 m3/kg,焦油質(zhì)量濃度由19.1降低到7.3 g/m3。焦油的裂解和水蒸氣重整反應均為強吸熱反應,重整器溫度的升高有利于這些反應的進一步進行。隨著重整器溫度的升高,在橄欖石的催化作用下產(chǎn)氣中的更多焦油被轉(zhuǎn)化為小分子氣體,從而降低了焦油質(zhì)量濃度,提高了氣體產(chǎn)率??梢钥闯?,重整器溫度的升高提高了橄欖石對焦油裂解/重整的催化活性。由圖4b可以看出,當重整器溫度由700 ℃升高到850 ℃時,氣化效率由56.4%提高到了65.2%,碳轉(zhuǎn)化率由71.4%提高到81.4%。在DTBG氣化系統(tǒng)中,由于生物質(zhì)原料中的大部分碳以揮發(fā)分形式在重整器內(nèi)進行水蒸氣催化重整反應形成合成氣,因此,重整器溫度的升高使得焦油質(zhì)量濃度減少,氣化效率和碳轉(zhuǎn)化率增加。根據(jù)Schuster等[21]基于在雙流化床的能量衡算,當原料總碳的42.6%送到燃燒反應器燃燒時,系統(tǒng)不再需要額外的燃料燃燒來提供氣化反應器所需要的熱量。在DTBG氣化系統(tǒng)中,單獨生物質(zhì)氣化產(chǎn)生的半焦燃燒不能滿足氣化反應需要的能量,為此,可以通過在原料中添加高的含碳燃料如煤、石油焦以提高燃燒器中燃燒的炭含量,從而實現(xiàn)氣化系統(tǒng)“自供熱”,或者把一部分產(chǎn)氣返回燃燒器里燃燒給熱載體提供熱量。

        由氣體組成分析(圖4c和圖4d)得出,當重整器溫度由700升高到850 ℃時,H2體積分數(shù)基本保持不變(850 ℃時為40.4%),CO體積分數(shù)由10.6%增加到16.6%,CO2體積分數(shù)則由36.0%降低到30.5%??梢钥闯?,重整器溫度的提高對H2體積分數(shù)的影響不明顯,但顯著促進了CO2重整反應的進行,更多的CO2與焦油反應使CO含量增加;重整器溫度的提高對CH4濃度的影響較小,說明對于中溫氣化系統(tǒng)來說,通過升高氣化溫度不能有效的降低氣體中CH4含量。由此得出,700~850 ℃溫度下,橄欖石對CH4重整的催化活性不明顯,需要開發(fā)更有效的CH4重整催化劑(如鎳基催化劑)才能使其充分轉(zhuǎn)化[7,22]。氣化溫度由750增加到850 ℃時,產(chǎn)氣中合成氣(H2+CO)體積分數(shù)從50.2%增加到57.0%,H2/CO在3.8~2.4范圍內(nèi)不斷減小。當重整器溫度850 ℃時,H2和CO摩爾比符合費托合成的要求,說明可以通過調(diào)節(jié)重整器溫度來控制H2和CO之比,以適應不同的需要。在該反應溫度區(qū)間產(chǎn)氣低位熱值為11.5~12.0 MJ/m3,這相較于傳統(tǒng)耦合氣化工藝產(chǎn)氣熱值(4~6 MJ/m3)[12,23]高2~3倍。由于隨著溫度的升高,高熱值的氣體(C2H4、C2H6)的體積分數(shù)的降低,導致產(chǎn)氣低位熱值的降低。

        2.3 生物質(zhì)進料速率對產(chǎn)氣組成和焦油濃度的影響

        選用白松木屑作為試驗對象,在重整器溫度800 ℃下,考察進料速率對產(chǎn)氣組成和焦油質(zhì)量濃度的影響,其結(jié)果如圖5所示??梢钥闯?,原料進料速率對產(chǎn)氣組成的影響非常明顯,當進料速率從120增加到220 g/h時,氣體中H2體積分數(shù)由38.1%增加42.2%,CO2體積分數(shù)由35.2%降低到30.2%,但是焦油和其他氣體組分的體積分數(shù)基本不變,220 g/h時CO體積分數(shù)為14.6%,焦油質(zhì)量濃度為10.1 g/m3,這表明通過提高生物質(zhì)進料速率能生產(chǎn)更多的H2,同時能降低產(chǎn)氣中的CO2含量。其原因為:橄欖石作為載氧體(表面含有豐富的Fe2O3)能夠?qū)2從燃燒器傳遞到重整反應器[24-25],F(xiàn)e2O3在重整器中與生物質(zhì)熱解產(chǎn)生的還原性氣體(H2、CO)發(fā)生還原反應形成低價態(tài)的鐵氧化物充當焦油轉(zhuǎn)化的活性組分[7,24],在這個過程中消耗掉產(chǎn)氣中的一部分H2、CO等氣體。當橄欖石循環(huán)速率不變的情況下,生物質(zhì)進料速率越小,原料氣化產(chǎn)生還原性氣體的量和重整器中橄欖石的還原需要消耗的還原性氣體的量越難以達到平衡,H2、CO等氣體將不斷地被消耗掉。隨著進料速率的增加,原料的氣化產(chǎn)生的還原性氣體的量橄欖石還原需要的還原性氣體的量達到一個相對平衡的狀態(tài),因此,產(chǎn)氣中H2、CO的消耗速率會降低。由此可見,在DTBG氣化系統(tǒng)中,通過增加進料速率和催化劑循環(huán)速率之比可以生產(chǎn)更多的富氫氣體。但是,此過程需要考慮整個氣化系統(tǒng)的熱量平衡、目標產(chǎn)物含量、催化劑的失活-再生的情況來確定最佳的進料速率。

        圖5 生物質(zhì)進料速率對產(chǎn)氣組成和焦油質(zhì)量濃度的影響

        2.4 氣化焦油的特性分析

        為了解產(chǎn)氣中焦油組成的變化規(guī)律,對白松木屑氣化焦油進行了GC分析。圖6為重整器溫度為750 ℃時白松木屑氣化焦油的GC圖??梢钥闯?,白松木屑氣化焦油譜圖比較簡單,焦油化合物種類較少,主要由萘、聯(lián)苯、苊、芴、菲、蒽、2-苯基萘、熒蒽、芘等多環(huán)芳烴(PAHs)和少量的雜環(huán)化合物二苯并呋喃、二苯并噻吩以及苯酚組成。表3反映了重整器溫度分別為750、800、850 ℃時白松木屑焦油的組成和相對含量(表中列出的焦油的相對含量是根據(jù)峰面積比計算出,雖然不能直接代表焦油組分的準確含量,但能反映焦油組成的分布[26])。從表3可以看出,萘、聯(lián)苯和菲等3種多環(huán)芳烴是白松木屑氣化焦油中含量較多的化合物,其中萘的含量最高。當重整器溫度從750升高到850 ℃時,苯酚和1,2,4-三甲基苯等單環(huán)化合物幾乎完全分解,說明在DTBG氣化反應系統(tǒng)中,生物質(zhì)在熱解反應器中產(chǎn)生的單環(huán)化合物在重整器內(nèi)在橄欖石的催化作用下發(fā)生二次反應而完全分解。隨著重整器溫度的升高,萘的相對含量由54.7%增加到75.6%,這一結(jié)果說明萘是焦油中不容易分解的較穩(wěn)定的化合物。劉慧慧等[27]發(fā)現(xiàn),生物質(zhì)熱解焦油的主要成分是酚類化合物。酚類化合物在催化劑作用下首先發(fā)生O-H鍵斷裂然后開環(huán),最后進行脫羥基反應和Diels-Alder反應,此過程中形成萘等多環(huán)芳烴,以及H2和CO等小分子氣體[28]??梢钥闯?,重整器溫度的升高促進苯、苯酚等單環(huán)化合物生成了萘等多環(huán)芳烴,同時對H2和CO的生成也有一定的貢獻。同時,隨著溫度的升高焦油組分蒽、2-苯基萘、熒蒽、芘的相對含量不斷降低,說明重整器溫度的升高也有利于三環(huán)、四環(huán)化合物的進一步分解。

        圖6 氣化焦油的GC圖

        表3 重整器溫度對焦油組成的影響

        3 結(jié) 論

        本文利用實驗室規(guī)模的DTBG氣化系統(tǒng),以橄欖石為催化床料進行了生物質(zhì)水蒸氣氣化制富氫氣體的試驗,探討了生物質(zhì)類型、重整器溫度、生物質(zhì)進料速率對氣化效果的影響,分析探討了不同溫度下白松木屑氣化焦油的組成變化特性。其結(jié)果如下:

        1)本文提出的以橄欖石為催化床料的DTBG氣化系統(tǒng)作為一種新型的解耦氣化工藝,對于生物質(zhì)水蒸氣氣化制富氫氣體是有效可行性的。

        2)原料的揮發(fā)分對氣化產(chǎn)物分布的影響很大。原料揮發(fā)分含量越高,氣體產(chǎn)率、氣體中的H2和CO含量和碳轉(zhuǎn)化率越大、CO2含量越低。4種生物質(zhì)原料中白松木屑更適合作氣化制富氫氣原料。

        3)重整器溫度的升高有利于焦油的裂解。隨著重整器溫度的升高,白松木屑的氣體產(chǎn)率、碳轉(zhuǎn)化率、富氫氣體含量增加、CO2體積分數(shù)減少,焦油質(zhì)量濃度降低。當氣化溫度為850 ℃時,白松氣化氣體產(chǎn)率為1.08 m3/kg、H-2體積分數(shù)為40.4%、產(chǎn)氣中焦油質(zhì)量濃度為7.3 g/m3。

        4)隨著白松木屑進料速率的增加,產(chǎn)氣中H2含量大幅度增加,CO2含量大幅度降低,然而焦油質(zhì)量濃度基本不變。當進料速率從120增加到220 g/h時,H2體積分數(shù)從38.1%增加42.2%,CO2體積分數(shù)從35.2%降低到30.2%。

        5)氣化焦油的主要成分為多環(huán)芳烴,其中萘的含量最高。隨著重整器溫度的升高,焦油中單環(huán)化合物幾乎完全分解,3~4環(huán)多環(huán)芳烴化合物的含量逐步降低,萘的相對含量大幅度增加。

        [1] 牛永紅,韓楓濤,陳義勝. 高溫蒸汽松木顆粒富氫氣化試驗[J]. 農(nóng)業(yè)工程學報,2016,32(3):247-252.

        Niu Yonghong, Han Fengtao, Chen Yisheng. High-temperature steam gasification of pine particles for hydrogen-rich gas[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(3): 247-252. (in Chinese with English abstract)

        [2] Koppatz S, Pfeifer C, Hofbauer. Comparison of the performance behavior of silica sand and olivine in a dual fluidized bed reactor system for steam gasification of biomass at pilot plant scale[J]. Chemical Engineering Journal, 2011, 175(22): 468-483.

        [3] Hu G, Xu S, Li S, et al. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts[J]. Fuel Processing Technology, 2006, 87(5): 375-382.

        [4] Tursun Y, Xu S, Wang C, et al. Steam co-gasification of biomass and coal in decoupled reactors[J]. Fuel Processing Technology, 2016, 141: 61-67.

        [5] Xiao Y, Xu S, Tursun Y, et al.Catalytic steam gasification of lignite for hydrogen-rich gas production in a decoupled triple bed reaction system[J]. Fuel, 2017, 189: 57-65.

        [6] Tursun Y, Xu S, Wang G, et al. Tar formation during co-gasification of biomass and coal under different gasification condition[J]. Journal of Analytical & Applied Pyrolysis, 2014, 111: 191-199.

        [7] Virginie M, Adánez J, Courson C, et al. Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed[J]. Applied Catalysis B Environmental, 2012(s)121: 122(5): 214-222.

        [8] 卜憲昵,岳寶華,戴智銘,等. 橄欖石對高溫焦爐煤氣中焦油組分的催化裂解[J]. 煤炭轉(zhuǎn)化,2008,31(2):31-36.

        Bu Xianni, Yue Baohua, Dai Zhiming, et al. Catalytic cracking of tar component in hot coke oven gas over natural olivine[J]. Coal Conversion, 2008, 31(2): 31-36. (in Chinese with English abstract)

        [9] 楊小芹,徐紹平,胡冠,等. 不同礦源橄欖石對催化苯水蒸氣重整的影響[J]. 催化學報,2009,30(6):497-502.

        Yang Xiaoqin, Xu Shaoping, Hu Guan, et al. Effects of olivines from different quarries on the steam reforming of benzene[J]. Chinese Journal of Catalysis, 2009, 30(6): 497-502. (in Chinese with English abstract)

        [10] 鄧靖,李文英,李曉紅,等. 橄欖石基固體熱載體影響褐煤熱解產(chǎn)物分布的分析[J]. 燃料化學學報,2013,41(8):937-942.

        Deng Jing, Li Wenying, Li Xiaohong. Product distribution of lignite pyrolysis with olivine-based solid heat carrier[J]. Journal of Fuel Chemistry and Technology, 2013, 41(8): 937-942. (in Chinese with English abstract)

        [11] Devi L, Ptasinski K J, Janssen F J J G. Pretreated olivine as tar removal catalyst for biomass gasifiers: Investigation using naphthalene as model biomass tar[J]. Fuel Processing Technology, 2005, 86(6): 707-730.

        [12] 馬中青,葉結(jié)旺,趙超,等. 基于下吸式固定床的木片氣化試驗[J]. 農(nóng)業(yè)工程學報,2016,32(增刊1):267-274.

        Ma Zhongqing, Ye Jiewang, Zhao Chao, et al. Experimental investigation of wood chip gasification using downdraft fixed bed gasifier[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(Supp.1): 267-274. (in Chinese with English abstract)

        [13] Xu G, Murakami T, Suda T, et al. Two-stage dual fluidized bed gasification: Its conception and application to biomass[J]. Fuel Processing Technology, 2009, 90(1): 137-144.

        [14] 沈來宏,肖軍,高楊. 串行流化床生物質(zhì)催化制氫模擬研究[J]. 中國電機工程學報,2006,26(11):7-11.

        Shen Laihong, Xiao Jun, Gao Yang. Simulation of hydrogen product on from biomass catalytic gasification in interconnected fluidized beds[J]. Proceeding of the CSSE, 2006, 26(11): 7-11. (in Chinese with English abstract)

        [15] Nguyen T D B, Ngo S I, Lim Y I, et al. Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed[J]. Energy Conversion & Management, 2012, 54(1): 100-112.

        [16] Devi L, Craje M, Thüne P, et al. Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization[J]. Applied Catalysis a General, 2005, 294(1): 68-79.

        [17] 魏立綱,徐紹平,劉長厚,等. 預煅燒對橄欖石生物質(zhì)氣化催化性能的影響[J]. 燃料化學學報,2008,36(4):426-430.

        Wei Ligang, Xu Shaoping, Liu Changhou, et al. Effects of precalcination on catalytic activity of olivine in biomass gasification[J]. Journal of Fuel Chemistry & Technology, 2008, 36(4): 426-430. (in Chinese with English abstract)

        [18] Narváez I, Orío A, Aznar M P, et al. Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of six operational variables on the quality of the produced raw gas[J]. Industrial & Engineering Chemistry Research, 1996, 35: 2110-2120.

        [19] McKendry P. Energy production from biomass (part 1): Overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46.

        [20] Demirba? A. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield[J]. Energy Conversion and Management, 2002, 43(7): 897-909.

        [21] Schuster G, L?ffler G, Weigl K, et al. Biomass steam gasification–an extensive parametric modeling study[J]. Bioresource Technology, 2001, 77(1): 71-79.

        [22] Pfeifer C, Koppatz S and Hofbauer H. Steam gasification of various feedstocks at a dual fluidised bed gasifier: Impacts of operation conditions and bed materials[J]. Biomass Conversion and Biorefinery, 2011, 1(1): 39-53.

        [23] Jaojaruek K, Jarungthammachote S, Gratuito M K B, et al. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach[J]. Bioresource Technology, 2011, 102: 4834-4840.

        [24] Aranda G, van der Drift A, Vreugdenhil B J, et al. Comparing direct and indirect fluidized bed gasification: Effect of redox cycle on olivine activity[J].Environmental Progress & Sustainable Energy, 2014, 33(3): 711-720.

        [25] 宋洋博,徐紹平,李伶俐,等. Cu-橄欖石載氧體煤焦化學鏈氣化實驗研究[J]. 燃料化學學報,2017,45(8):916-923.

        Song Yangbo, Xu Shaoping, Li Lingli. Chemical looping gasification of coal char with Cu-olivine oxygen carriers[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 916-923. (in Chinese with English abstract)

        [26] Aznar M, Manyà J J, García G, et al. Influence of freeboard temperature, fluidization velocity, and particle size on tar production and composition during the air gasification of sewage sludge[J]. Energy & Fuels, 2008, 22: 2840-2850.

        [27] 劉慧慧,鄒俊,鄧勇,等. 改性生物質(zhì)炭對棉稈熱解揮發(fā)分析出特性的影響[J]. 農(nóng)業(yè)工程學報,2016,32(22):239-243.

        Liu Huihui, Zou Jun, Deng Yong, et al. Influence of modified biomass char on releases characteristics of volatiles during pyrolysis of cotton stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 239-243. (in Chinese with English abstract)

        [28] Nitsch X, Commandre J-M, Clavel P, et al. Conversion of phenol-based tars over olivine and sand in a biomass gasification atmosphere[J]. Energy & Fuels, 2013, 27(9): 5459-5465.

        Catalytic biomass gasification for hydrogen rich gas production in decoupled-triple-bed gasification system

        Yalkunjan Tursun1, Pan Yue1, Bieerdehan Watihan1, Dilinuer Talifu1, Abulikemu Abulizi1, Ma Fengyun1, Xu Shaoping2

        (1.,,,830046,; 2.,,,116024,)

        Biomass steam gasification is a promising technology for hydrogen-rich gas production. In this paper the decoupled triple bed gasification (DTBG) system has been proposed. The system is composed of 3 decoupled reactors, i.e., gas-solid countercurrent moving bed pyrolyzer, radial-flow moving bed reformer and riser-type combustor. The steam was used as gasifying agent and the calcined olivine was used as circulating heat carrier and in-situ tar destruction catalyst as well. Experiments have been conducted at a pyrolyzer temperature of 700 ℃, a combustor temperature of 850 ℃ and the ratio of steam mass to biomass mass (S/B) of 0.65. The influences of biomass type on the gasification performance were investigated with saw dust, rice husk, wheat straw and cotton stalk as biomass feedstock at the reformer temperature of 800 ℃. The effects of reformer temperature (700-850 ℃) and biomass feeding rate (120-220 g/h) on gas yield, tar content, gas composition, carbon conversion as well as gasification efficiency were investigated with saw dust as feedstock. Besides, the characteristics of gasification tar at the varied reformer temperatures were investigated using gas chromatograph. The results indicated that the volatiles of biomass have great effect on the gasification performance. The gas yield, carbon conversion, the concentration of H2and CO increased and CO2concentration decreased with increasing volatile matter content of biomass. In the DTBG system, the pyrolyzer and reformer are separated and the volatiles released from pyrolyzer were the main source of the product gas. Therefore, a secondary reaction of volatiles in reformer with the presence of the olivine, such as steam reforming reaction, tar creaking reaction, plays a critical role in determining product gas composition as well as gas yield. The saw dust was found to be preferable biomass type for hydrogen-rich gas production. Gas yield increased from 0.91 to 1.08 m3/kg while tar content decreased from 19.1 to 7.3 g/m3at the reformer temperature range of 750-850 ℃. At the same time, carbon conversion and gasification efficiency were dramatically increased from 71.4% to 81.4% and from 56.4% to 65.2%, respectively, with increasing reformer temperature from 750 to 850 ℃. The H2concentration increased and CO2concentration decreased with the increasing biomass feeding rate, which yet had little impact on tar content. Specifically, product gas with the H2concentration of 42.2%, CO concentration of 14.6% and the tar content of 10.1 g/m3has been obtained at the reformer temperature of 800 ℃ and biomass feeding rate of 220 g/h. The gasification tar was basically composed of naphthalene, biphenyl, acenaphthene, dibenzofuran, fluorene, phenanthrene, fluoranthene, and pyrene, in which naphthalene was found to be the dominate component. Single ring hydrocarbons were totally destructed and 3-4 ring PAHs (polycyclic aromatic hydrocarbons) decreased, while the concentration of naphthalene was dramatically increased from 54.7% to 75.6% at the reformer temperature range of 750-850 ℃. It can be demonstrated that the novel design of reformer in the DTBG system with olivine not only is favorable to increase tar reforming/cracking reactions which favors tar removal, but also appears as a feasible technology for hydrogen-rich gas production. This work is expected to be helpful for the design, operation and optimization of large-scale gasification plant.

        biomass; gasification; catalytic; decoupled triple bed; olivine; in-situ tar destruction

        2018-03-08

        2018-07-13

        國家自然科學基金(21766037,50776013),自治區(qū)高??蒲杏媱濏椖浚╔JEDU2016S029),新疆大學博士啟動基金(BS160225)

        亞力昆江·吐爾遜,講師,博士,主要從事生物質(zhì)和煤熱化學轉(zhuǎn)化。Email:yalkunjan54@aliyun.com

        10.11975/j.issn.1002-6819.2018.17.029

        TK6

        A

        1002-6819(2018)-17-0222-07

        亞力昆江·吐爾遜,潘 岳,別爾德汗·瓦提汗,迪麗努爾·塔力甫,阿布力克木·阿布力孜,馬鳳云,徐紹平. 基于熱解-重整-燃燒解耦三床氣化系統(tǒng)的生物質(zhì)催化制富氫氣體[J]. 農(nóng)業(yè)工程學報,2018,34(17):222-228. doi:10.11975/j.issn.1002-6819.2018.17.029 http://www.tcsae.org

        Yalkunjan Tursun, Pan Yue, Bieerdehan Watihan, Dilinuer Talifu, Abulikemu Abulizi, Ma Fengyun, Xu Shaoping. Catalytic biomass gasification for hydrogen rich gas production in decoupled-triple-bed gasification system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 222-228. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.029 http://www.tcsae.org

        国产美女高潮流白浆在线观看| 成人国成人国产suv| 亚洲av中文无码乱人伦在线播放| 人与嘼av免费| 熟女体下毛毛黑森林| 六月丁香久久| 亚洲一区二区三区在线观看| 久久久精品亚洲一区二区国产av| 精品视频无码一区二区三区| 日本一区二区三区高清千人斩| 久久精品熟女亚洲av艳妇| 加勒比日韩视频在线观看| 亚洲av无码一区二区三区天堂古代 | 欧美在线 | 亚洲| 国产丝袜精品不卡| 国产激情视频在线观看首页| 九九在线中文字幕无码| 麻豆国产人妻欲求不满谁演的| 国产精品白浆视频一区| 国产人妖av在线观看| 在线亚洲高清揄拍自拍一品区 | 欧美xxxxx在线观看| 久久精品无码专区免费青青| 国产精品98视频全部国产| 青青草免费在线视频久草| 国产福利永久在线视频无毒不卡 | 日本一区二区三区看片| 国产日产韩国av在线| 亚洲精品无码不卡在线播放he| 亚洲国产精品500在线观看| 在线观看国产自拍视频| 亚洲综合网站久久久| 国产98在线 | 免费| 成人影院免费观看在线播放视频 | 一级免费毛片| 日本人妖一区二区三区| 无码av专区丝袜专区| 亚洲色大成网站www永久一区| 无码视频一区=区| 丝袜美腿高清在线观看| 国产真实老熟女无套内射|