李良 楊潔明
摘 要: 針對(duì)人工盤點(diǎn)套管效率和準(zhǔn)確率低,提出一種基于圖像處理的自動(dòng)檢測(cè)方法。首先采集套管端面原始數(shù)字圖像在空間域去噪,然后轉(zhuǎn)到HSV空間中利用H通道的高低閾值限定與形態(tài)學(xué)開(kāi)閉操作形成清晰的輪廓,再提取形狀特征去除干擾,得到準(zhǔn)確的識(shí)別計(jì)數(shù)結(jié)果。對(duì)現(xiàn)場(chǎng)采集的圖片進(jìn)行實(shí)驗(yàn),驗(yàn)證了該算法計(jì)數(shù)準(zhǔn)確、高效。
關(guān)鍵詞: 套管計(jì)數(shù); HSV空間; 中值濾波; 開(kāi)閉操作; 輪廓提??; 自動(dòng)檢測(cè)
中圖分類號(hào): TN911.73?34; TP391 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)15?0079?04
Oil casing pipe counting approach based on HSV space and morphology
LI Liang, YANG Jieming
(MOE Shanxi Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China)
Abstract: An automatic detection method based on image processing is proposed to improve the efficiency and accuracy of artificial casing pipe counting. The original digital image of the casing pipe end?face is collected for denoising in the spatial domain, and then converted it into HSV space. The high?low threshold limitation of H?channel and morphological open?close operation are used to form the clear contour of the image. The shape feature of the contour is extracted to remove the interference, and get the accurate identification and counting results. The accurate and efficient counting of the algorithm was verified in an experiment with the pictures collected on the spot.
Keywords: casing pipe counting; HSV space; median filtering; open?close operation; contour extraction; automatic detection
石油套管出庫(kù)時(shí),必須有專人進(jìn)行盤點(diǎn),而人工盤點(diǎn)效率低,容易出錯(cuò),尤其是難以匹配現(xiàn)在的自動(dòng)化生產(chǎn)及管理方式[1]。圖像處理技術(shù)應(yīng)用于棒材計(jì)數(shù)的算法較多,常采用的是基于灰度閾值化及邊緣檢測(cè)的方法[2?4],但其結(jié)果在很大程度上依賴于圖像二值化的質(zhì)量,抗干擾能力差?;谀0迤ヅ涞姆椒ㄒ渤S糜诒孀R(shí)棒材端面,雖然模板法可以避免棒材端面圖像的狹小粘連對(duì)數(shù)目統(tǒng)計(jì)產(chǎn)生的影響,但是需要將模板向各個(gè)方向平移,耗時(shí)較長(zhǎng),實(shí)時(shí)性差,并且對(duì)目標(biāo)的尺寸較為敏感[5?7]。考慮到套管端面的顏色信息明顯,充分利用HSV顏色特征分割的準(zhǔn)確性和對(duì)光照的抗干擾能力,通過(guò)HSV空間色度通道的高低閾值進(jìn)行分割得到目標(biāo)區(qū)域,然后引入數(shù)學(xué)形態(tài)學(xué)操作處理區(qū)域中的空洞粘連等干擾,為后面的計(jì)數(shù)提供清晰的輪廓。該方法可以避免精確檢測(cè)出套管區(qū)域的邊緣這一難點(diǎn),而且視角偏差對(duì)該方法造成的誤差很小,所以更易于實(shí)現(xiàn)準(zhǔn)確計(jì)數(shù)。
套管計(jì)數(shù)的總流程如圖1所示。主要由圖像預(yù)處理、套管端面識(shí)別計(jì)數(shù)兩部分組成。實(shí)際獲得的端面圖像由于受到圖像傳感器質(zhì)量和周圍環(huán)境的干擾產(chǎn)生圖像噪聲,圖像平滑可以減少噪聲,從而優(yōu)化目標(biāo)分割的質(zhì)量;轉(zhuǎn)化到HSV空間提取顏色閾值進(jìn)行目標(biāo)區(qū)域分割,是因?yàn)樵擃伾臻g比RGB更接近于人們的經(jīng)驗(yàn)和對(duì)彩色的感知,并且結(jié)合HSV三個(gè)分量之間的無(wú)關(guān)性,在進(jìn)行圖像分割時(shí)對(duì)光照等影響的抗干擾能力強(qiáng),保證了目標(biāo)提取的精確性;盡管大部分套管端面區(qū)域被顏色閾值分離出來(lái)了,但遭到陽(yáng)光照射、源圖像端面顏色分布不均、噪聲波動(dòng)等干擾,分割出的套管端面區(qū)域內(nèi)產(chǎn)生了很多黑孔、端面邊界有雜亂的白噪聲,嚴(yán)重的會(huì)有多個(gè)端面連在一起,阻止連通區(qū)域的形成,為此使用適當(dāng)大小的開(kāi)閉運(yùn)算能很好地去除噪聲及平滑目標(biāo)邊界,實(shí)現(xiàn)圖像的區(qū)域塊連通。最終提取目標(biāo)的輪廓,根據(jù)形狀特征進(jìn)行校正與識(shí)別計(jì)數(shù)。
中值濾波是一種統(tǒng)計(jì)排序?yàn)V波器。如式(1):
[f(x,y)=median(s,t)∈Sxy{g(s,t)}] (1)
令[sxy]代表中心在[(x,y)],尺寸為[m×n]的矩形子圖像窗口的坐標(biāo)組。中值濾波的過(guò)程就是計(jì)算由[sxy]定義的區(qū)域中被干擾圖像[g(s,t)]的中值[8],[f(x,y)]為核中心點(diǎn)[(x,y)]處圖像復(fù)原后的值。即模板核覆蓋區(qū)域的所有像素值排序,位置處在中間的像素用來(lái)更新核中心點(diǎn)的像素值。因?yàn)閷?duì)于多種隨機(jī)噪聲,它都有良好的降噪能力,且在相同尺寸下比起其他線性濾波器引起的模糊較少[9],因此采用中值平滑。
將平滑后的圖像轉(zhuǎn)化到HSV顏色空間,截取多張?zhí)坠芏嗣鎴D片并粘連成一張訓(xùn)練樣本圖像,從中提取各通道的顏色閾值。訓(xùn)練算法流程如圖2所示,HSV通道的取值范圍分別為0~180,0~255,0~255,所以定義兩個(gè)變量數(shù)組Hax[3]={0,0,0}與Hin[3]={180,255,255},[ω]取值為0,1,2分別對(duì)應(yīng)H,S,V通道。[η[γ][θ][ω]]作為輸入,由兩個(gè)嵌套的for()循環(huán)語(yǔ)句得到,代表樣本中[ω]通道[(γ,θ)]點(diǎn)的像素值。
提取到的顏色閾值有明顯的雙分界特征,可以用雙閾值法進(jìn)行二值化操作。根據(jù)提取的閾值預(yù)先設(shè)定好式(2)中的閾值變量[T1]和[T2],且[T1 [dx,y=255,0, T1
[1] 楊旭,劉書(shū)海,李豐,等.套管檢測(cè)技術(shù)研究進(jìn)展[J].石油機(jī)械,2013,41(8):17?22.
YANG Xu, LIU Shuhai, LI Feng, et al. Research progress in casing detection technology [J]. China petroleum machinery, 2013, 41(8): 17?22.
[2] 鄒應(yīng)國(guó),康宜華.成捆鋼筋快速計(jì)數(shù)方法的研究[J].機(jī)床與液壓,2006,30(2):176?178.
ZOU Yingguo, KANG Yihua. Research on a method to count the number of steel bars bundle automatically and rapidly [J]. Machine tool and hydraulics, 2006, 30(2): 176?178.
[3] 倪超,李奇,夏良正.粘連棒材圖像自動(dòng)分割計(jì)數(shù)技術(shù)[J].數(shù)據(jù)采集與處理,2007,22(1):72?77.
NI Chao, LI Qi, XIA Liangzheng. Automatic segmentation and counting of touching bar images [J]. Journal of data acquisition and processing, 2007, 22(1): 72?77.
[4] GHAZALI M F, WONG L K, SEE J. Automatic detection and counting of circular and rectangular steel bars [J]. Lecture notes in electrical engineering, 2017, 30(49): 199?207.
[5] 侯維巖,段政偉,趙慧.基于多模板匹配的捆扎棒材計(jì)量方法[J].自動(dòng)化儀表,2013,34(4):7?9.
HOU Weiyan, DUAN Zhengwei, ZHAO Hui. Measurement method for binding bar based on multiple templates matching [J]. Process automation instrumentation, 2013, 34(4): 7?9.
[6] 周群,胡光銳.基于模板覆蓋法的鋼筋在線計(jì)數(shù)方法[J].上海交通大學(xué)學(xué)報(bào),1999(11):1462?1464.
ZHOU Qun, HU Guangrui. Online bar counting method based on template covering [J]. Journal of Shanghai Jiao Tong University, 1999(11): 1462?1464.
[7] LIU N N. Steel bar adaptive counting based on gray?level co?occurrence matrix and template matching [J]. Computer technology and development, 2015, 22(7): 46?51.
[8] 張國(guó)亮,謝宗武,蔣再男,等.模糊化多視覺(jué)信息融合的視覺(jué)跟蹤策略[J].西安交通大學(xué)學(xué)報(bào),2009,43(8):33?37.
ZHANG Guoliang, XIE Zongwu, JIANG Zainan, et al. Visual tracking strategy based on fuzzy multi vision information fusion [J]. Journal of Xian Jiaotong University, 2009, 43(8): 33?37.
[9] 顧大曄.弱小目標(biāo)紅外圖像的盲元處理算法研究[D].西安:西安電子科技大學(xué),2012.
GU Daye. Blind element processing algorithm for infrared images of dim targets [D]. Xian: Xidian University, 2012.
[10] 徐勝.基于面陣CCD的軌道磨耗測(cè)量與研究[D].成都:西南交通大學(xué), 2013.
XU Sheng. Rail abrasion measurement and research based on CCD [D]. Chengdu: Southwest Jiaotong University, 2013.
[11] GONZALEZ R C, WOODS R E.數(shù)字圖像處理[M].北京:電子工業(yè)出版社,2010.
GONZALEZ R C, WOODS R E. Digital image processing [M]. Beijing: Publishing House of Electronics Industry, 2010.