滕光輝,申志杰,張建龍,石 晨,余炅樺
?
基于Kinect傳感器的無接觸式母豬體況評分方法
滕光輝,申志杰,張建龍,石 晨,余炅樺
(中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,農(nóng)業(yè)部設(shè)施農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室,北京 100083)
為了提高母豬的繁殖性能,減少傳統(tǒng)方法給動物和估測人員帶來的不利影響,該研究提出了一種可應(yīng)用于實(shí)際生產(chǎn)中的準(zhǔn)確、無接觸式的母豬體況評分(body condition scoring, BCS)方法。試驗(yàn)使用Kinect傳感器獲取108組母豬臀股的三維圖像,選取48組圖像進(jìn)行分析處理,計(jì)算出臀部的高寬比、臀股面積及曲率半徑。試驗(yàn)結(jié)果表明:母豬臀部的高寬比、臀股面積和曲率半徑與背膘厚度的相關(guān)系數(shù)分別為0.567、0.502、0.951;以曲率半徑作為主要參數(shù)建立母豬體況估測模型。取剩余60組圖像進(jìn)行驗(yàn)證,估測模型計(jì)算結(jié)果與經(jīng)驗(yàn)方法評估結(jié)果差異較小,準(zhǔn)確率達(dá)到91.7 %;結(jié)果表明,基于三維重構(gòu)技術(shù)的Kinect傳感器能夠?qū)崿F(xiàn)母豬在飼養(yǎng)管理過程中對體況的無接觸式檢測。
圖像處理;算法;模型;體況評分;Kinect;臀部高寬比;臀股面積;臀部曲率
2017年,中國的生豬飼養(yǎng)規(guī)?;壤^60%,豬肉產(chǎn)量為5 340萬t,生產(chǎn)和消費(fèi)占世界總量的52.22%,居世界首位[1-2]。但中國的飼養(yǎng)和管理方式仍然比較落后,養(yǎng)殖發(fā)達(dá)國家每頭母豬每年所能提供的斷奶仔豬頭數(shù)約為中國的1.5倍[3]。確保母豬在生長周期中的每個階段(配種、妊娠、分娩、泌乳、空懷)擁有適當(dāng)?shù)募◇w組織儲備,是提高母豬群體繁殖性能和延長母豬利用年限的重要保證[4]。
體況評分是國際畜牧產(chǎn)業(yè)近30年來總結(jié)的最優(yōu)評價(jià)體系,它可以合理、準(zhǔn)確地評估動物個體的能量儲備,并客觀地反映動物個體的飲食狀況、繁殖能力[5]?,F(xiàn)行常用的評分制是由Johnson[6]提出來的5分制評價(jià)標(biāo)準(zhǔn)。體況評分(body condition scoring, BCS)<2.5,體況瘦弱,母豬易出現(xiàn)流產(chǎn)、早產(chǎn)、產(chǎn)仔數(shù)少和初生窩重小等不良影響;BCS>3.5,體況肥胖,母豬不易發(fā)情、難產(chǎn)、泌乳期食欲差、泌乳量低且運(yùn)動障礙多[7-9]。
傳統(tǒng)的體況評定方法以目測為主,輔以按壓進(jìn)行評分[10]。但是該方法主觀性太強(qiáng),不同的評判人員和評判時間都會造成體況等級評定的誤差。背膘厚度可以有效反映母豬體況的變化,根據(jù)測定的背膘厚度來調(diào)控妊娠母豬飼喂量,是實(shí)現(xiàn)母豬優(yōu)質(zhì)高效養(yǎng)殖的有效途徑[11-12]。但是測量背膘厚度對測定人員技術(shù)要求較高,且步驟繁瑣,對動物本身會產(chǎn)生一定的不利影響。
曹果清[13]和宋志芳等[14]研究發(fā)現(xiàn)體質(zhì)量、體尺性狀與種豬的繁殖成績存在一定的關(guān)聯(lián)。除了可以直接測量的體尺數(shù)據(jù)外,豬背、前后腿及臀部等的比例、形狀也均與種豬性能相關(guān),但是這些指標(biāo)均不易通過直接測量獲得,現(xiàn)有條件下主要通過人為判斷,具有一定的主觀不定性[15-16]。
隨著信息技術(shù)的發(fā)展,基于機(jī)器視覺的三維重建技術(shù)具有成本低廉、操作簡單、真實(shí)感強(qiáng)等優(yōu)點(diǎn),在虛擬現(xiàn)實(shí)、目標(biāo)識別、非接觸測量等諸多領(lǐng)域都有著廣闊的發(fā)展應(yīng)用前景[17-18]。劉同海等[19]利用機(jī)器視覺構(gòu)建了種豬體質(zhì)量預(yù)估模型。Zhu等[20]利用Microsoft Kinect獲取生豬深度圖像數(shù)據(jù),通過目標(biāo)輪廓參數(shù)進(jìn)行質(zhì)量估計(jì)。McFarlane等[21]利用立體成像系統(tǒng)獲取生豬三維模型,利用微分幾何模擬表面曲率和脊椎曲率。目前基于三維設(shè)備的豬體點(diǎn)云數(shù)據(jù)獲取技術(shù)已經(jīng)比較成熟,但是針對獲取的體尺、體型數(shù)據(jù)進(jìn)行的后續(xù)研究較少,未將豬的體尺、體型與種豬性能相結(jié)合。國外學(xué)者Bewley[22]和Azzaro[23]等提出通過數(shù)字顯像器建立奶牛體型模型,對奶牛進(jìn)行客觀的半自動化體況評分。Vieira等[24]用標(biāo)準(zhǔn)模板匹配的方法研究了山羊的體況評分方法。由此可見基于機(jī)器視覺的無應(yīng)激式體況評分存在可行性,但是目前關(guān)于牛和羊的體況研究居多,而關(guān)于母豬體況與體型方面的前期研究相對較少。
因此,本研究旨在利用機(jī)器視覺技術(shù)對母豬的后軀進(jìn)行三維重構(gòu),通過測量并分析母豬臀部外形特征,探求母豬體型特征與背膘厚度的關(guān)系,從而尋找到一種高效、準(zhǔn)確且無應(yīng)激的母豬體況評估方法。
試驗(yàn)于2017年7月25日至2017年8月15日在河北省承德市豐寧動物試驗(yàn)基地展開。試驗(yàn)隨機(jī)選取配種、妊娠前中期、妊娠后期、空懷共4個階段的大白母豬108頭作為研究對象,其中48頭建模,60頭驗(yàn)證。試驗(yàn)?zāi)肛i均為單欄飼養(yǎng),配種、妊娠前中期分別于每日5:00和16:00飼喂2次,妊娠后期每天飼喂3次。
三維圖像采集設(shè)備為美國微型計(jì)算機(jī)軟件公司生產(chǎn)的Kinect V2,該設(shè)備由3個鏡頭組成,鏡頭分別為彩色攝像頭(RGB camera),紅外線發(fā)射器(IR emitters),深度(紅外)攝像頭depth sensor)。其中深度攝像頭分辨率為512×424像素,測量范圍為0.5~4.5 m。Kinect三維掃描設(shè)備相比于傳統(tǒng)的方法而言,具有造價(jià)便宜、體積小、方便操作等特點(diǎn)[25-26]。
美國運(yùn)高(Renco)lean-meter背膘測試儀(型號S/N)利用脈沖超聲波來測量哺乳動物3層背膘厚度,測量范圍為4~35 mm,測量誤差為±1 mm。
為確保測量過程中,被測母豬處于放松狀態(tài)且不易產(chǎn)生應(yīng)激反應(yīng),選擇在采食過程中使用卷尺測量豬臀高、臀寬等體尺信息,精度為1 mm,每個體尺重復(fù)測量3次取均值以消除隨機(jī)誤差。
根據(jù)國際養(yǎng)豬業(yè)通用規(guī)定,使用背膘測試儀手動測量母豬2點(diǎn)(最后肋處)的背膘厚度。在2點(diǎn)附近小范圍移動,重復(fù)測量3次,取3次測量均值作為此豬的背膘值。臀寬、臀高和背膘厚度測量位置如圖1所示。根據(jù)測得的背膘厚度對母豬進(jìn)行評分,評分標(biāo)準(zhǔn)如表1所示。
表1 體況評分說明
注:P2點(diǎn)為背膘厚度測量位置
圖像處理流程如圖2所示。
圖2 圖像處理流程圖
1.4.1 母豬后軀圖像獲取
母豬采食過程中,手持Kinect V2距母豬后軀0.5~ 1 m處,使用Kinect Fusion功能拍攝母豬后視圖。
Kinect Fusion 算法流程[27]:
1)深度數(shù)據(jù)處理:使用Kinect V2的Software Development Kit(SDK)功能將獲取的原始深度幀數(shù)據(jù)轉(zhuǎn)換為以米為單位的浮點(diǎn)數(shù)據(jù),然后對該數(shù)據(jù)進(jìn)行優(yōu)化。通過獲取Kinect V2的坐標(biāo)信息,把浮點(diǎn)數(shù)據(jù)轉(zhuǎn)換為在相機(jī)坐標(biāo)系中由三維點(diǎn)組成的定向點(diǎn)云。
2)計(jì)算相機(jī)位置和角度:將當(dāng)前三維點(diǎn)云和模型生成的預(yù)測三維點(diǎn)云進(jìn)行Iterative Closest Point(ICP)匹配,計(jì)算得到當(dāng)前幀相機(jī)的位置和角度,通過使用交互型的配準(zhǔn)算法在攝像頭移動時不斷獲取深度攝像頭的位置和角度信息,這樣系統(tǒng)能始終獲得當(dāng)前攝像頭相對于起始幀時攝像頭的相對位置和角度變化。
3)點(diǎn)云融合:根據(jù)所計(jì)算出的當(dāng)前攝像頭的位置和角度信息,使用Truncated Signed Distance Function(TSDF )模型的點(diǎn)云融合算法將當(dāng)前幀的三維點(diǎn)云數(shù)據(jù)融合到現(xiàn)有模型中。TSDF對深度數(shù)據(jù)的融合是逐幀且連續(xù)的,對融合后的深度數(shù)據(jù)采用最小二乘法進(jìn)行優(yōu)化去噪,實(shí)現(xiàn)場景的動態(tài)改變。當(dāng)Kinect V2從不同的視角觀察物體表面時,原始模型中的空洞區(qū)域會被逐漸填充,模型表面的數(shù)據(jù)得到優(yōu)化。
4)場景渲染:對模型進(jìn)行光線投射,得到模型渲染后的可視化圖像。
1.4.2 母豬后軀圖像處理
采用Geomagic軟件對圖像進(jìn)行分割處理,去除母豬前方和兩旁的限位欄,僅保留母豬后軀圖像。
由于實(shí)際獲取的三維圖像采樣點(diǎn)過多,為提高后期處理和傳輸?shù)男?,需要對三維圖像進(jìn)行簡化。采用的方法為頂點(diǎn)刪除網(wǎng)格算法[28],若判定某一頂點(diǎn)與周圍的三角網(wǎng)格共面,且刪除后不會造成拓?fù)浣Y(jié)構(gòu)的改變,即可以將該頂點(diǎn)刪除,同時所有與該頂點(diǎn)相連的面均從原始模型中刪除,最后對該頂點(diǎn)鄰域重新三角化,以填補(bǔ)刪除該頂點(diǎn)所帶來的空白?;谠撍惴ǖ暮喕P湍軌虮苊庖胄碌捻旤c(diǎn),與原模型具有較高的相似度,因而在實(shí)際使用中被廣泛應(yīng)用。使用Geomagic軟件對簡化后的三維圖像進(jìn)行簡單的平滑處理,根據(jù)相鄰三角區(qū)域的曲率變換情況,去除模型上的尖銳點(diǎn)。
為了保證獲取的三維圖像在空間中具有相同的朝向,采用Principal Component Analysis[29](PCA)方法計(jì)算豬體模型的主軸,通過對所有待分析點(diǎn)的坐標(biāo)值的線性變換,去除這些點(diǎn)在3個軸向上坐標(biāo)分量的相關(guān)性,調(diào)整待測豬體點(diǎn)云的坐標(biāo)系為標(biāo)準(zhǔn)測量坐標(biāo)系。
1)輸入豬體點(diǎn)云數(shù)據(jù)集={N|=1,2,3…,}.求豬體的中心點(diǎn)為
式中N為豬體中心點(diǎn)三維坐標(biāo);N為豬體上各點(diǎn)三維坐標(biāo);為數(shù)據(jù)編號;為豬體模型上點(diǎn)的總數(shù)。
2)根據(jù)得到的中心點(diǎn)N,求出協(xié)方差矩陣
式中C為3×3矩陣。
3)根據(jù)獲得的協(xié)方差矩陣C,求出特征值和特征 向量。
式中λ是協(xié)方差矩陣C的第個特征值,e是λ對應(yīng)的特征向量。
1.5.1 體尺指標(biāo)獲取
利用體尺測點(diǎn)的幾何特征尋找關(guān)鍵點(diǎn)(如圖3所示),并通過關(guān)鍵點(diǎn)計(jì)算其體尺信息。
1)臀高:髖關(guān)節(jié)臀部最高處至地面的垂直距離。尋找軸上坐標(biāo)值最大點(diǎn)坐標(biāo)3(m),該點(diǎn)為臀部最高點(diǎn)。尋找軸上坐標(biāo)值最小點(diǎn)坐標(biāo)4(m),設(shè)為地面上某一點(diǎn),根據(jù)距離公式計(jì)算
式中tall為臀高,m。
2)臀寬:根據(jù)臀部向外最突出部位間的寬度進(jìn)行測量。標(biāo)記軸兩邊最突出點(diǎn)坐標(biāo)1(m)、2(m),通過公式計(jì)算
式中width為臀寬,m。
注:1、2為臀寬測量點(diǎn),3為臀高測量點(diǎn),4為地面上一點(diǎn)。
Note:1 and 2 are hip width measurement points, 3 is hip height measurement point, 4 is a point on the ground.
圖3 體尺檢測點(diǎn)
Fig.3 Body size test points
3)臀股面積:根據(jù)豬的生理結(jié)構(gòu),自后肢肘關(guān)節(jié)處做水平截面,并以臀部最高點(diǎn)做垂直截面,求取保留部分的表面積。通過計(jì)算保留部分所包含的所有三角網(wǎng)格面積獲得總的表面積(m2)。
1.5.2 臀部輪廓曲線分析
為了降低分析的復(fù)雜度,從母豬后軀的三維點(diǎn)云出發(fā),確定臀部最高點(diǎn)坐標(biāo),利用切片法過此點(diǎn)做垂直于水平面的平面,從而獲得如圖4所示的臀部輪廓散亂點(diǎn),運(yùn)用最小二乘法對其進(jìn)行擬合,擬合公式為
式中y為輪廓上點(diǎn)的縱坐標(biāo),m;x為對應(yīng)點(diǎn)的橫坐標(biāo),m;均為系數(shù)。根據(jù)擬合公式計(jì)算臀部最高點(diǎn)的曲率半徑。
試驗(yàn)數(shù)據(jù)運(yùn)用Excel (2016) 軟件進(jìn)行處理后,使用SPSS (17.0) 統(tǒng)計(jì)軟件進(jìn)行線性回歸分析。
對獲取的圖像進(jìn)行處理,試驗(yàn)結(jié)果如圖5所示。其中圖5a為原始圖像的正視圖,從圖中可以看出,目標(biāo)豬體的臀高和臀寬與全局坐標(biāo)系中的軸和軸并不平行,且圖像中包含了限位欄和目標(biāo)之外的豬體圖像。使用三維處理軟件Geomagic手動對原始圖像進(jìn)行處理,刪除限位欄等點(diǎn)云數(shù)據(jù),僅保留目標(biāo)豬體圖像,如圖5b所示。根據(jù)頂點(diǎn)刪除算法,對試驗(yàn)中獲取的模型進(jìn)行簡化處理,依次減少三角網(wǎng)格數(shù)縮減比例,當(dāng)比例設(shè)置為20%時,效果較好,此時,三角網(wǎng)格數(shù)從99 760降至19 951,對模型的拓?fù)浣Y(jié)構(gòu)影響較小,且提升后期數(shù)據(jù)處理效率,結(jié)果如圖5c所示。利用Geomagic的刪除釘狀物功能對簡化后的的模型做平滑處理,去除模型上的尖銳點(diǎn),結(jié)果如圖3d所示。最后基于PCA方法對豬體圖像進(jìn)行旋轉(zhuǎn)歸一化處理,調(diào)整后的全局坐標(biāo)系如圖5e所示,母豬臀高基本上與軸保持平行,臀寬與軸保持一致。通過PCA方法處理后的豬體點(diǎn)云有利于后期體尺測點(diǎn)的尋找,但是該方法對點(diǎn)云數(shù)據(jù)的依賴性較強(qiáng),因此在獲取圖像時需要保證點(diǎn)云數(shù)據(jù)的完整。
注:圖中的坐標(biāo)系為全局坐標(biāo)系,三角形數(shù)為三維圖像中所包含的三角網(wǎng)格數(shù)。
選取48組母豬后軀的三維圖像,經(jīng)過處理后,通過提取體尺測點(diǎn)計(jì)算臀高和臀寬等數(shù)據(jù),與手工測量結(jié)果進(jìn)行比對,結(jié)果如圖6所示。臀高的絕對誤差小于2.1 cm,相對誤差為1.1 %。臀寬的絕對誤差小于1.8 cm,相對誤差為0.8 %,基本上滿足體尺測量的誤差要求。
圖6 48組體尺數(shù)據(jù)檢測絕對誤差
通過獲取的臀高和臀寬數(shù)據(jù),計(jì)算對應(yīng)的臀部比例,臀高寬比與背膘厚度的關(guān)系如圖7a所示,為負(fù)相關(guān)。而臀股面積和臀部曲率半徑與背膘厚度為正相關(guān),如圖7b和c所示。
前兩者決定系數(shù)僅為中等程度,以此建立的線性方程誤差太大,無法準(zhǔn)確預(yù)估母豬的背膘厚度。但是臀部曲率半徑與背膘厚度高度相關(guān),可以作為預(yù)估母豬背膘厚度的依據(jù)。
圖7 臀部特征與背膘厚度的關(guān)系
用剩余的60組母豬三維圖像作為驗(yàn)證,獲取其臀部曲率半徑和背膘數(shù)據(jù),將計(jì)算得出的背膘厚度與實(shí)測值進(jìn)行比對,檢測結(jié)果如圖8所示。背膘厚度計(jì)算值與實(shí)測值之間無顯著性差異(>0.05),背膘檢測最大絕對誤差值為1.3 mm,最大相對誤差為7.7 %,平均絕對誤差為0.5 mm,平均相對誤差為3.7 %。
圖8 60組背膘數(shù)據(jù)檢測絕對誤差
根據(jù)背膘厚度人工測量值與預(yù)估值分別對體況進(jìn)行評定,得到實(shí)際體況評分和預(yù)測體況評分,評判結(jié)果如表2所示。總體準(zhǔn)確率為91.7%,體況等級評定誤差≤1。
表2 體況評定檢測
注:規(guī)?;i場很少出現(xiàn)體況等級為5的情況。
Note:The situation of body condition leve is 5 rarely occurs in large-scale pig farms.
本研究采用Kinect V2在母豬采食時獲取三維圖像數(shù)據(jù),臀部會發(fā)生輕微的晃動,導(dǎo)致獲取的三維圖像邊緣噪聲點(diǎn)較多,對體尺關(guān)鍵點(diǎn)的選取會造成一定的誤差。因此在提取體尺特征之前需要對圖像進(jìn)行整體平滑處理,減小體尺提取的誤差。
選取臀高寬比、臀股面積、曲率半徑3個特征進(jìn)行分析,研究結(jié)果表明只有臀部曲率與背膘厚度相關(guān)性程度較高,這與范振先等[4]關(guān)于不同體型下臀部外形的描述結(jié)果較為一致,體況評分越高的母豬,其臀部形狀越趨于圓潤,臀部曲率越大。臀股面積相關(guān)性較低的原因可能是因?yàn)闆]有考慮到年齡和胎次對母豬生長的影響。隨著母豬年齡的增大,生長發(fā)育仍在繼續(xù),從而導(dǎo)致相同體型下,其臀股面積會存在一定的差異。其次,不同胎次的豬,其臀部肌肉、脂肪含量之間也存在著差異,這也是對試驗(yàn)結(jié)果造成影響的因素之一。至于臀高寬比,姚杰等[30]發(fā)現(xiàn),雖然大多數(shù)情況下,體尺的選擇會影響生產(chǎn)性能,但是不能單方面的根據(jù)體尺進(jìn)行判斷,需要結(jié)合身體比例和形狀等體型特征進(jìn)行進(jìn)一步的判斷。也有研究表明[31],臀高和臀寬屬于遺傳相關(guān)較低的體尺性狀,對繁殖性能的影響較低。不過目前關(guān)于體尺和體型特征與背膘關(guān)系的前期研究還相對較少,有待之后的進(jìn)一步研究。
利用圖像識別技術(shù)對母豬體況進(jìn)行評分,可以減小人為評分所造成的誤差,消除傳統(tǒng)評分方法給豬造成的應(yīng)激反應(yīng),便于飼養(yǎng)管理人員實(shí)時檢測,針對母豬后期的飼養(yǎng)管理及時作出調(diào)整,提高豬群生產(chǎn)繁殖性能。
本文提出了利用計(jì)算機(jī)視覺技術(shù)對母豬相關(guān)體況指標(biāo)數(shù)據(jù)的非接觸測量及形狀特征分析的方法?;贙inect V2的三維重構(gòu)功能構(gòu)建了母豬后軀的三維模型,并進(jìn)行了臀部比例和臀股面積計(jì)算及外形特征指標(biāo)分析,臀部高寬比、臀股面積和曲率半徑與背膘厚度的相關(guān)性分別為0.567、0.502、0.951,根據(jù)臀部曲率半徑與背膘厚度的強(qiáng)相關(guān)性構(gòu)建背膘厚度計(jì)算模型,并根據(jù)計(jì)算結(jié)果進(jìn)行體況評定,體況評定準(zhǔn)確率為91.7%。
下一步研究將對評定方法進(jìn)行完善,以期提高體況評定準(zhǔn)確率,并考慮實(shí)現(xiàn)母豬體況評定的自動化。
[1] 國家統(tǒng)計(jì)局. 2017年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計(jì)公報(bào). [R/OL].[2018-2-28]http://www.stats.gov.cn/tjsj/zxfb/ 201802/t20180228_1585631.html. National Bureau of Statistics. Statistical Bulletin of the 2017 National Economic and Social Development.[R/OL]. [2018-2-28]http://www.stats.gov.cn/tjsj/zxfb/201802/t20180228_ 1585631.html.
[2] 陳來華. 2017中國生豬行業(yè)現(xiàn)狀及發(fā)展趨勢[J]. 中國動物保健,2018(1):4-8. Chen Laihua. The status and development trend of Chinese pig industry in 2017[J]. Chinese Animal Health, 2018(1): 4-8. (in Chinese with English abstract)
[3] 吉耀春,杜加法. 母豬體況評價(jià)及飼料飼喂量計(jì)算方法[J]. 畜禽養(yǎng)殖,2013(3):40-41. Ji Yaochun, Du Jiafa. Sow’s body condition evaluation and calculation method of feed[J]. Livestock Feeding, 2013(3): 40-41. (in Chinese with English abstract)
[4] 范振先,傅金戀,葛長利. 英系大白豬對母豬體況繁殖性能的影響[J]. 中國畜牧雜志,2005,41(8):21-23. Fan Zhenxian, Fu Jinlian, Ge Changli. Effect of british white pigs on the reproduction performance of sows[J]. Chinese Journal of Animal Science, 2005,41(8): 21-23. (in Chinese with English abstract)
[5] 何東健,劉冬,趙凱旋. 精準(zhǔn)畜牧業(yè)中動物信息智能感知與行為檢測研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2016,47(5):231-244. He Dongjian, Liu Dong, Zhao Kaixuan. Review of perceiving animal information and behavior in precision livestock farming[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(5): 231-244. (in Chinese with English abstract)
[6] Johnson C, Stalder K, Karriker L. Sow condition scoring guidelines[J]. National Hog Farmer, 2006, 51(4): 7.
[7] 李華磊,張霞,韓土焱,等. 豬背膘測定技術(shù)研究概述[J]. 飼養(yǎng)飼料,2017(11):49-57. Li Hualei, Zhang Xia, Han Tuyan, et al. A summary of research on pig back fat determination technology[J]. Husbandry and Forage, 2017(11): 49-57. (in Chinese with English abstract)
[8] 趙西彪,于欽秀. 母豬的體況管理[J]. 豬業(yè)科學(xué),2011,28(10):112-114. Zhao Xibiao, Yu Qinxiu. Sow body condition management[J]. Swine Industry Science, 2011, 28(10): 112-114. (in Chinese with English abstract)
[9] 楊南宗. 現(xiàn)代瘦肉型母豬的適度體況及其調(diào)控[J]. 養(yǎng)豬,2014(3):27-29. Yang Nanzong. Moderate body condition and regulation of modern lean sow[J]. Swine Production, 2014(3): 27-29. (in Chinese with English abstract)
[10] 高云云,范志勇,楊丹丹,等. 體況評定在繁殖母豬中的應(yīng)用[J]. 養(yǎng)豬,2009(1):12-14. Gao Yunyun, Fan Zhiyong, Yang Dandan, et al. Application of body condition assessment in breeding sows[J]. Swine Production, 2009(1): 12-14. (in Chinese with English abstract)
[11] 張守全,馮定遠(yuǎn),麥月儀,等. 母豬背膘厚度對其繁殖性能的影響[J]. 養(yǎng)豬,2005(1):11-12. Zhang Shouquan, Feng Dingyuan, Mai Yueyi, et al. The effect of sow’s back fat thickness on its reproductive performance[J]. Swine Production, 2005(1): 11-12. (in Chinese with English abstract)
[12] 單妹,凌寶明,何曉明,等. 背膘測定在養(yǎng)豬生產(chǎn)中的應(yīng)用[J]. 養(yǎng)豬,2016(6):47. Shan Mei, Ling Baoming, He Xiaoming, et al. Application of backfat determination in pig production[J]. Swine Production, 2016(6): 47. (in Chinese with English abstract)
[13] 曹果清,景利芳,石建忠,等. 豬體重和體尺性狀與繁殖性能間的相關(guān)[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào),2003,23(2):136-138. Cao Guoqing, Jing Lifang, Shi Jianzhong, et al. Study on correlation analysis between body weight and size and reproductive performance in Swine[J]. Journal of Shanxi Agricultural University, 2003, 23(2): 136-138. (in Chinese with English abstract)
[14] 宋志芳,邢荷巖,于國升,等. 豬體型性狀的研究進(jìn)展及其重要性[J]. 豬業(yè)科學(xué),2017,34(7):120-124. Song Zhifang, Xing Heyan, Yu Guosheng, et al. Research progress and importance of swine’s somatic traits[J]. Swine Indusrty Science, 2017, 34(7): 120-124. (in Chinese with English abstract)
[15] 李學(xué)偉,朱礪,楊光希. 種豬的外貌評定[J]. 豬業(yè)科學(xué),2006,23(4): 54-56. Li Xuewei, Zhu Li, Yang Guangxi. Pig appearance assessment[J]. Swine Indusrty Science, 2006,23(4): 54-56. (in Chinese with English abstract)
[16] 付為森. 基于雙目視覺的豬體尺檢測與體重預(yù)估方法研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2011. Fu Weisen. Study of Pig’s Body Dimensions Detection and Weight Estimation Based-on Binocular Stereovision[D]. Beijing: China Agricultural University, 2011. (in Chinese with English abstract)
[17] Gary Bradski Adrian Kaebler. Learning OpenCV[M]. 北京:清華大學(xué)出版社,2009.
[18] Robert Laganiere. OpenCV Computer Vision Application Programming Cookbook[M]. Birmingham: Packt Publishing, 2011.
[19] 劉同海,滕光輝,付為森,等. 奶牛體型圖象信息系統(tǒng)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào). 2013,29(2):161-168. Liu Tonghai, Teng Guanghui, Fu Weisen, et al. Extraction algorithms and applications of pig body size measurement points based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 161-168. (in Chinese with English abstract)
[20] Zhu Q, Ren J, Barclay D, et al. Automatic animal detection from Kinect sensed images for livestock monitoring and assessment[C]//2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015: 1154-1157.
[21] McFarlane N, Wu J, Tillett R D, et al. Shape measurements of live pigs using 3-D image capture[J]. Animal Science, 2005, 81(3): 383-391.
[22] Bewley J M A, Peacock M, Lewis O, et al. Potential for estimation of body condition scores in dairy cattle from digital images[J]. Journal of Dairy Science, 2008, 91(9): 3439-3453.
[23] Azzaro G, Caccamo M, Ferguson J D, et al. Objective estimation of body condition score by modeling cow body shape from digital images[J]. Journal of Dairy Science, 2011, 94(1): 2126-2137.
[24] Vieira A, Brandao S, Monteiro A, et al. Development and validation of a visual body condition scoring system for dairy goats with picture-based training[J]. Journal of Dairy Science, 2015, 98(9): 6597-6608.
[25] Yilmaz O, Karakus F, Stereo and kinect fusion for continuous 3D reconstruction and visual odometry[C]//2013 International Conference on Electronics Computer and Computation (ICECCO). IEEE, 2013: 115-118.
[26] 楊一飛,陳啟軍. 基于kinect的人體三維建模與尺寸測量技術(shù)的研究[C]//. 中國信息通信研究新進(jìn)展. 北京:北京郵電大學(xué)出版社,2014:78-82. Yang Yifei, Chen Qijun. Research on kinect-based human reconstruction and dimensional measurement[C]//. China Academic Journal Electronic Publishing House. 2014: 78-82. (in Chinese with English abstract)
[27] 童偉亮,王廣偉. 基于Kinect及雙目機(jī)器視覺原理的物體3維建模系統(tǒng)[J]. 中國水運(yùn). 2015,15(8):121-124. Tong Weiliang, Wang Guangwei. Object 3D modeling system based on kinect and binocular machine vision[J]. China Water Transport. 2015, 15(8): 121-124. (in Chinese with English abstract)
[28] 羅鹍,黃魁東,連明明. 基于頂點(diǎn)刪除的三角網(wǎng)格模型簡化新方法[J]. 微電子學(xué)與計(jì)算機(jī). 2009(5): 41-44. Luo Kun, Huang Kuidong, Lian Mingming. New method of triangular mesh simplification based on vertex culling[J]. Microelectronics and Computer. 2009(5): 41-44. (in Chinese with English abstract)
[29] 王可,郭浩,劉威林,等. 基于點(diǎn)云旋轉(zhuǎn)歸一化的豬體體尺測點(diǎn)提取方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):253-259. Wang Ke, Guo Hao, Liu Weilin, et al. Eetraction method of pig body size measurement points based on rotation normalization of point cloud[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(Supp1): 253-259. (in Chinese with English abstract)
[30] 姚杰,劉堅(jiān)強(qiáng). 豬體型性狀遺傳及選擇評估的研究[J]. 養(yǎng)殖技術(shù)顧問,2010(11): 178. Yao Jie, Liu JianQiang. Study on inheritance and selection of body shape traits in pigs[J]. Breeding Technical Advisor. 2010(11): 178. (in Chinese with English abstract)
[31] 王樂樂. 體尺體貌表型測定在種豬生產(chǎn)中的應(yīng)用研究[D]. 保定:河北農(nóng)業(yè)大學(xué),2015. Wang Lele. Studies on Application of Bodysize Apperance Phenotype Measurement in Boar Production[D]. Baoding: Agricultural University of Hebei Province, 2015. (in Chinese with English abstract)
Non-contact sow body condition scoring method based on Kinect sensor
Teng Guanghui, Shen Zhijie, Zhang Jianlong, Shi Chen, Yu Jionghua
(,,,100083,)
The body condition scoring (BCS) is an important tool of assessment method on body condition for sow raising and management. It has been divided into 5 grades that from emaciated to overly fat grade and each grade had a score. The traditional method has negative effect on animals and farmers, and the process is complex with excessive contact. The body size and shape of sows are correlated with their reproductive performance but are difficult to measure manually. There is subjective uncertainty in the process of manual measurement. The Kinect’s 3D reconstruction technology was used to estimate and analyze the buttock shape of sows. A total of 108 images of Large White sows were manually acquired by Kinect camera during the feeding process at Feng Ning Animal Experimental Building in Chengde, Hebei Province of China, from July 25, 2017 to August 15, 2017. The hip height and hip width were measured by using tape and the back fat thickness was measured by using back fat measuring instrument. The hip height, hip width and area of buttock were obtained by analyzing the key points of 48 images. In order to obtain the measurement points of the livestock, several processing steps were taken, and the steps were as follow: 1) The sow stall was removed manually by Geomagic, and the target pig was acquired. In order to improve post-processing speed, the vertex culling algorithm was used to simplify the Three-dimensional model. 2) Since the models acquired were from different angles, the principal component analysis (PCA) was used to acquire new coordinate system. By using the geometrical relationship among the coordinate axes, standard measuring coordinate system was defined in this paper. 3) According to the geometric feature of the measurement points, the hip height, hip width and area of buttock were obtained. The results showed that the root mean square error of estimated body size was less than 2.1 cm, which meet the requirements of precision. The slice method was used to draw a curve at the highest point of the area of buttock based on the point cloud data. The least square fitting method was used to get the curve of hip contour. The hip radius of curvature was calculated by derivation formula. The results showed that the height-width ratio, area and radius of curvature of the sow’s hip had the correlation with the back fat thickness. The correlation coefficients were 0.567, 0.502 and 0.951 respectively. With radius of curvature as the main parameter, the sow body condition estimation model was built based on the experience of hip morphology. 60 images were selected for validation. By comparing the measured and the estimated values of back fat thickness, the maximum absolute error of back fat detection is 1.3 mm and the average relative error is 3.7%. The accuracy of body condition assessment was 91.7% compared with the traditional methods. All the results mentioned above indicate that this study provides a non-contact body condition assessment method based on 3D reconstruction technology and has certain application potential in the real livestock productive.
image processing; algorithms; models; body condition score; Kinect; height-width ratio; hip area; hip curvature
滕光輝,申志杰,張建龍,石 晨,余炅樺. 基于Kinect傳感器的無接觸式母豬體況評分方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):211-217. doi:10.11975/j.issn.1002-6819.2018.13.025 http://www.tcsae.org
Teng Guanghui, Shen Zhijie, Zhang Jianlong, Shi Chen, Yu Jionghua. Non-contact sow body condition scoring method based on Kinect sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 211-217. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.025 http://www.tcsae.org
2018-03-09
2018-04-08
“十三五”國家重點(diǎn)研發(fā)計(jì)劃(2016YFD0700204)
滕光輝,教授,博士生導(dǎo)師,主要從事設(shè)施環(huán)境監(jiān)測與信息技術(shù)應(yīng)用研究。Email:futong@cau.edu.cn
10.11975/j.issn.1002-6819.2018.13.025
S818
A
1002-6819(2018)-13-0211-07