亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        農(nóng)田土壤硝化反硝化作用及其對生物炭添加響應(yīng)的研究進展*

        2018-07-18 08:00:40趙光昕張晴雯劉杏認田秀平
        中國農(nóng)業(yè)氣象 2018年7期
        關(guān)鍵詞:還原酶硝化貢獻

        趙光昕,張晴雯,劉杏認**,田秀平

        ?

        農(nóng)田土壤硝化反硝化作用及其對生物炭添加響應(yīng)的研究進展*

        趙光昕1, 2,張晴雯2,劉杏認2**,田秀平1**

        (1. 天津農(nóng)學(xué)院農(nóng)學(xué)與資源環(huán)境學(xué)院,天津 300384;2. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081)

        氧化亞氮(N2O)是重要的溫室氣體之一,還會破壞大氣臭氧層,影響全球氣候變化。農(nóng)田土壤是N2O最主要的排放源,由微生物主導(dǎo)的硝化和反硝化作用是其最主要的排放途徑,因此,土壤的硝化和反硝化作用備受關(guān)注。在綜合國內(nèi)外相關(guān)研究的基礎(chǔ)上,就區(qū)分硝化和反硝化作用對N2O排放貢獻的研究方法、土壤N2O產(chǎn)生途徑及其影響因素以及施用生物炭對N2O排放的影響機理進行歸納總結(jié)。結(jié)果表明:硝化和反硝化作用對生物炭的響應(yīng)不同,在N2O減排效應(yīng)上也存在很大的不確定性,其內(nèi)在機理尚不明確。在此基礎(chǔ)上,提出區(qū)分硝化和反硝化作用對N2O排放貢獻的最佳研究方法,并就農(nóng)田土壤硝化反硝化作用的影響因素以及對生物炭的響應(yīng)機制進行研究展望。

        氧化亞氮;硝化抑制劑;土壤微生物;功能基因

        氧化亞氮(N2O)是重要的溫室氣體之一,其增溫潛勢是二氧化碳(CO2)的310倍左右,工業(yè)化以來大氣中N2O的濃度從270 mg·kg?1增至324 mg·kg?1[1]。與CO2和甲烷(CH4)不同的是,N2O氣體不僅引起溫室效應(yīng),還對位于平流層的臭氧層造成不可恢復(fù)的破壞,對人類的生活健康造成威脅。因此,N2O在大氣中的濃度變化及其對全球氣候變化的影響備受關(guān)注[2]。據(jù)估計,大氣中至少70%的N2O來自農(nóng)業(yè)生態(tài)系統(tǒng)。其中,農(nóng)田土壤的硝化反硝化作用是產(chǎn)生N2O的主要途徑,是N2O排放的主要來源[3]。中國是世界上氮肥施用最多的國家之一,隨著氮肥施用量逐年增加,N2O的排放量也逐漸增加。因此,探明硝化反硝化作用對農(nóng)田土壤N2O排放的相對貢獻,并針對性地采取減排措施是農(nóng)業(yè)應(yīng)對全球氣候變化的迫切需求。

        多數(shù)情況下,硝化過程和反硝化過程在土壤中是同時發(fā)生的,相關(guān)微生物的硝化作用和反硝化作用會同時產(chǎn)生N2O。由于土壤條件的異質(zhì)性和微生物活性狀況的復(fù)雜性,多數(shù)情況難以準確區(qū)分硝化與反硝化過程。近年來,區(qū)分硝化反硝化作用產(chǎn)生N2O途徑的研究方法主要有抑制劑添加法、同位素標記法和氣壓過程分離方法(BaPS)等。

        生物炭是通過在缺氧條件下將生物質(zhì)包括農(nóng)業(yè)廢物、動物糞便和工業(yè)木材副產(chǎn)物等進行熱解轉(zhuǎn)化生產(chǎn)的具有相對較高碳含量、理化性質(zhì)穩(wěn)定、孔隙度和比表面積大的固體物質(zhì),生物炭表面含有豐富的含氧官能團可以與H+結(jié)合,能夠減輕土壤酸化,提高氮肥利用率;農(nóng)業(yè)循環(huán)中利用其較高的含碳量,可以達到土壤碳封存的目的[4-6]。近年來,生物炭用于溫室氣體減排的研究逐漸增加[7-9],多數(shù)研究表明,施用生物炭能夠改善土壤的理化性質(zhì),影響土壤的硝化反硝化過程,間接影響土壤N2O排放[10-14],為生物炭的合理利用提供了大量依據(jù)。區(qū)分并準確測定硝化作用和反硝化作用對N2O排放的貢獻,有助于深入理解生物炭對土壤N2O排放的影響機理,目前相關(guān)研究報道尚不多見。為此,本研究綜述就區(qū)分土壤N2O排放貢獻的方法,N2O產(chǎn)生的關(guān)鍵微生物過程和生物炭對N2O排放的響應(yīng)機制進行總結(jié),并對農(nóng)田土壤硝化反硝化作用以及生物炭的研究重點和方向進行展望,以期為減緩氣候變化及生物炭的廣泛應(yīng)用提供一定的理論依據(jù)。

        1 區(qū)分硝化與反硝化對N2O排放貢獻的方法

        1.1 抑制劑添加法

        抑制劑添加法是通過添加一些外源物質(zhì)或底物來選擇性地對硝化作用或者反硝化作用進行抑制,阻止其產(chǎn)生N2O。此方法是通過測定一定時間段內(nèi)不同抑制處理的N2O排放通量,采用差減法計算未被抑制過程的N2O排放貢獻,從而算出土壤對產(chǎn)生N2O的貢獻率。在硝化的兩步反應(yīng)中,氨氧化菌和亞硝化菌其中任何一步反應(yīng)被抑制,整個硝化反應(yīng)就會被抑制。硝化抑制劑通過抑制硝化過程的酶活性來抑制土壤中NH4+向NO3?的轉(zhuǎn)化。最常見的硝化抑制劑主要有雙氰銨(DCD)、乙炔(C2H2)、2?氯?6三氯甲基吡啶(CP)等[15]。其中實驗室應(yīng)用最廣泛的抑制劑C2H2能夠被氨單加氧酶催化生成一種活性很強的不飽和環(huán)氧化物,該環(huán)氧化物可以與氨單加氧酶的活性位點共價結(jié)合,抑制酶對NH4+的催化[16]。反硝化過程主要由厭氧微生物主導(dǎo),即實驗室常用純氧或者C2H2和純氧結(jié)合來抑制反硝化作用[17-18]。

        C2H2抑制技術(shù)可用于小面積和大面積的反硝化常規(guī)測定以及研究氮循環(huán)過程,研究表明低濃度C2H2(0.01%~0.1%)能夠抑制自養(yǎng)氨氧化過程,即抑制硝化作用N2O的產(chǎn)生與排放,C2H2含量為0.1%~1.0%時,可以抑制反硝化過程N2O還原成N2。C2H2抑制法的缺點在于操作復(fù)雜不易控制,首先C2H2的擴散會受到土壤含水量及其它結(jié)構(gòu)因素的影響,導(dǎo)致濃度分布不均勻,其次由于抑制了NO3?的生成,硝化作用和反硝化作用可能被C2H2同時抑制。所以,C2H2抑制技術(shù)適合在小的空間尺度上對硝化反硝化作用進行區(qū)分[19],然而進行試驗時不可避免地將土壤樣本采集到實驗室,這會對測定結(jié)果產(chǎn)生不可預(yù)測的偏差[20]。雖然C2H2是目前效果最好的抑制劑,但是C2H2抑制法仍然存在一些問題,如土壤中某些微生物能利用C2H2作為碳源,從而消耗C2H2;C2H2會影響微生物的呼吸作用,以及在土壤中的擴散是否均勻等。

        1.2 同位素標記法

        氮(N)元素在自然界中存在兩種天然同位素,分別為14N和15N,其中14N占比99.63%。N同位素示蹤法主要利用15N對NO3?庫或NH4+庫進行標記,通過對底物NO3?庫和NH4+庫的變化量以及硝化反硝化作用產(chǎn)生氣體的量進行測定,計算硝化反硝化過程對N2O生成的貢獻[21]。然而添加15N標記的NH4+或NO3?改變了土壤硝化作用或反硝化作用的基質(zhì)供應(yīng)水平,從而可能影響硝化和反硝化過程,因而可能無法真實反映田間條件下的真實狀況。同位素標記法通常與C2H2抑制結(jié)合使用,C2H2作為氣體比其它抑制劑更容易迅速進入土壤阻止硝化作用[22]。雖然抑制劑法和15N示蹤技術(shù)單獨使用或結(jié)合使用均可很好地分析土壤中硝化反硝化對N2O排放產(chǎn)生的貢獻,但是均無法確定哪些菌對N2O的貢獻最為顯著,還應(yīng)結(jié)合分子生態(tài)學(xué)的方法對復(fù)雜的硝化反硝化微生物群落結(jié)構(gòu)進行研究。將穩(wěn)定同位素和分子生物學(xué)方法相結(jié)合,不僅可以對N2O的排放量進行準確測定,而且還可以確定自養(yǎng)硝化、異養(yǎng)硝化以及反硝化作用對N2O排放的相對貢獻[23]。由于抑制劑的加入,常常會不同程度地影響其它反應(yīng)生成N2O,導(dǎo)致各步驟產(chǎn)生N2O的量被低估,雙同位素(15N和18O)自然豐度法和同位素位嗜值(site preferences)為區(qū)分硝化和反硝化對N2O排放的貢獻提供了新的思路[24]。通過15N和18O雙重標記,可以觀測N2O形成過程中的N庫和O庫的變化,并分析出硝化反硝化過程產(chǎn)生的N2O中N和O原子的來源,從而區(qū)分硝化反硝化作用對N2O排放的貢獻。然而雙同位素標記法由于設(shè)備昂貴和操作要求,阻礙了其在區(qū)分硝化反硝化過程中的準確性和適用性,并且18O同位素相關(guān)研究數(shù)據(jù)較少,不利于分析。同位素位嗜值又稱位點偏好,不同微生物過程和官能團具有不同的位點偏好,且合成14N2O和15N2O所需的能量不同,根據(jù)以上原理將同位素的相對比例轉(zhuǎn)化為同位素異構(gòu)體的比例,并利用同位素位嗜值作為參數(shù)來量化硝化反硝化作用對N2O形成的貢獻[25]。

        1.3 氣壓過程分離法

        氣壓過程分離法(Barometric process separation, BaPS)主要用于測定微生物的生理活動對土壤碳氮轉(zhuǎn)化速率的影響,是一種區(qū)分土壤硝化反硝化作用貢獻的新方法。BaPS系統(tǒng)是基于土壤樣品的CO2、O2和總氣體平衡的測定,通過測定系統(tǒng)中壓力的變化來計算N2O等氣體的產(chǎn)生量。BaPS測量方法采用儀器配套的環(huán)刀進行采樣和測量,與乙炔抑制法和同位素示蹤法相比,減小了人工處理對土壤的干擾,可以真實反應(yīng)土壤微生物的活動情況。據(jù)研究,BaPS法在測量通氣良好的土壤時與同位素示蹤法同樣準確[26]。該方法不需要添加任何物質(zhì),便可以較好地反映土壤真實的硝化、反硝化和呼吸作用。但該方法建立在一系列假設(shè)之上,這些假設(shè)并不在任何條件下都成立,而且其對系統(tǒng)做了過多的簡化,因此,應(yīng)用氣壓過程分離方法區(qū)分硝化作用和反硝化作用對N2O排放貢獻率的研究報道并不多。

        2 土壤N2O產(chǎn)生途徑及其影響因素

        2.1 硝化作用及關(guān)鍵微生物

        硝化作用一般由氨氧化菌和亞硝酸鹽氧化菌共同完成,主要分兩個階段:第一個階段是在氨氧化細菌(ammonia-oxidizing bacteria, AOB)和氨氧化古菌(ammonia-oxidizingarchaea, AOA)的A基因產(chǎn)生的氨單加氧酶作用下,將氨(NH3)氧化成羥胺(NH2OH),之后在羥胺氧化還原酶的作用下進一步氧化成NO2?的過程,其中氨單加氧酶是硝化反應(yīng)的限速步驟。第二個階段是由亞硝酸鹽氧化菌的基因主導(dǎo)的亞硝酸鹽氧化還原酶催化下發(fā)生的亞硝化反應(yīng),將NO2?進一步氧化成NO3?。其過程如圖1所示。

        ①氨單加氧酶Ammonia monooxygenase (AMO)②羥氨氧化還原酶Hydroxylamine oxidoreductase(HAO)③亞硝酸鹽氧化還原酶Nitrite oxidoreductase(NOR)④硝酸鹽還原酶Nitrate reductase(Nar)⑤亞硝酸鹽還原酶(e?1)Nitrite reductase(Nir)⑥一氧化氮還原酶Nitric oxide reductase(Nor)⑦氧化亞氮還原酶Nitrous oxide reductase(Nos)⑧亞硝酸鹽還原酶(6e?)Nitrite reductase(Nir)

        在硝化過程中,中間產(chǎn)物NH2OH或NO2?會發(fā)生化學(xué)分解或不完全氧化釋放出N2O[28-29]。有研究發(fā)現(xiàn),亞硝化單胞菌(Nitrosomonas)的細胞色素(cyt,p460)酶可在缺乏氧氣條件下將NH2OH定量轉(zhuǎn)化為N2O[30]。還有研究發(fā)現(xiàn),硝化螺菌屬的某種“完全硝化菌”可將NH3直接氧化為NO3?,該菌種具有編碼氨氧化和亞硝酸鹽氧化兩個過程的功能基因[31]。氨氧化過程被認為是硝化作用的限速步驟,在AOA發(fā)現(xiàn)前,氨氧化過程一直被認為主要由AOB進行。對土壤中氨氧化菌的研究通常利用和A兩個基因,這兩個基因的相對豐度代表了AOB在土壤微生物群落結(jié)構(gòu)中的分布水平。對AOB的基因序列的研究表明,AOB主要分為變形桿菌綱β亞群和γ亞群的亞硝化球菌屬[32]。土壤生態(tài)系統(tǒng)的AOB主要源于β亞綱中的亞硝化單胞菌()和亞硝化螺菌()兩個屬,包含了9個不同的種群,廣泛分布于陸地生態(tài)系統(tǒng)中。而目前發(fā)現(xiàn)的氨氧化古菌主要為泉古菌類(),由于AOA存在太多未知菌種,分離培養(yǎng)困難,關(guān)于AOA的認知還處于起步階段。有研究發(fā)現(xiàn),AOA在中國酸性紅壤中是優(yōu)勢菌群,其豐度與土壤硝化速率呈現(xiàn)出顯著正相關(guān)關(guān)系[33]。另有研究表明,堿性潮土中AOA豐度雖然大于AOB,但是只有AOB豐度與硝化速率顯著相關(guān)并隨施肥處理發(fā)生改變[34]。上述研究表明,土壤中AOB和AOA可能在不同的土壤環(huán)境中起主導(dǎo)作用,AOA更容易適應(yīng)酸性且養(yǎng)分低的土壤,并在硝化過程中起主導(dǎo)作用,而AOB更適合在中堿性土壤中生存并進行硝化作用。對AOA和AOB的研究表明,在大部分土壤中AOA的相對豐度比AOB高,但在營養(yǎng)豐富的特殊環(huán)境中,AOB的相對豐度要高于AOA[35-36],二者氨氧化過程的區(qū)別有待深入研究。

        硝化作用分為自養(yǎng)硝化作用和異養(yǎng)硝化作用兩種類型,其中自養(yǎng)硝化微生物可以利用CO2作為碳源,將NH3氧化成硝酸鹽并獲得能量用于細胞生長;而異養(yǎng)硝化微生物必須利用有機碳獲得能量才能將不同形態(tài)的氮元素氧化為硝酸鹽和亞硝酸鹽[37-38]。有研究利用乙炔抑制法進行實驗證明硝化作用是以自養(yǎng)微生物的作用為主,異養(yǎng)微生物為輔[39],但是有研究表明異養(yǎng)硝化微生物在特定的條件如好氧環(huán)境下會產(chǎn)生大量的N2O,并遠高于自養(yǎng)硝化作用[40]。目前,硝化作用的測定實驗中一般以亞硝酸鹽和硝酸鹽以及產(chǎn)生氣體的量來確定,由于硝化反硝化作用的同時存在會使以上產(chǎn)物消耗,導(dǎo)致測定結(jié)果不準確[41]。關(guān)于異養(yǎng)硝化作用在好氧條件下的反應(yīng)機制仍不明確,有待進一步研究。

        2.2 反硝化作用及關(guān)鍵微生物

        反硝化作用即脫氮作用,是影響全球氮循環(huán)的重要環(huán)節(jié),反硝化作用不僅造成氮肥的損失,又被認為是土壤產(chǎn)生N2O的主要途徑之一。反硝化作用在缺少氧氣的條件下進行,分為4步:(1)NO3?在基因編碼的硝酸鹽還原酶的作用下還原為NO2?;(2)NO2?在基因編碼的亞硝酸鹽還原酶的作用下還原為NO;(3)NO在基因編碼的NO還原酶的作用下還原為N2O;(4)N2O在基因編碼的N2O還原酶的作用下還原為無害的N2[40]。其中氮以NO、N2O、N2的形式釋放出來,造成了農(nóng)田土壤氮素的流失。

        反硝化過程由占土壤總細菌數(shù)量0.1%~5.0%的兼性厭氧細菌主導(dǎo)。有研究采用15N同位素標記法測得在60%的土壤孔隙(water-filled pore space;WFPS)充水時,反硝化作用為N2O的主要來源[41]。說明在常規(guī)水分條件的土壤中,反硝化作用主導(dǎo)了N2O排放。N2O還原酶活性會受到氧氣的暫時抑制,隔離氧氣后,N2O還原酶會在0.7~3h內(nèi)恢復(fù)。反硝化微生物廣泛分布于假單胞菌()、芽孢桿菌()、鹽桿菌()、根瘤菌()、紅螺菌()、脫氮副球菌()、嗜纖維菌()等細菌種屬,除此之外,有研究發(fā)現(xiàn)真菌也可以參與反硝化作用,在特定的生態(tài)系統(tǒng)中參與反硝化作用的還有古菌以及放線菌[42],因此,對農(nóng)田生態(tài)系統(tǒng)反硝化作用的研究也應(yīng)該將細菌以外的微生物考慮在內(nèi)。目前,對反硝化作用有關(guān)的功能基因(G,A,K,S,B和Z)的研究已經(jīng)有了大量的應(yīng)用[43-44]。N2O排放量與K、S和Z等具有顯著相關(guān)性,并且反硝化菌中存在缺失Z基因的種類,這類反硝化菌不能產(chǎn)生N2O還原酶,進行反硝化作用是不完全的,N2O直接被釋放出來并且不會還原成N2[45]。此外,某些硝化微生物可以發(fā)生反硝化作用產(chǎn)生N2O,這些硝化微生物的反硝化作用通常在低氧環(huán)境中發(fā)生,首先將NH3氧化成NO2?,然后將NO2?還原成N2O或N2[27]。研究表明,硝化微生物的反硝化作用可能是潛在的N2O生成來源,并且對反硝化作用具有一定的貢獻[45]。

        國內(nèi)外關(guān)于反硝化作用對N2O的貢獻已有大量研究,但參與反硝化作用的微生物種類繁多,并且多數(shù)微生物的作用機理和基因序列是未知的[46]。今后應(yīng)加強分子生物學(xué)技術(shù)在反硝化作用研究中的應(yīng)用,并對N2O排放相關(guān)的反硝化微生物種類進行區(qū)分,加強對相關(guān)功能基因的準確鑒定。

        2.3 土壤N2O產(chǎn)生的其它途徑

        硝化與反硝化作用是自然界中氮素循環(huán)的主要驅(qū)動力,釋放了占土壤總釋放量約70%的N2O。除此之外,硝酸鹽異化還原成銨(DNRA)以及“共同反硝化”作用等也會產(chǎn)生N2O。

        DNRA作用是指NO3?在厭氧條件下被微生物異化還原成NH4+的過程[47]。DNRA過程分為兩步反應(yīng),首先在硝酸鹽還原酶的作用下,將NO3?還原成NO2?;然后在亞硝酸還原酶的催化下將NO2?轉(zhuǎn)化為NH4+。DNRA過程不但將NO3?轉(zhuǎn)化為NH4+,還產(chǎn)生了N2O[27]。在對專性厭氧細菌、兼性厭氧細菌、好氧細菌和真菌等的研究中都發(fā)現(xiàn)了DNRA過程[48]。研究表明[49-50],農(nóng)田土壤中反硝化作用是NO3?異化還原的主要過程,在草地、森林等高碳氮比的土壤環(huán)境中,DNRA對氮素轉(zhuǎn)化以及N2O排放具有重大作用。

        近年來,研究發(fā)現(xiàn)在草地、森林等土壤環(huán)境中,許多真菌能將NO2?與氮化合物中的氮原子結(jié)合產(chǎn)生N2O,該過程與一般的反硝化作用不同,被稱為“共同反硝化”,但共同反硝化對N2O排放的作用機理至今還有許多未知[51]。章偉等研究表明,真菌在酸性森林土壤中活性是細菌的2倍[38],并且真菌進行的硝化反硝化作用產(chǎn)生了與細菌等量甚至更多的N2O[52-53]。Herold等[54]研究表明,真菌的反硝化作用貢獻顯著,并且真菌的生物量在不同梯度土壤中較穩(wěn)定,因此,對N2O排放量的計算不能忽略真菌的作用[39]。而關(guān)于真菌在農(nóng)田土壤氮循環(huán)中的作用以及真菌的硝化反硝化作用對農(nóng)田土壤N2O排放還需要進一步研究。

        此前研究多將N2O排放的貢獻來源簡單區(qū)分為硝化作用和反硝化作用,且由于研究手段有限,不能很好地區(qū)分這兩種作用對N2O排放的貢獻,使硝化作用和反硝化作用的貢獻常常被高估或者低估,導(dǎo)致對農(nóng)田土壤N2O排放機理理解不夠全面,在今后的研究工作中還需要探索新的試驗方法,深入研究農(nóng)田土壤中不同微生物利用氮素的不同過程以及N2O的產(chǎn)生機制及其排放貢獻。

        3 生物炭對土壤N2O產(chǎn)生途徑的影響

        3.1 生物炭對硝化作用的影響

        土壤的硝化作用受土壤類型、通氣條件、含水量、溫度、土壤pH和底物氮濃度等多因素的影響,土壤中添加生物炭有可能通過改變土壤性狀使與N2O產(chǎn)生相關(guān)的硝化菌群的生存環(huán)境發(fā)生改變,從而對硝化作用產(chǎn)生N2O過程起到促進或抑制作用。研究表明,在土壤中添加生物炭后提高了土壤pH值[55-56],而pH的提高對AOA(氨氧化細菌)和AOB(氨氧化古菌)的生長繁殖會有一定影響,從而影響硝化作用。Ball等[57]研究認為,在酸性林地土壤中添加生物炭后,AOB菌群數(shù)量明顯提高,土壤中硝化速率也明顯提高。Taketani等[58]研究表明,在施用生物炭的土壤中,AOA的多樣性降低,但是拷貝數(shù)顯著提高,而AOB的多樣性和基因拷貝數(shù)則均明顯提高。由于生物炭的表面多孔,能夠吸附并儲存水和養(yǎng)分,這樣可以為土壤微生物特別是細菌提供良好的棲息條件,從而提高AOB和AOA等菌群的豐度,使相應(yīng)的土壤硝化過程加快[59-60]。但研究結(jié)果也不盡一致,如He等[61]研究發(fā)現(xiàn),生物炭對AOA基因拷貝數(shù)的影響很小或表現(xiàn)為降低,這種豐度差異多為pH導(dǎo)致的,AOA在酸性條件下更能發(fā)揮主導(dǎo)作用。N2O的產(chǎn)生沒有增加,反而下降,可能的原因是生物炭的吸附作用固定了一部分N2O。另外,Kookana研究認為,某些酚類化合物會抑制硝化細菌的生長[62],因此,當土壤中加入生物炭后,酚類化合物被生物炭吸附使其在土壤中的濃度下降,從而減少了酚類化合物對硝化作用造成負面影響的機會,對土壤微生物硝化過程具有強化作用[63]。還有研究認為,生物炭可通過吸附底物來降低微生物的活性,并影響異養(yǎng)微生物如AOB的活性,所以當NH4+被吸附或固定后,土壤中的氨化作用下降從而也抑制了微生物的硝化作用[64]。Yoo等[65]在水稻土壤中添加生物炭發(fā)現(xiàn),土壤中微生物量碳增加了84%~119%,N2O排放明顯增加,說明生物炭通過調(diào)節(jié)土壤理化性質(zhì)提高了微生物的代謝效率,刺激了硝化作用產(chǎn)生N2O。

        總之,目前針對生物炭減少硝化作用N2O排放的研究主要集中在添加生物炭后土壤理化性質(zhì)的改變[66]以及硝化作用相關(guān)功能基因豐度變化等方面,有關(guān)生物炭對土壤硝化作用產(chǎn)生N2O的響應(yīng)仍存在爭議,還缺乏影響機理方面的研究。

        3.2 生物炭對反硝化作用的影響

        反硝化作用不僅造成氮肥的損失,又被認為是土壤產(chǎn)生N2O的主要途徑。近年來,關(guān)于生物炭施入土壤后能夠降低N2O排放這一結(jié)果,引起了科研人員的高度重視[67]。研究表明,在農(nóng)田土壤中添加生物炭可以改善土壤通氣狀況,并抑制厭氧反硝化微生物的反硝化作用,使N2O排放減少[68]。但也有研究認為,施用生物炭后,土壤N2O排放反而增加[69]。

        生物炭對反硝化作用的影響主要有以下幾種解釋:(1)生物炭改變了土壤理化性質(zhì)。生物炭C/N比較高,并且結(jié)構(gòu)多孔,在土壤中有利于氣體流通,抑制了土壤微生物反硝化作用,降低了N2O排放[70]。(2)生物炭減少了反硝化菌活動。在氮素缺乏、有機質(zhì)較低的土壤中添加生物炭后,會明顯降低土壤中硝態(tài)氮與有機質(zhì)的含量,從而導(dǎo)致反硝化菌活動減少,N2O釋放受到抑制[71]。(3)生物炭可以誘發(fā)氮素的固定。研究發(fā)現(xiàn),生物炭制作溫度越高,水稻土N2O釋放量有逐漸減少的趨勢,可能原因是誘發(fā)氮素固定,由此減少了N2O的排放[72]。(4)生物炭的吸附作用。生物炭顆粒不僅可以吸附游離的NH4+,還能減少土壤中的游離NO3?,從而抑制反硝化作用中N2O的釋放[73]。(5)土壤中固氮微生物數(shù)量的增加。生物炭的施入,使固氮微生物的數(shù)量增加,導(dǎo)致氮的反硝化作用減少,從而起到了降低N2O排放的作用[74]。

        Harter等發(fā)現(xiàn),在輕微堿性砂質(zhì)土壤中,盡管生物炭添加刺激了反硝化基因表達,增加了反硝化作用,但N2O排放也隨之減少了,這是因為生物炭對水分飽和情況下土壤孔隙中的N2O進行了吸附,從而刺激了Z編碼的細菌N2O還原酶活性和其它N2O還原劑對N2O的還原[75]。調(diào)查土壤生物炭施用是否影響攜帶典型和非典型的Z基因的微生物群落的組成有助于解釋該現(xiàn)象[76]。研究表明,Z的表達水平是決定N2O是否被還原成無害的N2的關(guān)鍵因素[77]。Cayuela等[78]研究發(fā)現(xiàn),生物炭在15種不同農(nóng)業(yè)土壤中普遍降低了N2O/(N2O+N2)比例,說明生物炭刺激了反硝化最后一步反應(yīng)將N2O還原為N2。與之相比,Ameloot等[79]在生物炭是否能夠促進土壤反硝化作用的研究中,并未觀察到N2O/(N2O+N2)比例降低,即生物炭不能促進N2O還原為N2,可能原因是該土壤中缺少含有N2O還原酶基因的反硝化菌[80]。

        4 問題和展望

        區(qū)分硝化作用與反硝化作用對產(chǎn)生N2O的貢獻的方法有多種,其中同位素標記法結(jié)合乙炔抑制技術(shù)能夠?qū)ψ责B(yǎng)硝化作用、異養(yǎng)硝化作用和反硝化作用進行區(qū)分,是目前研究硝化反硝化作用對N2O產(chǎn)生貢獻,以及探明生物炭對硝化反硝化作用響應(yīng)機理的最精確的實驗方法。

        目前對硝化反硝化作用產(chǎn)生N2O機理的研究還不夠完善,在不同的實驗條件下得到的結(jié)果也不盡相同,對農(nóng)田土壤N2O排放的研究存在局限性和地域性,還需進一步研究如何減少農(nóng)田溫室氣體排放、土壤氮素損失等帶來的環(huán)境風(fēng)險,促進農(nóng)業(yè)可持續(xù)發(fā)展。

        生物炭對土壤硝化反硝化作用表現(xiàn)出極大的復(fù)雜性,有研究表明其通過吸附作用起到的減排作用存在上限[81]。Verhoeven等[82]研究表明,生物炭提高土壤pH,但并未影響N2O的排放。亦有研究表明,富含鐵的生物炭能夠刺激硝酸鹽、亞硝酸鹽、N2O的非生物轉(zhuǎn)化[83]。眾多研究得出不同甚至相反的結(jié)論,說明生物炭應(yīng)用仍有爭議。現(xiàn)有研究對土壤硝化反硝化過程的微生物豐度、群落結(jié)構(gòu)以及N2O排放的微生物學(xué)機制仍然缺乏了解。

        有研究認為,生物炭對氮循環(huán)和N2O的減排作用可能是偶然的,不能起到長期作用[84]。生物炭雖然改變氮循環(huán)、土壤理化性質(zhì)及微生物群落結(jié)構(gòu),但對N2O減排只有微小且短暫作用,這或許與生物炭的材質(zhì)有關(guān),不同材質(zhì)生物炭和各種類型土壤組合存在著特異性,對生物炭特性及其與土壤相互作用機理認知的不完整,阻止了生物炭的發(fā)展[85],未來應(yīng)從以下方面加強對生物炭的研究:生物炭各種理化性質(zhì)如表面積、粒徑、孔隙度、陽離子交換能力等;生物炭的生產(chǎn)條件如生物炭的原料、生產(chǎn)溫度、熱解氣壓、營養(yǎng)物質(zhì)及有機物含量等;生物炭與土壤環(huán)境的搭配性如氣候條件、耕作條件和作物種類等[86-88]。還應(yīng)繼續(xù)在各領(lǐng)域開發(fā)生物炭的利用價值,以利于其推廣使用。

        隨著科技的不斷發(fā)展,各學(xué)科的交叉融合是當今科學(xué)研究的重要手段。分子生物學(xué)技術(shù)的廣泛應(yīng)用與基因組測序的普及,極大地提高了人們對土壤微生物的認知,越來越多的功能基因的發(fā)現(xiàn)也對微觀機理的認知提供了很好的研究機遇。在未來的研究中,對現(xiàn)有研究技術(shù)的改進,以及新研究技術(shù)的開發(fā)利用將有助于完善土壤硝化反硝化微生物研究的理論體系。生物炭的減排機制研究還存在很多不可控因素,表現(xiàn)出多種不同的研究結(jié)果,后續(xù)研究應(yīng)該利用長期定位實驗,以及在不易受干擾的系統(tǒng)中進行微觀實驗等多種實驗手段,研究土壤硝化和反硝化對生物炭施用的響應(yīng)機理。

        [1] IPCC.Climate change 2013:the physical science basis[R]. Cambridge,USA:Cambridge University Press,2013.

        [2] Hu M,Chen D,Dahlgren R A.Modeling nitrous oxide emission from rivers:a global assessment[J].Global Change Biology, 2016,22(11):3566-3582.

        [3] Meng Q,Yue S,Peng H,et al.Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China:a review[J].Pedosphere,2016,26(2):137-147.

        [4] Case S D C,Mcnamara N P,Reay D S,et al.Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil[J].Soil Biology and Biochemistry,2015,81:178-185.

        [5] Lehmann J D,Joseph S.Biochar for environmental management[J]. Science and Technology,Earthscan,2015,25(1):15801-15811.

        [6] Clough T J,Condron L M,Kammann C,et al.A review of biochar and soil nitrogen dynamics[J].Agronomy,2013,3(2): 275-293.

        [7] 孟夢,呂成文,李玉娥,等.添加生物炭對華南早稻田CH4和N2O排放的影響[J].中國農(nóng)業(yè)氣象,2013,34(4):396-402.

        Meng M,Lv C W,Li Y E,et al.Effect of biochar on CH4and N2O emissions from early rice field in South China[J]. Chinese Journal of Agrometeorology,2013,34(4):396-402.(in Chinese)

        [8] 張星,張晴雯,劉杏認,等.施用生物炭對農(nóng)田土壤氮素轉(zhuǎn)化關(guān)鍵過程的影響[J].中國農(nóng)業(yè)氣象,2015,36(6):709-716.

        Zhang X,Zhang Q W,Liu X R,et al.Effects of biochar on the key soil nitrogen transformation processes in agricultural soil[J]. Chinese Journal of Agrometeorology,2015,36(6):709-716. (in Chinese)

        [9] 韓雪,范靖尉,白晉華,等.減氮和施生物炭對華北夏玉米-冬小麥田土壤CO2和N2O排放的影響[J].中國農(nóng)業(yè)氣象,2016, 17(2):2800-2808.

        Han X,Fan J W,Bai J H,et al.Effects of reducing nitrogen and biochar application on CO2and N2O emissions from summer maize-winter wheat field in North China[J].Chinese Journal of Agrometeorology,2016,17(2):2800-2808.(in Chinese)

        [10] Cayuela M L,Jeffery S,Zwieten L V.The molar H:corg ratio of biochar is a key factor in mitigating N2O emissions from soil[J].Agriculture,Ecosystems and Environment,2015,202 (135-138):135-138.

        [11] Yi Q,Tang S,Fan X,et al.Effects of nitrogen application rate,nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China[J].PloS ONE,2017,12(4):e0175325.

        [12] Cayuela M L,Zwieten L V,Singh B P,et al.Biochar's role in mitigating soil nitrous oxide emissions:a review and meta- analysis[J].Agriculture,Ecosystems and Environment,2014, 191: 5-16.

        [13] Chen C R,Phillips I R,Goloran L M,et al.Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand[J].Plant and Soil,2013,367(1-2): 301-312.

        [14] Dai H N,Scheer C,Rowlings D W,et al.Rice husk biochar and crop residue amendment in subtropical cropping soils:effect on biomass production, nitrogen use efficiency and greenhouse gas emissions[J].Biology and Fertility of Soils,2016,52(2):261-270.

        [15] 黃樹輝,呂軍.區(qū)分土壤中硝化與反硝化對N2O產(chǎn)生貢獻的方法[J].農(nóng)業(yè)工程學(xué)報,2005,21(s1):48-51.

        Huang S H,Lv J.Methods for the contributions of nitrification and denitrification to the production of nitrous oxide from soil[J].Transactions of the CSAE,2005,21(s1):48-51.(in Chinese)

        [16] Webster F A,Hopkins D W.Contributions from different microbial processes to N2O emission from soil under different moisture regimes[J].Biology and Fertility of Soils,1996, 22(4): 331-335.

        [17] Wrage N,Velthof G L,Oenema O,et al.Acetylene and oxygen as inhibitors of nitrous oxide production inand:a cautionary tale[J]. Fems Microbiology Ecology,2004,47(1):13-18.

        [18] 閻宏亮,張璇,謝立勇,等.菜地土壤施用銨態(tài)氮肥后N2O排放來源及其動態(tài)[J].中國農(nóng)業(yè)氣象,2014,35(2):141-148.

        Yan H L,Zhang X,Xie L Y,et al.Study on the pathway and dynamics of N2O emissions from the vegetable soil fertilized with ammonium nitrogen[J].Chinese Journal of Agrometeorology,2014,35(2):141-148.(in Chinese)

        [19] Ryden J C,Dawson K P.Evaluation of the acetylene-inhibition technique for the measurement of denitrification in grassland soils[J].Journal of the Science of Food & Agriculture,2010, 33(12):1197-1206.(in Chinese)

        [20] Felber R,Conen F,Flechard C R,et al.Theoretical and practical limitations of the acetylene inhibition technique to determine total denitrification losses[J].Biogeosciences,2012, 9(10):4125-4138.

        [21] Kool D M,Wrage N,Zechmeisterboltenstern S,et al.Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling method[J].European Journal of Soil Science,2010,61(5):759-772.

        [22] Pedersen H,Dunkin K A,Firestone M K.The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by15N tracer and pool dilution techniques[J].Biogeochemistry,1999,44(2):135-150.

        [23] Li W,Sun Y,Li G,et al.Contributions of nitrification and denitrification to N2O emissions from aged refuse bioreactor at different feeding loads of ammonia substrates[J].Waste Management,2017,68:319-328.

        [24] Zhang Z,Wang J J,Lu X.Fingerprint natural soil N2O emission from nitration and denitrification by dual isotopes (15N and18O) and site preferences[J].Acta Ecologica Sinica, 2016,36(5):356-360.

        [25] 付素靜.干旱荒漠區(qū)典型土壤硝酸鹽分布特征及硝化反硝化作用研究[D].蘭州:蘭州大學(xué),2012.

        Fu S J.Nitrate distribution and nitrification-denitrification in the soils of desert areas,Northwest China[D].Lanzhou: Lanzhou University,2012.(in Chinese)

        [26] Frame C H,Casciotti K L.Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium[J].Biogeosciences,2010,7(2): 2695-2709.

        [27] 朱永官,王曉輝,楊小茹,等.農(nóng)田土壤N2O產(chǎn)生的關(guān)鍵微生物過程及減排措施[J].環(huán)境科學(xué),2014,35(2):792-800.

        Zhu Y G,Wang X H,Yang X R,et al.Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies[J].Environmental Science,2014,35(2):792-800.(in Chinese)

        [28] Wrage N,van Groenigen J W,Oenema O,et al.A novel dual-isotope labelling method for distinguishing between soil sources of N2O[J].Rapid Communications in Mass Spectrometry Rcm,2005,19(22):3298-3306.

        [29] Caranto J D,Vilbert A C,Lancaster K M.P460 is a direct link between nitrification and nitrous oxide emission[J].Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51):14704-14709.

        [30] Daims H,Lebedeva E V,Pjevac P,et al.Complete nitrification by nitrospira bacteria[J].Nature,2015,528:504-509.

        [31] Laughlin R J,Ru?Tting T,Mu?Ller C,et al.Effect of acetate on soil respiration,N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil[J].Applied Soil Ecology,2009,42(1):25-30.

        [32] Shen J P,Zhang L M,Zhu Y G,et al.Abundance and composition of ammonia-oxidizing bacteria and ammonia- oxidizing archaea communities of an alkaline sandy loam[J].Environmental Microbiology,2008,10(6):1601-1611.

        [33] Mertens J,Broos K,Wakelin S A,et al.Bacteria,not archaea, restore nitrification in a zinc-contaminated soil[J].The ISME Journal,2009,3(8):916-923.

        [34] Di H J,Cameron K C,Shen J P,et al.Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J].Nature Geoscience,2009,2(9):621-624.

        [35] Papen H, Berg R V.A Most Probable Number method (MPN) for the estimation of cell numbers of heterotrophic nitrifying bacteria in soil[J].Plant and Soil,1998,199(1):123-130.

        [36] Richardson D J,Wehrfritz J M,Keech A,et al.The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification[J].Biochemical Society Transactions, 1998,26(3):401-8.

        [37] Marusenko Y,Huber D P,Hall S J.Fungi mediate nitrous oxide production but not ammonia oxidation in arid land soils of the southwestern US[J].Soil Biology and Biochemistry, 2013,63(4):24-36.

        [38] 章偉,高人,陳仕東,等.米櫧天然林土壤真菌對N2O產(chǎn)生的貢獻[J].亞熱帶資源與環(huán)境學(xué)報,2013,8(2):28-34.

        Zhang W,Gao R,Chen S D,et al.Fungal contribution to N2O production in soil for a natural Castanopsis carlesii forest in Wuyi nature reserve,Southeastern[J].China Journal of Subtropical Resources and Environment,2013,8(2):28-34.(in Chinese)

        [39] 黃瑩,龍錫恩.真菌對土壤N2O釋放的貢獻及其研究方法[J].應(yīng)用生態(tài)學(xué)報,2014,25(4):1213-1220.

        Huang Y,Long X E.Contribution of fungi to soil nitrous oxide emission and their research methods:a review[J].Chinese Journal of Applied Ecology,2014,25(4):1213-1220.(in Chinese)

        [40] Zhang Q,Li F,Tang C.Quantifying of soil denitrification potential in a wetland ecosystem,ochi experiment site,Japan[J]. Journal of Resources and Ecology,2012,3(1):93-96.

        [41] Shoun H.Denitrification and anaerobic energy producing mechanisms by fungi[J].Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme,2006,51(5):419-29.

        [42] Zhe C,Luo X,Hu R,et al.Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J].Microbial Ecology, 2010, 60(4):850-861.

        [43] Liu J, Hou H, Sheng R, et al. Denitrifying communities differentially respond to flooding drying cycles in paddy soils[J].Applied Soil Ecology,2012,62(62):155-162.

        [44] Bakken L R,?sa Frosteg?rd.Regulation of denitrification at the cellular level:a clue to the understanding of N2O emissions from soils[J].Philosophical Transactions of the Royal Society B Biological Sciences,2012,367(1593):1226-34.

        [45] Shaw L J,Nicol G W,Smith Z,et al.spp.can produce nitrous oxide via a nitrifier denitrification pathway [J].Environmental Microbiology, 2006, 8(2):214-222.

        [46] Kandeler E,Deiglmayr K,Tscherko D,et al.Abundance of,,,andgenes of denitrifying bacteria during primary successions of a glacier foreland[J].Applied and Environmental Microbiology,2006,72(9):5957-5962.

        [47] Baggs E M.A review of stable isotope techniques for N2O source partitioning in soils:recent progress, remaining challenges and future considerations[J].Rapid Communications in Mass Spectrometry,2010,22(11):1664-1672.

        [48] Yin S X,Chen D,Chen L M,et al.Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J].Soil Biology and Biochemistry,2002, 34(8):1131-1137.

        [49] Schmidt C S,Richardson D J,Baggs E M.Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils[J].Soil Biology and Biochemistry,2011,43(7):1607-1611.

        [50] Rütting T,Boeckx P,Müller C,et al.Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J].Biogeosciences,2011, 8(7):1779-1791.

        [51] Baggs E M.Soil microbial sources of nitrous oxide:recent advances in knowledge, emerging challenges and future direction[J].Current Opinion in Environmental Sustainability, 2011,3(5):321-327.

        [52] Wu Y P,Ma B,Zhou L,et al.Changes in the soil microbial community structure with latitude in eastern China,based on phospholipid fatty acid analysis[J].Applied Soil Ecology,2009, 43(2):234-240.

        [53] Spott O,Russow R,Stange C F.Formation of hybrid N2O and hybrid N2due to codenitrification:first review of a barely considered process of microbially mediated N-nitrosation[J]. Soil Biology and Biochemistry,2011,43(10):1995-2011.

        [54] Herold M B,Baggs E M,Daniell T J.Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil[J].Soil Biology and Biochemistry,2012,54(6):25-35.

        [55] Masulili A,Utomo W H,Syechfani M S.Rice husk biochar for rice based cropping system in acid soil I:the characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in west Kalimantan,Indonesia [J]. Journal of Agricultural Science, 2010,2(1):39-47.

        [56] 張星,劉杏認,林國林,等.生物炭和秸稈對華北農(nóng)田表層土壤礦質(zhì)氮和pH值的影響[J].中國農(nóng)業(yè)氣象,2016,37(2): 131-142.

        Zhang X,Liu X R,Lin G L,et al.Effects of biochar and straw return on mineral nitrogen and pH of the surface soil in farmland of the North China Plain[J].Chinese Journal of Agrometeorology,2016,37(2):131-142.(in Chinese)

        [57] Ball P N,Mackenzie M D,Deluca T H,et al.Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils[J].Journal of Environmental Quality,2010,39(4):1243-1253.

        [58] Taketani R G,Tsai S M.The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes[J]. Microbial Ecology,2010,59(4):734-743.

        [59] Steinbeiss S,Gleixner G,Antonietti M.Effect of biochar amendment on soil carbon balance and soil microbial active- ity [J]. Soil Biology and Biochemistry,2009,41(6):1301-1310.

        [60] Deluca T H,MacKenzie M D,Gundale M J,et al.Biochar effects on soil nutrient transformations[A].Biochar for environmental management: science and technology[C].London,UK: Earthscan, 2009: 251-270.

        [61] He L,Zhao X,Wang S,et al.The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two oxisols[J].Soil and Tillage Research,2016,164:52-62.

        [62] Kookana R S,Sarmah A K,Zwieten L V,et al.Biochar application to soil: agronomic and environmental benefits and unintended consequences[J].Advances in Agronomy, 2011,112:103-143.

        [63] Gundale M J,Deluca T H.Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal[J].Forest Ecology and Management, 2006,231(1):86-93.

        [64] Strauss E A,Lamberti G A.Regulation of nitrification in aquatic sediments by organic carbon[J].Limnology and Oceanography,2000,45(8):1854-1859.

        [65] Yoo G,You J K,Yong O L,et al.Investigation of greenhouse gas emissions from the soil amended with rice straw biochar[J]. Ksce Journal of Civil Engineering,2016,20(6): 2197-2207.

        [66] Gul S,Whalen J K,Thomas B W,et al.Physico-chemical properties and microbial responses in biochar-amended soils:mechanisms and future directions[J].Agriculture, Ecosystems and Environment,2015,206:46-59.

        [67] Sánchez-García M,Roig A,Sanchez-Monedero M A,et al.Biochar increases soil N2O emissions produced by nitrification-mediated pathways[J].Frontiers in Environmental Science,2014,2(2):1-10.

        [68] Singh B P,Hatton B J,Balwant S,et al.Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J].Journal of Environmental Quality,2010, 39(4):1224-1235.

        [69] Karhu K,Mattila T,Bergstr?m I,et al.Biochar addition to agricultural soil increased CH4uptake and water holding capacity-results from a short-term pilot field study[J].Agriculture, Ecosystems and Environment,2011,140(1-2):309-313.

        [70] Lehmann J,Gaunt J,Rondon M,et al.Biochar sequestration in terrestrial ecosystems-a review[J].Mitigation & Adaptation Strategies for Global Change,2006,11(2):395-419.

        [71] 顏永毫,王丹丹,鄭紀勇.生物炭對土壤N2O和CH4排放影響的研究進展[J].中國農(nóng)學(xué)通報,2013,29(8):140-146.

        Yan Y H,Wang D D,Zheng J Y,et al.Advances in effects of biochar on the soil N2O and CH4emissions[J].Chinese Agricultural Science Bulletin,2013,29(8):140-146.(in Chinese)

        [72] Wang J,Pan X,Liu Y,et al.Effects of biochar amendment in two soils on greenhouse gas emissions and crop production [J].Plant and Soil,2012,360(1-2):287-298.

        [73] Cayuela M L,Oenema O,Kuikman P J,et al.Bioenergy by-products as soil amendments? implications for carbon sequestration and greenhouse gas emissions[J].GCB Bioenergy, 2010,2 (4):201-213.

        [74] Deluca T H,Aplet G H.Charcoal and carbon storage in forest soils of the rocky mountain west[J].Frontiers in Ecology and the Environment,2008,6(1):18-24.

        [75] Harter J,Guzmanbustamante I,Kuehfuss S,et al.Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil[J].Scientific Reports, 2016,6:39574.

        [76] Harter J,Weigold P,El-Hadidi M,et al.Soil biochar amendment shapes the composition of N2O-reducing microbial communities[J].Science of the Total Environment,2016,562: 379-390.

        [77] Thomson A J,Giannopoulos G,Pretty J,et al.Biological sources and sinks of nitrous oxide and strategies to mitigate emissions[J].Philosophical Transactions of the Royal Society of London,2012,367(1593):1157-1168.

        [78] Cayuela M L,Sánchezmonedero M A,Roig A,et al.Biochar and denitrification in soils:when,how much and why does biochar reduce N2O emissions [J].Scientific Reports,2013, 3:1732.

        [79] Ameloot N,Maenhout P,Neve S D,et al.Biochar-induced N2O emission reductions after field incorporation in a loam soil[J].Geoderma,2016,267:10-16.

        [80] Lin X,Spokas K A,Venterea R T,et al.Assessing microbial contributions to N2O impacts following biochar additions[J]. Agronomy,2014,4(4):478-496.

        [81] Yao Y,Gao B,Zhang M,et al.Effect of biochar amendment on sorption and leaching of nitrate,ammonium, and phosphate in a sandy soil[J].Chemosphere,2012,89(11):1467-71.

        [82] Verhoeven E,Six J.Biochar does not mitigate field-scale N2O emissions in a northern California vineyard:an assessment across two years[J].Agriculture,Ecosystems and Environment, 2014,191(15):27-38.

        [83] Li X.Evidence for denitrification as main source of N2O emission from residue-amended soil[J].Soil Biology and Biochemistry,2016,92:153-160.

        [84] Pereira E I P,Suddick E C,Mansour I,et al.Biochar alters nitrogen transformations but has minimal effects on nitrous oxide emissions in an organically managed lettuce mesocosm[J].Biology and Fertility of Soils,2015,51(5): 573-582.

        [85] Sigua G C,Novak J M,Watts D W,et al.Carbon mineral- ization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar[J].Chemosphere, 2014, 103(5):313-321.

        [86] Nguyen T T N,Xu C Y,Tahmasbian I,et al.Effects of biochar on soil available inorganic nitrogen:a review and meta- analysis[J].Geoderma,2017,288:79-96.

        [87] Janus A,Pelfrêne A,Heymans S,et al.Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on miscanthus biochars[J].Journal of Environmental Management,2015,162: 275-289.

        [88] Sima X F,Wang Y Y,Shen X C,et al.Robust biochar-assisted alleviation of membrane fouling in MBRs by indirect mechanism[J].Separation and Purification Technology,2017, 184:195-204.

        Nitrification and Denitrification and its Response to Biochar Addition in AgriculturalSoil:A Review

        ZHAO Guang-xin1,2, ZHANG Qing-wen2, LIU Xing-ren2, TIAN Xiu-ping1

        (1. College of Agronomy and Resource Environment, Tianjin Agricultural University, Tianjin 300384, China; 2. Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, Beijing 100081)

        Nitrous oxide (N2O) is one of the most important greenhouse gases, and agriculture soils are the main emission sources. Nitrification and denitrification, which are dominated by microbes, are the most important emission pathways. Therefore, the soil nitrification and denitrification have been paid much attention by scientists. Based on a large quantity of literatures, this paper summarizes the methods of distinguishing the contribution of nitrification and denitrification to N2O emission, soil N2O production pathway and its influencing factors, and mechanism of the effects of biochar on N2O emission. The results showed that the response of nitrification and denitrification to biochar was different, and there was still a lot of uncertainty in the effect of biochar on N2O emission reduction. The underlying mechanism was not yet clear. As such, this paper proposed the best research method to distinguish the contribution of nitrification and denitrification to N2O emission. Finally, the research prospect of the influencing factors of nitrification and denitrification and the response mechanism of biochar in farmland soil were also proposed.

        Nitrous oxide; Nitrification inhibitor; Soil microbe; Functional gene

        10.3969/j.issn.1000-6362.2018.07.002

        趙光昕,張晴雯,劉杏認,等.農(nóng)田土壤硝化反硝化作用及其對生物炭添加響應(yīng)的研究進展[J].中國農(nóng)業(yè)氣象,2018,39(7):442-452

        2017?11?29

        。E-mail:liuxr1976@126.com;tian5918@sohu.com

        國家水體污染控制與治理科技重大專項(2015ZX07203-007);國家自然科學(xué)基金項目(41773090;31300375)

        趙光昕(1991?),碩士生,主要研究方向為農(nóng)業(yè)生態(tài)系統(tǒng)碳氮循環(huán)。E-mail:zgxzhao@126.com

        猜你喜歡
        還原酶硝化貢獻
        中國共產(chǎn)黨百年偉大貢獻
        四氫葉酸還原酶基因多態(tài)性與冠心病嚴重程度的相關(guān)性
        為加快“三個努力建成”作出人大新貢獻
        貢獻榜
        MBBR中進水有機負荷對短程硝化反硝化的影響
        海洋貢獻2500億
        商周刊(2017年6期)2017-08-22 03:42:37
        厭氧氨氧化與反硝化耦合脫氮除碳研究Ⅰ:
        海水反硝化和厭氧氨氧化速率同步測定的15N示蹤法及其應(yīng)用
        發(fā)酵液中酮基還原酶活性測定方法的構(gòu)建
        中國釀造(2014年9期)2014-03-11 20:21:15
        羰基還原酶不對稱還原?-6-氰基-5-羥基-3-羰基己酸叔丁酯
        亚洲综合色一区二区三区另类| 少妇高潮喷水久久久影院| 伊人久久大香线蕉av色婷婷色| 成人在线观看av毛片| 丰满少妇人妻久久精品| 最新欧美精品一区二区三区| 免费a级毛片无码a∨中文字幕下载 | 日本一区二区三区四区在线视频 | 久久天天躁夜夜躁狠狠| 热久久国产欧美一区二区精品| 国产精品毛片久久久久久久| 午夜精品一区二区三区在线观看| 亚洲AV成人无码国产一区二区| 亚洲国产高清美女在线观看| av免费一区在线播放| 日韩精品免费在线视频一区| 久久综合99re88久久爱| 色狠狠色噜噜av天堂一区| 国产呦系列呦交| 国产欧美精品一区二区三区–老狼| 国产不卡在线免费视频| 日韩av中文字幕波多野九色| 亚洲最好看的中文字幕| 无码区a∨视频体验区30秒| 日韩电影一区二区三区| 毛片毛片免费看| 一区二区三区婷婷中文字幕| 中文字幕久久精品一区二区| 欧美老妇交乱视频在线观看| 55夜色66夜色国产精品视频| 丰满岳乱妇在线观看中字无码 | 在线观看国产成人av片| 国产精品偷伦免费观看的| 熟女少妇av免费观看| 日本精品一区二区三区试看| 亚洲av无码国产精品色午夜软件| 一二三四在线观看免费视频| 精品免费福利视频| 精品一区二区三区人妻久久| 国产成人精品人人做人人爽97| 少妇愉情理伦片|