亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Classification of Phase Portraits of Z2- EquivariantPlanar Hamiltonian Vector Fields of degree 7(Ⅷ)*

        2018-07-26 09:48:38

        (School of mathematics and statistics, Chuxiong Normal University, Yunnan Chuxiong, 675000, China)

        Abstract:In this paper, applying the method of qualitative analysis of differential equations, we classify the parameter space and phase portraits of a Z2-equivariant planar Hamiltonian vector field of degree 7 and get 33 phase portraits.

        Key words:Z2 equivariant property; planar Hamiltonian vector field; singular point; phase portrait

        In recent decades, thephase portraits of planarZq- equivariant Hamiltonian vector fields of degree 7 have been studied [1~4], but we still have many works to do . In this paper, we classify the phase portraits of following planar Hamiltonian vector fields of degree 7

        (1)

        and get 33 phase portraits ,wherekis a positive parameter .

        1 Discussion on the Singular Points

        Leta=k,b=k+0.2,c=k+0.3,l=k,m=k+0.25 andn=k+0.3, then the system has 49 singular points: (0,0), (±a,0),(±b,0),(±c,0),(0,±l),(0,±m(xù)),(0,±n),(±a,±l),(±b,±l),(±c,±l),(±a,±m(xù)),(±b,±m(xù)),(±c,±m(xù)),(±a,±n),(±b,±n)and(±c,±n).

        Because the system (1) is ofZ2- equivariant property, we will discuss the singular points in the first and second quadrants.

        The Jacobian of this system is

        in which

        φ1(x)= -(x2-k2)[x2-(k+0.2)2][x2-(k+0.3)2]-2x2[x2-(k+0.2)2][x2-(k+0.3)2]

        -2x2(x2-k2)[x2-(k+0.3)2]-2x2(x2-k2)[x2-(k+0.2)2],

        φ2(y)= (y2-k2)[y2-(k+0.25)2][y2-(k+0.3)2]

        +2y2[y2-(k+0.25)2][y2-(k+0.3)2]

        +2y2(y2-k2)[y2-(k+0.3)2]+2y2(y2-k2)[y2-(k+0.25)2].

        Investigating the Jacobians of these singular points, we have the following results:

        Theorem1 The singular points (0,0), (±b,0),(0,m),(±a,l),(±c,l),(±b,m),(±a,n)and (±c,n) are center, and the others are saddle points.

        2 Phase Portraits of the System (1)

        The Hamiltonian of the system is

        H(x,y)=[3x8-(12k2+4k+0.52)x6+(18k4+12k2+3k2+0.36k+0.0216)x4]/24

        -(k6+k5+0.37k4+0.06k3+0.0036k2)x2/2-(12k6+13.2k5+5.43k4+0.99k3+0.0675k2)y2/24

        +[(18k4+13.2k3+3.63k2+0.495k+0.03375)y4-(12k2+4.4k+0.61)y6+3y8]/24.

        Obviously, the functionH(x,y) satisfies the following equalities

        H(x,y)=H(x,0)+H(0,y),

        H(±a,0)=k4[3k4+2k3+0.26k2-6(k+0.2)2(k+0.3)2]/24,

        H(±b,0)=-[(k+0.2)8-2(k+0.2)6(2k2+0.6k+0.09)+6k2(k+0.2)4(k+0.3)2]/24,

        H(±c,0)=-[(k+0.3)8-2(k+0.3)6(2k2+0.4k+0.04)+6k2(k+0.3)4(k+0.2)2]/24,

        H(0,l)=k4[3k4+2.2k3+0.305k2-6(k+0.25)2(k+0.3)2]/24,

        H(0,m)=-[(k+0.25)8-2(k+0.25)6(2k2+0.6k+0.09)+6k2(k+0.25)4(k+0.3)2]/24,

        H(0,n)=-[(k+0.3)8-2(k+0.3)6(2k2+0.5k+0.0625)+6k2(k+0.25)2(k+0.3)4]/24.

        Comparing the Hamiltonians of the singular points, we obtain the following outcomes.

        Theorem2 There are 33 phase portraits of system (1) shown in Fig.1 whenkseparately

        belongs to the following intervals : (1)k∈(0,0.05), (2)k=0.05, (3)k∈(0.05,0.114716),

        (4)k=0.114716, (5)k∈(0.114716,0.17027), (6)k=0.17027,

        (7)k∈(0.17027,0.196385), (8)k=0.196385, (9)k∈(0.196385,0.212697),

        (10)k=0.212697, (11)k∈(0.212697,0.230318), (12)k=0.230318,

        (13)k∈(0.230318,0.242755), (14)k=0.242755, (15)k∈(0.242755,0.269742),

        (16)k=0.269742, (17)k∈(0.269742,0.282514), (18)k=0.282514,

        (19)k∈(0.282514,0.288958), (20)k=0.288958, (21)k∈(0.288958,0.29392),

        (22)k=0.29392, (23)k∈(0.29392,0.304662), (24)k=0.304662,

        (25)k∈(0.304662,0.314672), (26)k=0.314672, (27)k∈(0.314672,0.325411),

        (28)k=0.325411, (29)k∈(0.325411,0.409808), (30)k=0.409808,

        (31)k∈(0.409808,0.484832), (32)k=0.484832, (33)k∈(0.484832,+∞).

        Proof We separately use the symbolsh00,ha0,hb0,hc0,h0l,h0m,h0n,hal,ham,han,hbl,hbm,hbn,hcl,hcmandhcmto expressH(0,0),H(±a,0),H(±b,0),H(±c,0),H(0,l),H(0,m),H(0,n),H(±a,l),H(±a,m),H(±a,n),H(±b,l),H(±b,m),H(±b,n),H(±c,l),H(±c,m), andH(±c,n).

        Obviouslyhxy=hx0+h0y,h0l0.05,ha0

        (1) The Hamiltonians of the singular points satisfy one of the following relations as 0

        hcl

        hcl

        hcl

        hcl

        and the phase portrait is shown as Fig.1(1).

        (2)Ask=0.05, we haveha0=hc0, and the Hamiltonians of the singular points satisfy the relations

        hcl=hal

        so the phase portrait is shown as Fig.1(2).

        (3) The Hamiltonians of the singular points satisfy one of the following relations as 0.05

        hal

        hal

        hal

        hal

        hal

        hal

        and the phase portrait is shown as Fig.1(3).

        (4)Whenk=0.114716, we getham=h0n, and the Hamiltonians of the singular points satisfy the relations

        hal

        so the phase portrait is shown as Fig.1(4).

        (5) The Hamiltonians of the singular points satisfy one of the following relations as 0.114716

        hal

        hal

        hal

        and the phase portrait is shown as Fig.1(5).

        (29) The Hamiltonians of the singular points satisfy one of the following relations when 0.325411

        hal

        hal

        hal

        hal

        so the phase portrait of the system (1) is shown as Fig.1(29).

        (30) Whenk=0.409808, the Hamiltonians of the singular points satisfy the relations

        hal

        and the phase portrait of the system (1) is shown as Fig.1(30).

        (31) The Hamiltonians of the singular points satisfy one of the following relationswhen 0.409808

        hal

        hal

        so the phase portrait of the system (1) is shown as Fig.1(31).

        (32) Ask=0.484832, the Hamiltonians of the singular points satisfy the relations

        hal

        so the phase portrait of the system (1) is shown as Fig.1(32).

        (33) Ask>0.484832, the Hamiltonians of the singular points satisfy one of the following relations

        hal

        hal

        so the phase portrait of the system (1) is shown as Fig.1(33).

        Fig.1(1)~(33) The phase portraits of system (1)

        欧美日韩国产乱了伦| 久久国产精品久久久久久| 日本午夜免费福利视频| 欧美日韩国产在线成人网| 少妇我被躁爽到高潮在线影片| 国产精品高清网站| 欧美怡红院免费全部视频| 国产精品99久久久久久98AV| 久久亚洲av午夜福利精品西区| 大陆老熟女自拍自偷露脸| 激情影院内射美女| 综合网在线视频| 少妇人妻字幕一区二区| 国产精品一区二区久久国产| 亚洲国产精品va在线播放| 免费一本色道久久一区| 日本一区不卡在线观看| 久久亚洲中文字幕精品一区 | 丰满人妻被持续侵犯中出在线| 国产爆乳美女娇喘呻吟| 日韩电影一区二区三区| 亚洲伦理一区二区三区| 国产成人亚洲精品91专区高清| 精品国产一区二区三区av性色| 久久精品国产精品亚洲毛片| 伊人不卡中文字幕在线一区二区 | 久久久久亚洲av片无码下载蜜桃| 91综合在线| 69久久精品亚洲一区二区| 欧美怡春院一区二区三区| 国产三级在线观看播放视频| 亚洲精品国产不卡在线观看| 国产精品熟女视频一区二区三区| 欧美熟妇性xxx交潮喷| 一国产区在线观看| 亚洲精品一区二区三区日韩| 体验区试看120秒啪啪免费| 成人免费毛片内射美女-百度 | 成人日韩av不卡在线观看| 精品福利一区二区三区| 欧美性xxxx极品高清|