李兆松,王 兵,2,汪建芳,王忠禹
?
鐵桿蒿與白羊草枯落物覆蓋量對(duì)黃土坡面流水動(dòng)力特性的影響
李兆松1,王 兵1,2※,汪建芳1,王忠禹1
(1. 西北農(nóng)林科技大學(xué)水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 中國(guó)科院水利部水土保持研究所,楊凌 712100)
枯落物種類及覆蓋量差異可能會(huì)影響坡面流水動(dòng)力特性。選取黃土高原丘陵溝壑區(qū)典型草地鐵桿蒿(菊科)和白羊草(禾本科)枯落物為研究對(duì)象,通過(guò)設(shè)置7個(gè)枯落物覆蓋量(鐵桿蒿為0~1 000 g/m2,白羊草為0~600 g/m2)和2個(gè)降雨強(qiáng)度(60和120 mm/h),系統(tǒng)研究枯落物類型及覆蓋量對(duì)坡面流水動(dòng)力學(xué)特征參數(shù)的影響。結(jié)果表明:1)相對(duì)裸地對(duì)照,枯落物覆蓋處理坡面流平均流速、雷諾數(shù)和弗汝德數(shù)平均減小了77.3%、18.5%和87.4%,阻力系數(shù)增加了315倍;2)枯落物覆蓋量的增加可有效減緩流速、流態(tài)和增加阻力系數(shù),并且隨著枯落物覆蓋量的增加,平均流速、雷諾數(shù)和弗汝德數(shù)均呈冪函數(shù)減小趨勢(shì)(<0.01),而阻力系數(shù)呈冪函數(shù)增加趨勢(shì)(<0.01)。總體而言,鐵桿蒿枯落物對(duì)坡面流水動(dòng)力參數(shù)的影響高于白羊草枯落物。3)逐步回歸結(jié)果表明各個(gè)水動(dòng)力參數(shù)均與流量、枯落物覆蓋量和枯落物特征參數(shù)呈顯著冪函數(shù)關(guān)系(2為0.84~0.92,NSE(Nash-Sutcliffe系數(shù))為0.60~0.91,<0.01);除流量和枯落物覆蓋量外,流速和阻力系數(shù)還受枯落物直徑影響,流態(tài)則主要與枯落物密度和長(zhǎng)度密切相關(guān)。本研究可為揭示枯落物的水土保持機(jī)理,正確評(píng)價(jià)草地的水土保持效益提供科學(xué)參考。
侵蝕;水動(dòng)力學(xué);流量;枯落物覆蓋量;典型草地;黃土丘陵溝壑區(qū);降雨
坡面流是指降雨強(qiáng)度或流量超過(guò)地面入滲能力情況下,水流沿坡面順坡方向上在重力作用下扣除下滲、填洼等水分損失后的淺層明流[1],是土壤侵蝕的主要?jiǎng)恿?lái)源[2]。因此,系統(tǒng)研究坡面流水力學(xué)特征及其影響因素對(duì)于準(zhǔn)確預(yù)測(cè)土壤侵蝕具有著重要意義。流速、流態(tài)和阻力特征是表征坡面流的常用指標(biāo),其主要受坡面土壤類型、地表形態(tài)、土地利用方式、降雨或流量特征、含沙量和土壤近地表特征等的影響[3-7]。植被覆蓋可顯著影響產(chǎn)流、產(chǎn)沙過(guò)程,因而有關(guān)植被覆蓋對(duì)坡面流水力學(xué)參數(shù)的影響備受關(guān)注。目前,植被特征對(duì)坡面流水動(dòng)力特性影響的研究已經(jīng)取得了一定的成果,如有無(wú)植被[8]、植被覆蓋度[9-12]、植被格局[13-14]、剛性植被和柔性植被[15-16]以及植被淹沒(méi)程度[17-18]。枯落物作為植被的重要產(chǎn)物覆蓋于地表,可消減雨滴動(dòng)能、延緩產(chǎn)流時(shí)間、削弱坡面流沖刷和改善土壤理化性質(zhì),進(jìn)而有效保護(hù)土壤、減少土壤侵蝕[19-21]。然而,有關(guān)枯落物覆蓋減流減沙作用的水動(dòng)力學(xué)機(jī)理的研究相對(duì)較少[22-23]。黃土高原是中國(guó)、乃至全世界水土流失最嚴(yán)重的地區(qū)之一,強(qiáng)烈的水土流失直接威脅區(qū)域經(jīng)濟(jì)與生態(tài)環(huán)境可持續(xù)發(fā)展。自1999年退耕還林(草)工程實(shí)施以來(lái),植被得以恢復(fù),近地表枯落物大量蓄積[6]。在這過(guò)程中,草地面積顯著增加,約占黃土高原總面積的41.7%[24]?;诖耍疚倪x取黃土丘陵溝壑區(qū)典型草地菊科植物鐵桿蒿()枯落物和禾本科植物白羊草((.))枯落物作為研究對(duì)象,采用人工模擬降雨試驗(yàn),系統(tǒng)研究鐵桿蒿和白羊草枯落物覆蓋對(duì)坡面流水動(dòng)力學(xué)特征的影響,量化枯落物覆蓋量與坡面流水力學(xué)參數(shù)之間的定量關(guān)系,以期為揭示黃土高原典型草地枯落物水土保持機(jī)理提供理論基礎(chǔ)。
試驗(yàn)于2017年8月在黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)室降雨大廳進(jìn)行。人工模擬降雨采用QYJY-503固定式人工降雨設(shè)備,該設(shè)備采用組合噴頭降雨,噴頭安置高度均為18 m,雨滴大小控制在0.4~6 mm,可調(diào)節(jié)雨強(qiáng)范圍為30~300 mm/h,降雨均勻度大于0.8,雨滴終點(diǎn)速度近似天然降雨。
在安塞紙坊溝流域選取典型鐵桿蒿群落(菊科)和白羊草群落(禾本科)草地,收集其自然凋落未分解的枯落物,并通過(guò)體積排水法測(cè)定枯落物密度,WinRHIZO Pro 2.0 圖像分析軟件測(cè)定枯落物長(zhǎng)度、投影面積、直徑和表面積,結(jié)果如表1。鐵桿蒿和白羊草枯落物分別設(shè)置7個(gè)覆蓋量處理(表2),每個(gè)處理2個(gè)重復(fù)。
表1 鐵桿蒿和白羊草枯落物特征
注:鐵桿蒿用Ag表示,白羊草用Bi表示。下同。
Note:was represented by Ag,(.) Keng.was represented by Bithe same as below
表2 鐵桿蒿和白羊草枯落物覆蓋量
試驗(yàn)土槽長(zhǎng)、寬、深分別為2.0、0.5、0.4 m,坡度為15°。供試土壤采自安塞退耕地表層土(0~40 cm),其理化性質(zhì)見(jiàn)表3。土槽底部鋪0.10 m細(xì)沙,而后進(jìn)行填土,為保證土壤水分均勻下滲,將細(xì)沙層和填土層鋪用紗布隔開(kāi)。填土前先將土壤過(guò)2 mm篩,去除石礫和草根后按照容重1.2 g/cm3分層填裝,每層0.05 m,鋪平、壓實(shí),每次填裝下層土壤之前將表土打毛,消除土壤之間的分層現(xiàn)象。填土結(jié)束后,將枯落物按照預(yù)設(shè)覆蓋量均勻撒鋪在坡面上,并適量灑水(不產(chǎn)生徑流和物理結(jié)皮),靜置2周后開(kāi)始進(jìn)行降雨試驗(yàn)。
表3 供試土壤理化性狀
注:機(jī)械組成參照美國(guó)農(nóng)業(yè)部制定的土壤質(zhì)地分類標(biāo)準(zhǔn)。
Note: Mechanical composition refers to soil texture classification standards established by the U.S. Department of Agriculture.
降雨前,均對(duì)各處理土壤含水量進(jìn)行標(biāo)定,以消除土壤含水量差異對(duì)試驗(yàn)的影響。根據(jù)黃土高原雨季侵蝕性降雨和極端暴雨情況,60 mm/h降雨強(qiáng)度為該區(qū)域較為常見(jiàn)的侵蝕性降雨強(qiáng)度;此外,考慮到極端降雨,又設(shè)置了120 mm/h的雨強(qiáng)。另陜北子洲綏德“7·26”特大暴雨中子洲最大一小時(shí)降雨量為52.0mm[25],故降雨歷時(shí)分別為60和30 min;降雨過(guò)程中測(cè)定水溫,每3 min收集徑流泥沙全樣并采用高錳酸鉀法測(cè)定坡面流表面流速,再根據(jù)實(shí)測(cè)水溫計(jì)算出水流粘滯系數(shù),進(jìn)一步計(jì)算雷諾數(shù)和判斷水流流態(tài),乘以校正系數(shù)(緩流:0.6;過(guò)渡流:0.7;急流:0.8)獲得平均流速[26],用以計(jì)算坡面流水力學(xué)參數(shù)。結(jié)合上述枯落物種類和覆蓋梯度,共計(jì)降雨56場(chǎng)。
本研究中坡面流水力學(xué)參數(shù)主要涉及雷諾數(shù)()、弗汝德數(shù)()和Darcy-Weisbach阻力系數(shù)(),其計(jì)算公式如下[27-28]
式中為水深,m;為單寬流量,m3/(m·s);為斷面平均流速,m/s;為運(yùn)動(dòng)黏滯系數(shù),cm2/s;為水的溫度,℃;為重力加速度,取9.8 m/s2;為水力半徑,取值近似水深,m;為水力坡度,其值為坡度的正弦值。
流速是表征坡面流常用的水動(dòng)力學(xué)參數(shù),也是計(jì)算其他水動(dòng)力學(xué)參數(shù)的基礎(chǔ)。受降雨歷時(shí)、枯落物覆蓋量和降雨強(qiáng)度的影響,各處理坡面流流速存在顯著差異(圖1)。對(duì)于所有處理,流速隨降雨歷時(shí)的延長(zhǎng)整體表現(xiàn)為先增加后趨于穩(wěn)定的變化趨勢(shì),降雨結(jié)束前15 min坡面流流速較降雨初始15 min增加了5.4%~86.4%。這主要是降雨初期土壤未達(dá)到飽和狀態(tài),入滲速率較大所致。枯落物覆蓋除能消耗徑流能量和分散徑流外,還能增加糙度,從而降低坡面流流速。相對(duì)于裸地對(duì)照,鐵桿蒿枯落物覆蓋條件下流速平均減少83.8%,而白羊草枯落物覆蓋條件下流速平均減少70.8%。枯落物覆蓋量的增加可顯著減緩坡面流流速,且隨著降雨強(qiáng)度的增大,枯落物覆蓋量對(duì)坡面流流速的影響差異更顯著。相對(duì)于枯落物覆蓋量最小的T1處理,鐵桿蒿枯落物覆蓋條件下其他處理平均流速在60和120 mm/h雨強(qiáng)下分別平均減少了67.3%和54.9%,白羊草枯落物覆蓋條件則平均減少了21.2%和30.0%。總體而言,2種枯落物覆蓋在2個(gè)雨強(qiáng)下平均流速較裸地減小77.3%,但由于枯落物覆蓋量及類型的差異,鐵桿蒿枯落物覆蓋對(duì)坡面流速的減緩效果強(qiáng)于白羊草。
圖1 不同覆蓋量坡面流流速隨降雨歷時(shí)變化特征
2.2.1 枯落物覆蓋對(duì)雷諾數(shù)的影響
水流流態(tài)是表征坡面薄層徑流水動(dòng)力特征的基本參數(shù)之一,而雷諾數(shù)是重要的判別方法之一。雷諾數(shù)是慣性力和黏性力的比值,是衡量紊動(dòng)程度的重要指標(biāo)。根據(jù)明渠水流的判別標(biāo)準(zhǔn),當(dāng)雷諾數(shù)大于500時(shí),徑流流態(tài)為紊流;當(dāng)雷諾數(shù)小于500時(shí),徑流流態(tài)為層流;在500左右時(shí),徑流流態(tài)為過(guò)渡流[29]。所有處理坡面流雷諾數(shù)隨降雨歷時(shí)的延長(zhǎng)整體呈先迅速增加后趨于穩(wěn)定的變化趨勢(shì)(圖2),降雨結(jié)束前15 min坡面流流速較降雨初始15 min增加了15.5%~162.2%,但均小于500,表明坡面流均為層流??萋湮锔采w可顯著減小雷諾數(shù),受枯落物覆蓋量及類型差異的影響,其對(duì)雷諾數(shù)的影響不盡相同。相對(duì)于裸地對(duì)照,鐵桿蒿枯落物覆蓋條件下雷諾數(shù)平均減少了23.3%,白羊草枯落物覆蓋條件下則平均減少了13.7%,2種枯落物覆蓋平均減少了18.5%??萋湮锔采w量的增加可顯著減小雷諾數(shù),相對(duì)于枯落物覆蓋量最小的T1處理,鐵桿蒿覆蓋其他處理雷諾數(shù)在60和120 mm/h雨強(qiáng)下分別平均減少了29.1%和17.5%,白羊草則平均減少了7.8%和5.5%。這是因?yàn)槔字Z數(shù)受流量影響顯著[13],水深未沒(méi)過(guò)枯落物時(shí),流量越大,雷諾數(shù)越大??萋湮锔采w量的增加,糙度增大,入滲增加,從而減小流量,導(dǎo)致雷諾數(shù)減小。雷諾數(shù)變化曲線在120 mm/h雨強(qiáng)下整體較60 mm/h雨強(qiáng)高,主要是降雨強(qiáng)度增加導(dǎo)致水深升高,增加了徑流與粗糙單元接觸和碰撞的概率,進(jìn)而增加了徑流的紊動(dòng)性[4,30]。
圖2 不同覆蓋量下雷諾數(shù)隨降雨歷時(shí)變化特征
2.2.2 枯落物覆蓋對(duì)弗汝德數(shù)的影響
弗汝德數(shù)也是表征徑流流態(tài)的重要參數(shù),是衡量徑流急緩程度的重要指標(biāo),表示徑流慣性力與重力的關(guān)系。根據(jù)明渠水流的判別標(biāo)準(zhǔn),當(dāng)大于等于1時(shí),徑流流態(tài)為急流;當(dāng)小于1時(shí),徑流流態(tài)為緩流[29]。在降雨強(qiáng)度相同時(shí),越大,表明徑流流速挾沙能力越強(qiáng)。隨降雨歷時(shí)變化趨勢(shì)受降雨強(qiáng)度和枯落物覆蓋量的影響顯著(圖3)。60 mm/h雨強(qiáng)時(shí),枯落物覆蓋處理在不同時(shí)段整體表現(xiàn)為無(wú)顯著差異;而120 mm/h雨強(qiáng)時(shí),當(dāng)鐵桿蒿和白羊草枯落物覆蓋量較低時(shí)隨降雨歷時(shí)為緩慢增大,較高時(shí)仍表現(xiàn)為無(wú)顯著差異??萋湮锔采w可顯著減小。裸地對(duì)照均大于1,徑流流態(tài)為急流;鐵桿蒿和白羊草枯落物覆蓋條件下分別較裸地對(duì)照平均減少92.1%和82.7%,且均小于1,徑流流態(tài)為緩流??萋湮锔采w量的增加可顯著減小,且降雨強(qiáng)度的增大,對(duì)枯落物覆蓋量較小處理坡面流的影響顯著高于覆蓋量較大處理。相對(duì)枯落物覆蓋量最小的T1處理,鐵桿蒿枯落物覆蓋條件下其他處理坡面流在60和120 mm/h雨強(qiáng)下分別平均減少了77.2%和64.8%,白羊草枯落物覆蓋條件下則減少了25.2%和37.9%??傮w而言,2種枯落物覆蓋在2種雨強(qiáng)下弗汝德數(shù)的平均值較裸地減小了87.4%,鐵桿蒿枯落物覆蓋減緩坡面急流效果較白羊草枯落物覆蓋強(qiáng)。
阻力系數(shù)反映了坡面流在流動(dòng)過(guò)程中所受的阻力大小,阻力系數(shù)越大,說(shuō)明水流克服坡面阻力所消耗的能量就越大,則用于坡面侵蝕和泥沙輸移的能量就越小。隨著降雨歷時(shí)的延長(zhǎng),鐵桿蒿枯落處理阻力系數(shù)在60和120 mm/h雨強(qiáng)下分別整體表現(xiàn)為趨于穩(wěn)定和先增加后減小的變化趨勢(shì),白羊草枯落物處理在2個(gè)雨強(qiáng)下則均表現(xiàn)為先增加后緩慢減小的變化趨勢(shì)(圖4)。由于枯落物覆蓋不同于植被覆蓋,在足夠大的坡面徑流沖刷作用下枯落物會(huì)逐步移動(dòng)形成短距離的堆集,同時(shí),留出部分面積裸露,使平均水深逐漸變小,導(dǎo)致阻力系數(shù)減小[30];白羊草枯落物相對(duì)鐵桿蒿枯落物量少且重量密度低,坡面移動(dòng)堆積所需要的徑流動(dòng)力相對(duì)較小,使得其對(duì)坡面流的阻力小于鐵桿蒿??萋湮锔采w可顯著增加阻力系數(shù),并且受枯落物覆蓋量及類型差異的影響。鐵桿蒿和白羊草枯落物覆蓋條件下各處理阻力系數(shù)平均是裸地對(duì)照的591.8和38.8倍,平均約為315倍??萋湮锔采w量的增加可顯著增加阻力系數(shù),且隨降雨強(qiáng)度的增大,枯落物覆蓋量對(duì)坡面流阻力系數(shù)的影響差異更為顯著。相對(duì)于枯落物覆蓋量最小的T1處理,鐵桿蒿覆蓋條件下其他處理坡面流阻力系數(shù)在60和120 mm/h雨強(qiáng)下平均增加了18.4和13.3倍,白羊草覆蓋條件下則增加了0.9倍和2.1倍。這主要是枯落物覆蓋量的增加,一定程度上會(huì)增加覆蓋率,加大了水流發(fā)生碰撞和摩擦的機(jī)會(huì),消耗了更多水流能量。相關(guān)研究表明阻力系數(shù)隨覆蓋率的增加呈冪函數(shù)增加[31]。
圖3 不同覆蓋量下弗汝德數(shù)隨降雨歷時(shí)變化特征
圖4 不同覆蓋量下阻力系數(shù)隨降雨歷時(shí)變化特征
枯落物覆蓋可顯著影響坡面流流速、雷諾數(shù)、弗汝德數(shù)和阻力系數(shù)。進(jìn)一步分析表明,鐵桿蒿和白羊草兩種枯落物覆蓋處理下,坡面流平均流速、雷諾數(shù)、弗汝德數(shù)和阻力系數(shù)均與枯落物覆蓋量存在顯著冪函數(shù)關(guān)系(0.55≤2≤0.97;<0.01;圖5和表4);且隨著枯落物覆蓋量的增加,平均流速、雷諾數(shù)和弗汝德數(shù)均減小,阻力系數(shù)增大。這是由于枯落物覆蓋量的增加能夠增大坡面糙度,耗散徑流能量,從而減小坡面流流速、雷諾數(shù)、弗汝德數(shù)和增大阻力系數(shù)[30-32]。由于枯落物種類的不同,白羊草和鐵桿蒿枯落物對(duì)坡面流水動(dòng)力參數(shù)的影響也存在差異。
圖5 坡面流水動(dòng)力參數(shù)與枯落物覆蓋量的關(guān)系
表4 坡面流水動(dòng)力參數(shù)與枯落物覆蓋量的函數(shù)關(guān)系(P<0.01)
總體而言,隨著枯落物覆蓋量的增加,白羊草枯落物覆蓋條件下平均流速、雷諾數(shù)和弗汝德數(shù)均高于鐵桿蒿枯落物,而阻力系數(shù)則低于鐵桿蒿枯落物。這是由于相對(duì)于菊科的鐵桿蒿枯落物,禾本科的白羊草枯落物大都以寬葉為主,質(zhì)量密度相對(duì)較小,且枯落物由于較大的表面積,其凋落于地面后枯葉間空隙相對(duì)較大,從而導(dǎo)致其對(duì)徑流的阻力相對(duì)較小,進(jìn)而流速、雷諾數(shù)和佛汝德數(shù)相對(duì)較大。
綜上所述,坡面流流速、雷諾數(shù)、佛汝德數(shù)和阻力系數(shù)與枯落物種類、覆蓋量及降雨強(qiáng)度存在顯著關(guān)系。基于此,增加枯落物特征參數(shù)(表1)來(lái)表征枯落物種類差異對(duì)坡面流水動(dòng)力參數(shù)的影響。逐步回歸結(jié)果表明,各坡面流水動(dòng)力參數(shù)均可表示為枯落物特征參數(shù)、枯落物覆蓋量和徑流量的冪函數(shù)關(guān)系,公式(6)~(9)。
=10-7.801.28-0.18-0.542=0.92,<0.01 NSE=0.83(6)
10-8.322.110.171.062=0.92,<0.01,NSE=0.91(7)
10-5.310.98-0.410.602=0.84,<0.01,NSE=0.60(8)
=109.58-1.980.70-1.9420.86,<0.01,NSE=0.81(9)
式中樣本量=24,和分別為坡面流平均流速(m/s)、雷諾數(shù)、弗汝德數(shù)和阻力系數(shù),、、、和分別為產(chǎn)流量、枯落物覆蓋量(g/m2)、枯落物直徑(mm)、枯落物密度(g/cm3)和枯落物長(zhǎng)度(cm/g)。除流量和枯落物覆蓋量可顯著影響坡面流水動(dòng)力參數(shù)外,枯落物特征參數(shù)中枯落物直徑是影響流速和阻力系數(shù)的主要參數(shù),而枯落物密度和長(zhǎng)度分別是影響雷諾數(shù)和弗汝德數(shù)的主要參數(shù)。
本文以黃土高原丘陵溝壑區(qū)典型草地鐵桿蒿(菊科)和白羊草(禾本科)枯落物為研究對(duì)象,通過(guò)設(shè)置7個(gè)枯落物覆蓋量和2個(gè)降雨強(qiáng)度(60和120 mm/h),系統(tǒng)研究枯落物種類及覆蓋量對(duì)坡面流水動(dòng)力學(xué)特征參數(shù)的影響。結(jié)果表明:
1)枯落物覆蓋能夠顯著影響坡面流水動(dòng)力參數(shù),其中鐵桿蒿枯落物覆蓋能夠平均減小流速、雷諾數(shù)和弗汝德數(shù)的83.8%、23.3%和92.1%,增加阻力系數(shù)591.8倍;白羊草枯落物則平均減小流速、雷諾數(shù)和弗汝德數(shù)的70.8%、13.7%和82.7%,增加阻力系數(shù)38.8倍。
2)隨著枯落物覆蓋量的增加,2種枯落物覆蓋條件下平均流速、雷諾數(shù)和弗汝德數(shù)均呈冪函數(shù)減小趨勢(shì)(<0.01),而阻力系數(shù)呈冪函數(shù)增加趨勢(shì)(<0.01);隨著降雨強(qiáng)度的增大,枯落物覆蓋量對(duì)各水動(dòng)力參數(shù)的影響差異更為顯著;總體而言,鐵桿蒿枯落物覆蓋對(duì)坡面流水動(dòng)力參數(shù)的影響高于白羊草枯落物。
3)坡面流水動(dòng)力參數(shù)均可表示為枯落物特征參數(shù)、枯落物覆蓋量和徑流量的冪函數(shù)關(guān)系(2為0.84~0.92,NSE為0.60~0.91,<0.01),除流量和枯落物覆蓋量外,枯落物特征參數(shù)中枯落物直徑是影響流速和阻力系數(shù)的主要參數(shù),而枯落物密度和長(zhǎng)度分別是影響雷諾數(shù)和弗汝德數(shù)的主要參數(shù)??萋湮锊粌H分布于地表,而且大量廣泛分布于表層土壤中,其對(duì)土壤侵蝕影響的研究相對(duì)較少。因此,量化枯落物混入量與水動(dòng)力學(xué)參數(shù)的相互關(guān)系,明確枯落物混入量對(duì)產(chǎn)流、產(chǎn)沙過(guò)程的影響,將是我們下一步的研究?jī)?nèi)容。
[1] 張光輝. 國(guó)外坡面徑流分離土壤過(guò)程水動(dòng)力學(xué)研究進(jìn)展[J]. 水土保持學(xué)報(bào),2000,14(3):112-115.
Zhang Guanghui. Summary study on runoff detachment process based on hydraulics[J]. Journal of Soil and Water Conservation, 2000, 14(3): 112-115. (in Chinese with English abstract)
[2] 張寬地,王光謙,孫曉敏,等. 坡面薄層水流水動(dòng)力學(xué)特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(15):182-189.
Zhang Kuandi, Wang Guangqian, Sun Xiaomin, et al. Experiment on hydraulic characteristics of shallow open channel flow on slop[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2014, 30(15): 182-189. (in Chinese with English abstract)
[3] 王晨灃,王彬,王玉杰,等. 不同土壤前期含水率和坡度下黃壤分離臨界水動(dòng)力特性[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(4):224-232.
Wang Chenfeng, Wang Bin, Wang Yujie, et al. Critical hydraulic characteristics of yellow soil detachment under different antecedent soil moisture contents and slop gradients[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(4): 224-232. (in Chinese with English abstract)
[4] 張寬地,王光謙,孫曉敏,等. 模擬植被覆蓋條件下坡面流水動(dòng)力學(xué)特性[J]. 水科學(xué)進(jìn)展,2014,25(6):825-834.
Zhang Kuandi, Wang Guangqian, Sun Xiaomin, et al. Hydraulic characteristics of overland flow under different vegetation coverage[J]. Advances in Water Science, 2014, 25(6): 825-834. (in Chinese with English abstract)
[5] 趙春紅,高建恩,王飛,等. 含沙量對(duì)坡面流水動(dòng)力學(xué)特性影響的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(9):78,80-85.
Zhao Chunhong, Gao Jianen, Wang Fei, et al. Effects of sediment load on hydrodynamic characteristics of overland flow[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(9): 78,80-85. (in Chinese with English abstract)
[6] 張光輝. 退耕驅(qū)動(dòng)的近地表特性變化對(duì)土壤侵蝕的潛在影響[J]. 中國(guó)水土保持科學(xué),2017,15(4):143-154.
Zhang Guanghui. Potential effects of changes in near soil surface characteristics driven by farmland abandonment on soil erosion[J]. Science of Soil and Water Conservation, 2017, 15(4): 143-154. (in Chinese with English abstract)
[7] 王柢淵,楊帆,張寬地,等. 流量和坡度對(duì)植被水流水動(dòng)力學(xué)特性的影響[J]. 人民黃河,2017,39(6):86-89.
Wang Diyuan, Yang Fan, Zhang Kuandi, et al. Discharge and slope on hydraulic characteristics of overland flow under vegetated coverage[J]. Yellow River, 2017, 39(6): 86-89. (in Chinese with English abstract)
[8] 肖培青,姚文藝,李莉,等. 植被影響下坡面流阻力變化特征研究[J]. 泥沙研究,2013(3):1-5.
Xiao Peiqing, Yao Wenyi, Li Li, et al. Experimental study of overland flow resistance of different vegetation covers[J]. Journal of Sediment Research, 2013(3): 1-5. (in Chinese with English abstract)
[9] 李毅,邵明安. 草地覆蓋坡面流水動(dòng)力參數(shù)的室內(nèi)降雨試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):1-5.
Li Yi, Shao Mingan. Hydrodynamic parameters of overland flow during laboratory rainfall experiments under grass coverage[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2008, 24(10): 1-5. (in Chinese with English abstract)
[10] 孫佳美,余新曉,樊登星,等. 模擬降雨下植被蓋度對(duì)坡面流水動(dòng)力學(xué)特性的影響[J]. 生態(tài)學(xué)報(bào),2015,35(8):2574-2580.
Sun Jiamei, Yu Xinxiao, Fan Dengxing, et al. Impact of vegetation cover on surface runoff hydraulic characteristics with simulated rainfall[J]. Acta Ecologica Sinica, 2015, 35(8): 2574-2580. (in Chinese with English abstract)
[11] 楊帆,張寬地,馬小玲,等. 植被覆蓋度對(duì)坡面流相對(duì)水動(dòng)力學(xué)特性的影響[J]. 水力發(fā)電學(xué)報(bào), 2017,36(2):29-39.
Yang Fan, Zhang Kuandi, Ma Xiaoling, et al. Effects of vegetation on relative hydrodynamic of overland flows[J]. Journal of Hydroelectric Engineering, 2017, 36(2): 29-39. (in Chinese with English abstract)
[12] 楊帆,張寬地,楊婕,等. 不同覆蓋度下坡面流植被阻力特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):157-162.
Yang Fan, Zhang Kuandi, Yang Jie, et al. Characteristics of vegetation resistance in overland flow under different coverages[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(11): 157-162. (in Chinese with English abstract)
[13] 楊坪坪,張會(huì)蘭,王云琦,等. 植被覆蓋度與空間格局對(duì)坡面流水動(dòng)力學(xué)特性的影響[J]. 水土保持學(xué)報(bào),2016,30(2):26-33.
Yang Pingping, Zhang Huilan, Wang Yunqi, et al. Effects of vegetation coverage and spatial distribution pattern on hydrodynamic characteristics of overland flow[J]. Journal of Soil and Water Conservation, 2016, 30(2): 26-33. (in Chinese with English abstract)
[14] 孟鋮鋮,張會(huì)蘭,楊坪坪. 模擬植被類型及空間配置對(duì)坡面流水動(dòng)力學(xué)特性的影響[J]. 水土保持學(xué)報(bào),2017,31(2):50-56,78.
Meng Chengcheng, Zhang Huilan, Yang Pingping. Effects of simulated vegetation types and spatial patterns on hydrodynamics of overland flow[J]. Journal of Soil and Water Conservation, 2017, 31(2): 50-56,78. (in Chinese with English abstract)
[15] 楊婕,張寬地,楊帆. 柔性植被和剛性植被水流水動(dòng)力學(xué)特性研究[J]. 人民黃河,2017,39(8):85-89.
Yang Jie, Zhang Kuandi, Yang Fan. Experimental study on hydraulic characteristics of overland flow under rigid and flexible vegetation coverage[J]. Yellow River, 2017, 39(8): 85-89. (in Chinese with English abstract)
[16] 曾玉紅,槐文信,張健,等. 非淹沒(méi)剛性植被流動(dòng)阻力研究[J]. 水利學(xué)報(bào),2011,42(7):834-838.
Zeng Yuhong, Huai Wenxin, Zhang Jian, et al.Flow resistance of emerged rigid vegetations in open channels[J]. Journal of Hydraulic Engineering, 2011, 42(7): 834-838. (in Chinese with English abstract)
[17] 楊帆,張寬地,楊明義,等. 植被淹沒(méi)程度對(duì)坡面流水動(dòng)力學(xué)特性影響[J]. 水科學(xué)進(jìn)展,2016,27(6):832-840.
Yang Fan, Zhang Kuandi, Yang Mingyi, et al. Experimental study on hydraulic characteristics of submergence degree to flow under vegetation coverage[J]. Advance in Water Science, 2016, 27(6): 832-840. (in Chinese with English abstract)
[18] Li Yiping, Wang Ying, Tang Chunyan, et al. Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants[J]. Geomorphology, 2014, 204(1): 314-324.
[19] Shi H, Shao M. Soil and water loss from the Loess Plateau in China[J]. Journal of Arid Environments, 2000, 45(1): 9-20.
[20] Sun Long, Zhang Guanghui, Luan Lili, et al. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China[J]. Catena, 2016, 145: 239-245.
[21] Wang Dandan, Yu Xinxiao, Zhang Jianjun, et al. The impacts oflitter cover and roots on soil erosion in the Loess Plateau, China[J]. Chemistry & Ecology, 2017, 33(1): 1-15.
[22] 孫佳美,余新曉,李翰之,等. 模擬降雨下枯落物調(diào)控坡面產(chǎn)流產(chǎn)沙過(guò)程及特征研究[J]. 水利學(xué)報(bào),2017,48(3):341-350.
Sun Jiamei, Yu Xinxiao, Li Hanzhi, et al. Runoff and sediment yield process and characteristics research on litter slopes in simulated rainfall[J]. Journal of Hydraulic Engineering, 2017, 48(3): 341-350. (in Chinese with English abstract)
[23] 孫佳美,李瀚之,趙陽(yáng),等.構(gòu)樹(shù)林下枯落物對(duì)坡面流水動(dòng)力學(xué)特性的影響[J]. 水土保持學(xué)報(bào),2015,29(3):102-105.
Sun Jiamei, Li Hanzhi, Zhao yang, et al. Impact offorest litter on slop runoff hydrodynamic characteristics[J]. Journal of Soil and Water Conservation, 2015, 29(3): 102-105. (in Chinese with English abstract)
[24] Li J, Li Z, Lü Z. Analysis of spatiotemporal variations in land use on the loess plateau of china during 1986-2010[J]. Environmental Earth Sciences, 2016, 75(11): 1-12.
[25] 王楠,陳一先,白雷超,等. 陜北子洲縣“7·26”特大暴雨引發(fā)的小流域土壤侵蝕調(diào)查[J]. 水土保持通報(bào),2017,37(4):337-344.
Wangnan, Chen Yixian, Bai leichao, et al. Investigation on soil erosion in small watersheds under “726” extreme rainstorm in Zizhou, northern Shaanxi province[J]. Bulletin of Soil and Water Conservation, 2017, 37(4): 337-344. (in Chinese with English abstract)
[26] 易婷,張光輝,王兵,等. 退耕草地近地表層特征對(duì)坡面流流速的影響[J]. 山地學(xué)報(bào),2015,33(4):434-440.
Yi Ting, Zhang Guanghui, Wang Bing, et al. Effects of near soil surface characteristics on velocity of overland flow in a natural succession grassland[J]. Mountain Research, 2015, 33(4): 434-440. (in Chinese with English abstract)
[27] 李勉,姚文藝,陳江南,等. 草被覆蓋下坡面—溝坡系統(tǒng)坡面流阻力變化特征試驗(yàn)研究[J]. 水利學(xué)報(bào),2007,38(1):112-119.
Li Mian, Yao Wenyi, Chen Jiangnan, et al. Experimental study on runoff resistance of hilly slope gullied surface with grass coverage[J]. Journal of Hydraulic Engineering, 2007, 38(1): 112-119. (in Chinese with English abstract)
[28] 李勉,姚文藝,楊劍鋒,等. 草被覆蓋對(duì)坡面流流態(tài)影響的人工模擬試驗(yàn)研究[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2009,17(4):513-523 .
Li Mian, Yao Wenyi, Yang Jianfeng, et al. Experimental study on the effects of grass cover on the overland flow pattern in the hill slope gully side erosion system[J]. Journal of Basic Science and Engineering, 2009, 17(4): 513-523.(in Chinese with English abstract)
[29] 徐錫蒙,鄭粉莉,吳紅艷,等. 玉米秸稈覆蓋緩沖帶對(duì)細(xì)溝侵蝕及其水動(dòng)力學(xué)特征的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):111-119.
Xu Ximeng, Zheng Fenli, Wu Hongyan. et al. Impacts of corn stalk mulching buffer strip on rill erosion and its hydrodynamic character[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2015, 31(24): 111-119.(in Chinese with English abstract)
[30] 李朝棟,李占斌,馬建業(yè),等. 不同長(zhǎng)度小麥秸稈覆蓋下黃土耕地坡面流水動(dòng)力學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):153-160.
Li Chaodong, Li Zhanbin, Ma Jianye, et al. Hydraulic characteristic of overland flow on loess farmland slop under mulch with different wheat straw lengths[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2017, 33(4): 153-160. (in Chinese with English abstract)
[31] 曹穎,張光輝,唐科明,等. 地表覆蓋對(duì)坡面流阻力的影響[J]. 水土保持學(xué)報(bào),2010,24(4):86-89.
Cao Ying, Zhang Guanghui, Tang Keming, et al. Impact of simulated surface cover on resistance coefficient of overland flow[J]. Journal of Soil and Water Conservation, 2010, 24(4): 86-89. (in Chinese with English abstract)
[32] 曹穎,張光輝,唐科明,等. 地表覆蓋對(duì)坡面流流速影響的模擬試驗(yàn)[J]. 山地學(xué)報(bào),2011,29(6):654-659.
Cao Ying, Zhang Guanghui, Tang Keming, et al. Experimental on the effect of simulated on the overland flow velocity[J]. Mountain Research, 2011, 29(6): 654-659. (in Chinese with English abstract)
Effects ofandlitter mass coverage on hydrodynamic characteristics of loess overland flow
Li Zhaosong1, Wang Bing1,2※, Wang Jianfang1, Wang Zhongyu1
(1.,,,712100,; 2.,712100)
Litter coverage maybe significantly affect hydrodynamic characteristics of overland flow. An artificially simulated rainfall experiment was carried out to investigate the effects of litter coverage of different species and mass of different levels on the overland flow hydraulic parameters with a bare slope as the control. There seven litter mass coverages and two rainfall intensities in the experiment. Typical grassland litter ofwith the composite family and(.)with the grass family were selected in the Loess hilly-gully region, the north of Shaanxi province, China.Seven litter mass coverages were set toand(.), respectively, varying from 100 to 1 000 g/m2and 50 to 600 g/m2for each of those vegetation types and subjected to simulated two rainfall intensities: 60 and 120 mm/h. A normal rainfall intensity 60 mm/h and a rainstorm rainfall intensity 120 mm/h as the simulated rainfall intensities. According the extreme rainstorm event “7·26” in Zizhou and Suide, the north of Shaanxi province which the maximum hourly rainfall was 52 mm, so 60 mm was set to simulate rainfall. During the rainfall experiment, flow velocity and runoff were measured every three minutes, the water temperature was measured every fifteen minutes, and thenumber,number and the resistance coefficient were calculated based on flow velocity, flow discharge or water temperature. The results showed that compared with bare slope control, the flow velocity,number andnumber of litter coverage treatments were reduced by 77.3%, 18.5%, and 87.4%, respectively. However, the resistance coefficient was 314 times greater than the reference treatment. The average flow velocity,number andnumber decreased with the litter mass coverage increased as a power function (<0.01), however, the resistance coefficient increased with a power function (<0.01). As a whole, with the litter mass increased, the flow velocity,number andnumber of(.)were larger than that the(<0.01), but the resistance coefficient was opposite. The stepwise regression results showed that there was a significant (<0.01) power function relationship between flow discharge, litter mass coverage, characteristic parameters of litter and the hydraulic parameters of the slope (<0.01). The2and(Nash-Sutcliffe efficiency coefficient) ranged from 0.84 to 0.92 and 0.60 to 0.91, respectively. In addition to the flow discharge and litter mass coverage, the litter density was the key parameter to affect the flow velocity. Furthermore, the projected area of litter and the flow pattern had a close relationship, and the litter surface area was the main parameter for characterizing the resistance coefficient. This study can reveal the soil and water conservation mechanism of grassland litter and correctly evaluate the soil and water conservation benefits of grassland.
erosion; hydrodynamics; flow rate; litter mass coverage; typical grassland; the Loess Hilly-Gully Region; simulated rainfall
10.11975/j.issn.1002-6819.2018.17.020
S157
A
1002-6819(2018)-17-0151-07
2018-03-21
2018-05-27
國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目“退耕驅(qū)動(dòng)近地表特性變化對(duì)侵蝕過(guò)程的影響及其動(dòng)力機(jī)制(41530858)”,國(guó)家自然科學(xué)基金面上項(xiàng)目“基于RUSLE模型的黃土高原草地植被覆蓋因子研究(41771555)”,陜西省創(chuàng)新人才推進(jìn)計(jì)劃—青年科技新星項(xiàng)目“黃土高原典型草地植物根系對(duì)土壤分離過(guò)程的影響(2017KJXX-88)”,國(guó)家重點(diǎn)研發(fā)計(jì)劃“黃土丘陵溝壑區(qū)植被功能提升與山地果園管理關(guān)鍵技術(shù)及示范(2016YFC0501703)”
李兆松,博士生,主要從事土壤侵蝕研究。Email:lzs151139@163.com
王 兵,博士,副研究員,主要從事植被恢復(fù)與土壤侵蝕研究。Email:bwang@ms.iswc.ac.cn
李兆松,王 兵,汪建芳,王忠禹. 鐵桿蒿與白羊草枯落物覆蓋量對(duì)黃土坡面流水動(dòng)力特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):151-157. doi:10.11975/j.issn.1002-6819.2018.17.020 http://www.tcsae.org
Li Zhaosong, Wang Bing, Wang Jianfang, Wang Zhongyu. Effects ofandlitter mass coverage on hydrodynamic characteristics of loess overland flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 151-157. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.020 http://www.tcsae.org